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High precision navigation and positioning technology, as a fundamental 
function, is gradually occupying an indispensable position in the various fields. 
However, a single sensor cannot meet the navigation requirements in different 
scenarios. This paper proposes a “plug and play” Vision/IMU/UWB multi-sensor 
tightly-coupled system based on factor graph. The difference from traditional 
UWB-based tightly-coupled models is that the Vision/IMU/UWB tightly-
coupled model in this study uses UWB base station coordinates as parameters 
for real-time estimation without pre-calibrating UWB base stations. Aiming at 
the dynamic change of sensor availability in multi-sensor integrated navigation 
system and the serious problem of traditional factor graph in the weight 
distribution of observation information, this study proposes an adaptive robust 
factor graph model. Based on redundant measurement information, we propose 
a novel adaptive estimation model for UWB ranging covariance, which does 
not rely on prior information of the system and can adaptively estimate real-
time covariance changes of UWB ranging. The algorithm proposed in this study 
was extensively tested in real-world scenarios, and the results show that the 
proposed system is superior to the most advanced combination method in all 
cases. Compared with the visual-inertial odometer based on the factor graph 
(FG-VIO), the RMSE is improved by 62.83 and 64.26% in scene 1 and 82.15, 
70.32, and 75.29% in scene 2 (non-line-of-sight environment).
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1 Introduction

With the advent of the information age, localization-based services (LBS) have played an 
increasingly important role in various application scenarios (Suhr et al., 2017). In outdoor 
scenes, the global navigation satellite system (GNSS) can provide reliable and stable global 
positioning and navigation services. However, satellite signals are lost in many indoor scenes, 
such as underground garages, traffic tunnels and urban canyons, which have spawned many 
indoor positioning technologies (Schreiber et al., 2016; Gao et al., 2017). Visual simultaneous 
localization and mapping (VSLAM) use the visual system to extract different images in the 
process of camera movement by detecting the changes in these different images, extracting 
and matching the same feature points, and judging the motion changes of the feature points 
to estimate the motion of the camera (Zhang et al., 2014). Because visual odometry (VO) 
cannot track well in the face of simple rotation, it is usually combined with low-cost inertial 
sensors such as inertial measurement units (IMU) in practical applications. Visual inertial 
odometry (VIO) can be robustly used after combination (Usenko et al., 2016; Xu et al., 2021; 
Yang et al., 2021).
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Because of the lack of a global position information reference, 
although VIO has high positioning accuracy under good lighting 
conditions and good image quality, there is a problem of cumulative 
error (Cheng et  al., 2014). Therefore, many studies have been 
conducted to improve the applicability of visual localization in 
long-distance ranges by designing global landmarks or 
supplementing them with other global information. Sensors that 
can perceive global information, such as GNSS, magnetometers 
and Ultra-wide band (UWB), are global sensors. Theoretically, 
combining a VIO with high local accuracy but accumulated errors 
and a global sensor with guaranteed local accuracy without 
accumulated errors can compensate for each other’s shortcomings 
(Paul and Kyle, 2018). Mascaro et  al. proposed a multi-sensor 
loosely coupled method based on filtering (Mascaro et al., 2018). 
The main idea is to use the IMU as the main sensor and obtain a 
pose with 6-degrees of freedom (DOF) by integration. VO/VIO is 
used as the relative pose estimator, GNSS as the global pose 
estimator and an extended Kalman filter (EKF) is performed with 
the result obtained by IMU integration to obtain a more accurate 
position estimation. Moreover, GNSS does not have the problem 
of a cumulative error, which can correct the cumulative error of the 
IMU and VO/VIO. Li et al. added GNSS/IMU information to the 
VSLAM framework, constructed a propagation equation for the 
GNSS and IMU data between two frames of images and finally 
solved the optimal estimation through graph optimization (Li 
et  al., 2019). Patrick et  al. processed the vision and laser point 
cloud information through the ORB-SLAM2 and LOAM 
algorithms, added them to the fusion framework and then fused 
them with GNSS and prior maps to obtain real-time positioning 
and mapping (Patrick et  al., 2018). For different application 
platforms, Zheng et al. applied factor graph fusion to Unmanned 
Aerial Vehicle (UAV) positioning to realize the fusion of IMU, 
GNSS, barometers and optical flow (Zheng et al., 2016). Due to 
inability to receive GNSS signals indoors, the accumulated error of 
the VIO cannot be  eliminated by GNSS indoors. UWB indoor 
positioning technology based on ranging information is widely 
used and has high resolution and accuracy. Therefore, indoors, 
UWB can be  used to eliminate the error accumulation of the 
camera/IMU. However, owing to factors such as the performance 
of UWB electronic devices, indoor multipath and non-line-of-sight 
(NLOS) propagation, UWB ranging contains errors that affect the 
positioning accuracy (Song et al., 2019).

Most traditional fusion methods use KF (Mourikis, 2007; Chen 
et  al., 2018). However, the filtering method discards historical 
information. The factor graph optimization method optimizes the 
current and historical information by constructing a factor graph. 
Through repeated iterations, factor graph optimization can reduce 
linearization errors and approach the optimal solution better. 
Because nonlinear optimization can simultaneously optimize the 
data of multiple time periods, it is better than the algorithm based 
on filtering (Du, 2012; Bresson et al., 2016). This study focuses on 
a fusion algorithm based on factor graph optimization. The factor 
graph model has strong flexibility and can realize the “plug-and-
play” of sensors, which has received extensive attention in the field 
of navigation (Guowei et al., 2018). Indelman et al. (2013) realized 
the information fusion of IMU, GNSS and vision based on factor 
graphs and incremental smoothing. Based on a monocular camera, 
IMU and Lidar, Shao et  al. combined tightly coupled VIO and 

Lidar mapping modules and used factor graph optimization to 
obtain a real-time 6-DOF pose estimation (Shao et  al., 2019). 
Mikhail et al. employed infrared cameras, binocular cameras with 
LED lights, IMUs and lidar sensors to handle localization in 
visually degraded environments in a factor-graph framework 
(Mikhail et al., 2019). Nguyen proposed a tightly coupled scene 
with a monocular camera, a 6-DoF IMU and a single unknown 
UWB anchor to achieve accurate and drift-reduced localization (Li 
and Wang, 2021; Nguyen et al., 2021). Hu et al. proposed a tightly-
coupled fusion of a monocular camera, a 6-DoF IMU and multiple 
position-unknown UWB anchors to construct an indoor 
localization system (Hu et  al., 2023). When UWB ranging 
anomalies are detected, the system will dynamically discard these 
observations. Liu et  al. proposed a tightly coupled integration 
algorithm of GNSS RTK, UWB and VIO to enhance the accuracy 
and reliability for UAV seamless localization in challenging 
environments (Liu et  al., n.d.). Kao et  al. proposed a learning-
based UAV localization method using the fusion of vision, IMU, 
and UWB sensors, which consisted of VIO and UWB branches. 
The model combined the estimation results of both branches to 
predict global poses (Kao et al., 2023). Similar methods can also 
be  found in (Dong et  al., 2022; Ochoa-de-Eribe-Landaberea 
et al., 2022).

The most significant deficiency in the factor graphs is the 
distribution of weights. In the algorithm, the noise variance matrix 
of the initial measurement information of each sensor is obtained 
according to experience and different weights are assigned to the 
corresponding observations. However, in an actual system, there 
is uncertainty in the observation information; that is, the variance 
of the observation noise changes. Therefore, the weight assignment 
method relies excessively on the initial experience value and the 
weight value will not change dynamically with the actual situation 
(Wei et al., 2021). In general, if the accuracy of a specific sensor is 
higher, a larger weight is assigned based on experience. In the data 
fusion process, even if its performance suddenly deteriorates, its 
observational information weights will not change, leading to poor 
results. Based on the above analysis, we can draw the following 
conclusion that the traditional factor graph has serious problems 
in the distribution of the weights of the observation information. 
Therefore, this study improves the algorithm of the traditional 
factor graph fusion method.

To address these problems, taking the robot indoor navigation 
and positioning system as the research object and focusing on the 
information fusion technology of the integrated navigation system, 
this paper proposes a factor graph fusion algorithm with dual 
functions of weight adjustment and gross error elimination to 
realize a tight combination of camera, IMU and UWB. Changing 
the size of each sensor’s observation noise covariance matrix 
suppress the influence of observation anomalies and the 
positioning accuracy and robustness of the integrated navigation 
are improved. The contributions of this study are as follows:

 ➢ To overcome the defects of single-sensor positioning and 
achieve robust indoor positioning, we propose a robust factor 
graph model to realize the tight combination of Vision/IMU/
UWB (VIU), which is called RFG-TVIU and give the 
corresponding Jacobian matrix derivation. At the same time, 
to solve the long-term NLOS effect of UWB, according to the 
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NLOS error characteristics, we  propose adding UWB’s 
adjacent time differential ranging to the back-end constraints 
of the system and designing a smoothing method to remove 
UWB noise.

 ➢ Based on redundant measurement information, we propose a 
novel adaptive estimation model for UWB ranging covariance, 
which does not rely on prior information of the system and 
can adaptively estimate real-time covariance changes of UWB 
ranging; Meanwhile, to solve the weight allocation problem in 
multi-sensor fusion, a robust factor graph model is proposed.

 ➢ Finally, we  compare RFG-TVIU with three other models, 
including FG-VIO (VINS-Mono without loop) (Qin Tong 
et al., 2017), IMU/UWB (UWB hardware’s own IMU/UWB 
fusion algorithm, a relatively stable UWB localization 
algorithm) and FG-TVIU (VIU with tightly coupled based on 
factor graph) (Xie et al., 2022) through several different scenes 
and present the comparative analysis results.

The structure of this paper is organized as follows: The first 
part is the introduction and the second part will first introduce the 
tightly coupled VIU based on a factor graph and give the 
corresponding mathematical derivation. The third part covers the 
development of a robust factor graph model based on the sliding 
window online estimation of factor graph weights. The fourth part 
includes experimental verification and result analysis and the fifth 
part draws a conclusion and proposes prospects.

2 A new factor graph model for 
tightly-coupled VIU

The graph optimization algorithm can obtain a smooth travel 
trajectory for the carrier during the entire operation process. The 
navigation information at all time points was estimated and 
optimized several times and the result was highly accurate. 
Therefore, the navigation and positioning algorithm based on a 
factor graph is used in the real-time positioning and composition 
of vision and lidar sensors have been widely used. This section 
describes the factor graph algorithm framework and the VIU 
multi-sensor fusion algorithm. Factor graph models of various 
vehicle navigation sensors were constructed based on the analysis 
of the performance of various navigation sensors. The navigation 
sensors used in this study mainly include an IMU, camera 
and UWB.

2.1 Overview of the tightly coupled 
monocular VIU system

According to the description above, an overview of the proposed 
VIU with tightly coupled is shown in Figure 1. After initialization of 
the integrated system Vision/IMU, the INS mechanism begins to 
provide a high-rate navigation output, including the position, velocity 
and attitude. The features on the plane are mapped to the 
3-Dimensions (3D) space, and the 3D structure of the scene is 
restored using structure from motion (SFM); then, tracking and pose 
calculations are performed according to the established map. Before 
discussing the measurement models and estimation algorithms for 

the bundle adjustment (BA) and navigation filter, it is appropriate to 
first introduce the state vectors for each estimator (Yang and 
Shen, 2017).

The camera collects the state vector, and the optimization 
equation increase with time and the images. If the system runs for a 
long time, it is easy to encounter the problem of dimensional 
disasters, which makes the system unable to process the data in real 
time. Therefore, an optimization method based on a sliding window 
is generally designed, and the number of optimized frames is fixed 
using a sliding window to limit the computational complexity of the 
system. In addition, the marginalization method was designed for the 
state quantity of the sliding window, and its constraints were retained. 
In this study, we set the size of the sliding window to N (N = 10), 
assuming that χ represents the state parameters that must 
be estimated at time i.
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where b is the body coordinate frame, which is consistent with the 
IMU coordinate system; w is the world coordinate frame; pb

w
i
, qb
w
i
 and 

vb
w
i
 are the position, speed and rotation of the ith IMU state in the 

world frame, respectively. λ is the inverse depth of the feature points 
to be estimated. pb

c and qb
c are the translation and rotation matrices 

from the camera to the IMU, respectively. pub  is a translation matrix 
from UWB tag to IMU. The subscripts i and a are the start indices of 
the IMU states and point landmarks, respectively. A is the number of 
point landmarks observed by all keyframes in the sliding window. 
δT d  is the time-equivalent error delay between the UWB and the 
IMU. Pmw is the coordinates of the UWB base station to be estimated. 
The subscript m represents the number of base stations. To improve 
the efficiency of system nonlinear optimization, when the RMSE of 
UWB base station coordinates converges to a certain threshold, the 
base station coordinates are kept fixed during back-end optimization.

According to the factor graph definition, we can construct the 
measurement residuals model with the pose of the current frame that 
needs to be  optimized and solve it by minimizing the following 
cost function:
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where £ is the covariance factor, which is related to the weighting 
factor of this measurement; r Jp P,� �  is prior information that can 
be computed after marginalizing a frame in the sliding window, and 
JP is the prior Jacobian matrix from the resulting Hessian matrix after 
the previous optimisation. r zb b

b
i

i�� �1 ,�  is an IMU measurement 
residual between body state xi and xi+1. r zf f

c
j

i ,�� �  is a point feature 
reprojection residual. r zs s

c
j

i ,�� �  includes UWB ranging measurements 
and time-differential ranging measurement residuals.

The vehicle navigation sensors used in this study include the IMU, 
monocular camera and UWB wireless positioning system. In this 
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section, the sensor information is abstracted into measurement factors 
based on the factor graph theory. The schematic of the localization of 
the combined VIU system is shown in Appendix Figure A1. The yellow 
polygonal represents the pre-integration information of the IMU. The 
dark green rectangles represent the base stations of the UWB sensors, 
which are able to communicate with the sensor tags carried on the 
carrier and calculate the distance between the base station and the tags. 
The blue dotted line indicates that NLOS ranging observations. The red 
dotted line indicates that LOS ranging observations. The blue pentagons 
represent the point-feature constraints the combined camera system 
provides between the two moments.

The measurement error models of the feature points, IMU 
pre-integration and UWB ranging are introduced below. First, error 
models of the feature points factor node are given.

2.2 Point feature measurement model of 
camera

The vision observation residual is the reprojection error of the 
camera feature points, which lies between the estimated value of the 
projected position and the observed value in the normalized camera 
coordinate system. First, the ith frame where the first landmark point 
P is observed is converted to the pixel coordinates observed by the 
corresponding landmark point P in the jth frame, and the vision 
observation residual is established as follows:
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(5)

Given that the point feature needs to use the state and pose 
parameters at two times when projecting, the measurement 
information establishes a relationship with the two-factor nodes at the 
current moment and the previous moment, and its factor graph model 
is shown in Appendix Figure A2.

2.3 Measurement model based on 
pre-integration of IMU

As the primary navigation device of the current navigation 
system, the IMU has a high information-update frequency. If a 
factor node is established for each inertial navigation information, 
the amount of calculation is large and time-consuming. 
Therefore, at present, for establishing the inertial navigation 
system factor graph, only the navigation state quantity that needs 
to be output for the measurement is set as a variable node, and 
the IMU factor nodes at two adjacent moments are redefined. 
The pre-integration algorithm integrates the obtained carrier 
motion state information under the machine system, which can 
effectively improve the real-time performance of the algorithm 
(Chang et al., 2020).

FIGURE 1

Overview of the tightly coupled monocular VIU system.
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The IMU generated the observation residual of the IMU 
between consecutive frames in the sliding window. Considering 
the IMU measurement between two consecutive frames, a and b, 
as shown in Eq. (6), the residual variable that must be optimized is 
the position α  between the two frames, β , θ  and IMU bias 
ba  and bg.
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(6)

The Eq. (6) is the pre-integration of the IMU measurements. This 
is only related to the deviation of the IMU, cutting off the connection 
with the position, speed and direction of the previous moment. Unless 
the bias has shifted significantly, it is entirely possible to adjust it using 
a first-order approximation of the pre-integration term for Eq. (7) 
below. This has the benefit of reducing the number of computations 
with little impact on accuracy.
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Eq. (7) is the discrete form of the state equation of the IMU 
system, which can be expressed as:

 
( ),χ χ=

i ij h z
 (8)

When a new measurement node is added to the factor graph, the 
difference between the estimated and measured values is the cost 
function that needs to be minimized, and the factor node is established 
to obtain the expression form of the pre-integration factor node 
as follows:

 f d h zIMU
i j j i i� � � �, ,� � � � � �� �, (9)

where d �� � is the given cost function, �i i ix m� � �, and xi and mi 
are the navigation state and inertial error parameters, respectively.

where fx iorPr  and fm iorPr  are the factor nodes formed by the prior 
information of the navigation state quantity and bias variable of the 
inertial device in Figure 2, respectively.

2.4 Constraints of UWB original and 
differential ranging observations with time 
delay online correction

2.4.1 NLOS recognition and compensation based 
on robust KF

In an indoor environment, UWB signals are refracted and 
reflected owing to the existence of walls and obstacles, thus increasing 
the signal transmission time and reducing the positioning accuracy; 
this is called NLOS. To reduce the noise of UWB ranging and the 
influence of NLOS measurements, in practical applications, the KF is 
used to smooth the original range. Taking the distance from the UWB 
tag to the base station and the speed as state parameters 
X d vm k m k m k

T
, , ,� �� ��, , the equation of state can be obtained as:

 , 1, , , ,ω−= +

m km k m k m kX F X  (10)

where F
T

m k
m k

,
,�

�

�
�

�

�
�

1

0 1

�
, ∆Tm k,  is the sampling interval of the 

UWB, ωm k,  is the state noise, and its covariance matrix is Qm k, .
The measurement equation is:

 Z H Xm k m k m k m k, , , , ,� ��  (11)

where Zm k, is the measurement distance of the base station id m 
at time k Hm k, � � �1 0 ; ωm k,  is the measurement noise, and its 
covariance matrix is Rm k, .

FIGURE 2

Pre-integration constraint factor graph construction.
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In the KF, the estimated solution of the innovation vector is 
, , , ,= − m k m k m k m kr Z H X , and the covariance is 

, , , ,= 

T
m k m k m k m kN H P H . If there is no NLOS between the UWB base 

station and tag, it can be  considered that rm k,  obeys a Gaussian 
distribution with zero mean; if there is NLOS between the UWB base 
station and tag, which reduces the ranging accuracy, it can 
be considered that rm k,  satisfies the mean value ,m kr of Gaussian 
distribution, to construct the verification information 
as �m k m k

T
m k m kr P r, , , ,� �1 , when

 

�
�

�

m k

m k

m k

c LOS
c c

c NLOS

,

,

,

,

,

,

�
� �

�

�

�
�

�
�

10

10  

(12)

For c cm k� �� , 10 , we use the robust filtering algorithm to reduce 
the weight of the distance measurement value; c is the empirical value 
obtained through multiple tests.

2.4.2 Factor graph construction based on UWB 
constraints

When VIU is tightly coupled, the time deviation between 
UWB and camera mainly includes two parts: the time stamp 
misalignment between UWB and Camera and the time delay 
between UWB and camera. The time stamp misalignment between 
UWB and camera can be resolved through time interpolation, and 
the time delay between UWB and camera generally needs to 
be estimated in real-time as a parameter. Usually, these two types 
of time errors are coupled together, which make it difficult to 
decouple them. In response to this situation, this paper adopts a 
“pseudo-optical flow” method to track UWB ranging. Due to the 
different vm k,  of each UWB base station, the time delay between 
UWB and camera can be decoupled through this method. Below, 
we will first introduce the correction of timestamp misalignment 
between UWB and camera.

Suppose UWB data input is detected at time t1 and t2, bi  is the 
camera frame closest to time t1 and t2, and t b ti1 2≤ ≤ . Traditionally, 
the UWB is used to align the visual observation moment to 
compensate for the ranging value dm tbi, , as follows:

 

w t t d d
w t t d d

b

b

i

i

1 2 1 2

2 1 1 2

� �� � �� �
� �� � �� �

�
�
�

��

/

/
,

 
(13)

 d w d w dm t m t m tbi, , , ,� �1 21 2  (14)

However, if the UWB frequency is not high or the device is 
turning sharply, using the interpolation mode to compensate is usually 
prone to large errors. Therefore, this study adopts the method of 
aligning the visual observation time with the UWB. We can obtain the 
pose of the body at time t  of UWB sampling as:
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(15)

where vb
w
i
 is the velocity of the body at time tbi  and wbi  is the 

corrected angular velocity at time tbi .

2.4.2.1 Construction of UWB ranging factor graph based 
on online correction of time delay

UWB generally uses the time-of-flight (TOF) mode for ranging. 
The UWB, camera and IMU can only use soft synchronization at the 
front-end; therefore, we need to consider the time delay among them. 
In this experiment, we used Mynteye’s mono-inertial camera, and 
synchronization between the camera and the IMU was performed. For 
more details, please refer to Qin Tong et al. (2017). This study focuses 
on the online time delay estimation of UWB and camera.

If the time deviation between camera and IMU sensors is not 
considered, fusing the measurement information obtained at different 
time will bring errors to the optimization results. The traditional 
method is to use the delay T d  as an amplification state variable for 
parameter estimation and compensate for the delay error from the 
output. However, throughout the optimization process, the delay 
difference during measurement always exists and generates 
interference, which affects the estimation speed and accuracy of the 
delay. On this basis, a method is proposed to directly compensate for 
the delay error of UWB measurement values, introducing the state 
variable δT d . The time interval between two reference frames is 
generally between 0.05 s and 0.1 s. Assuming the distance d of UWB 
base station dm k,  varies uniformly between two reference frames, as 
shown in Figure 3.

where tk and tk+1 are the UWB sampling time; tb and te  are the 
IMU pre-integration time; Td  is the time delay between UWB and 
camera at time tk; dm k,  and dm k, +1 are the original ranging of UWB; 
dm k,  and dm k, +1 are the ranging after UWB compensation.

 � z d r nm t m k m t m tk k k, , , , ,� � �  (16)

 , ,= + −



k i i

w w b w
m t u mb br p q t P

 (17)

where, P x y zm
w

m
w

m
w

m
w T

� � �, ,  is the coordinate parameter of the 
base station m; dm k,  is the distance measurement of dm k,  after time 
delay compensation; tbi  is the timestamp of frame bi ; tub is the 
translation matrix from the UWB tag to the IMU body; pb

w
i
 is the 

FIGURE 3

Online estimation of UWB and IMU time delays.
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translation vector of the body at the time i relative to the world 
coordinate frame (W); qb

w
i
 is the rotation vector the body relative 

to the world coordinate frame at the time i; � � �.norm represents 
the modulus of the vector.

Before each optimization, compensate for the delay error in UWB 
measurement and obtain a linear expression about Td . The initial 
estimated delay Td  is set to 0, and an iterative update is performed 
before each optimization. dm t,  can be obtained as:

 d d v Tm k m k m k d, , , ,� �  (18)

where, vm k,  is the velocity vector of UWB tag relative to the base 
station m at time tk.

2.4.2.2 UWB differential ranging constraints at adjacent 
moments

The position of the UWB tag at any time is constrained only by 
the measurement distance between the tag and tag. If the measurement 
is inaccurate, for example, when there is a serious NLOS influence, it 
is easy to decrease the positioning accuracy. Generally, the output 
frequency of UWB base stations can reach at least 10 Hz or even 
greater. By experiments, the NLOS error can be regarded as a constant 
value in a short time, and the difference in distance between adjacent 
moments can eliminate the influence of the NLOS error. Therefore, 
this study uses the distance difference between adjacent moments of 
the tag as a weak constraint to increase the constraint strength of the 
tag position, as shown in is shown in Appendix Figure A3. The specific 
optimization equation is as follows:
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where , , 1 ,δ += −  

m k m k m kd d d , 
1

2
,2σ

+
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k

m k
k
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m kd  and ,


m kd  are 
the distances inversely calculated by the known tag coordinates and 
the UWB base station coordinates at time tk  and tk+1, respectively. 
Nodes (1) and (2) can be written uniformly as

 � � �r h T nm k
U U

k d
U

, ,� � � �,  (20)

When a new measurement node is added to the factor graph, 
establishing a different relationship between the estimated and 
measured values is the current cost function that must be minimized. 
To establish factor nodes, we can obtain the expression form of the 
UWB ranging and UWB differential ranging factor nodes as follows:

 
f T d z h TU

k d m t
U U

k d
k

� � � �, ,� � � � � �� �, ,
 

(21)

where T d  is the time delay between UWB and IMU; nU  is 
ranging noise; f TU

k d� �,� � connects the state variable node χk and 
the error variable node δTd  at the time tk ; f U bias_  is the ranging 
compensation based on time delay T d  at time tk . The factor graph 
model is shown in Figure 4.

2.4.3 Feedback and compensation of UWB raw 
ranging

After the factor graph is optimized, it is determined using the residual 
information. Assuming that base station m has an NLOS error, we use the 
optimized UWB tag position and the position of the base station m to 
inversely calculate the distance ,



w
m kd  between the tag and base station

 , Ä ,+ + − − ≥ ×
i i i i

w w b w w w w
u m m kb b b bp q t v dt P d s v t

 
(22)

If this inequality is established, the measured value dm k
w

,  is 
abnormal. At the same time, the threshold can be adjusted by the node 
factor s. ,



w
m kd  can be obtained as:

 
, ,= + + −

i i i

w w w b w w
m k u mb b bd p q t v dt P

 (23)

After solving for the distance ,


w
m kd , according to Section 2.5.1, 

the distance and speed of the tag to each base station can be inversely 
calculated as follows:

FIGURE 4

UWB ranging and inter-frame difference constraint factor graph construction.
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,, , , 1 , 0.1 ,σ−= − =

w
m km k m k m kv H X d  (24)

where, Hm k, � � �1 0 , X d vm k
T

, � � � �1 , σ 2 is the 
variance of ,



w
m kd .

3 Research on robust factor graph 
based on sliding window real-time 
estimation of adaptive factor

The most significant deficiency in the factor graphs was the 
distribution of weights. Traditional factor graphs have serious 
problems with the distribution of observation information weights. 
This study introduces a robust estimation algorithm to solve this 
problem based on reliability, suppressing the influence of observation 
anomalies by changing the size of the observation noise 
covariance matrix.

3.1 Research of robust factor graph

In the VIU navigation system, the observations of other sensors 
produce abnormal observations owing to their own reasons or 
external influences, and these abnormal observations are gross errors. 
In actual system operation, if the gross error acts on the system, it will 
cause a deviation between the system measurement model and the 
actual measurement value, thus affecting the stability of optimization 
algorithm. Therefore, robust estimation is added to the algorithm, and 
its purpose is to improve the estimation accuracy by increasing the 
corresponding observation covariance matrix and reducing the 
reliability of the observation when the gross error of the observation 
is detected. To address these problems, this paper proposes a robust 
factor graph algorithm with dual functions of weight adjustment and 
gross error elimination. By changing the size of each sensor’s 
observation noise covariance matrix, the influence of observation 
anomalies was suppressed, and the positioning accuracy and 
robustness of the integrated navigation are improved.

Figure 5 shows the global model factors for the VIU navigation 
system. Where xn represents the carrier navigation state variable at 
the nth time; mn represents the calibration parameters of the IMU 
(including constant drift and random walk terms, etc.) at the nth 
time, which are used to correct the data output by the IMU; the 
variable node set is denoted as χ ; the factor node set is denoted as 
F ; all edges connecting nodes form a set E, and the factor graph can 
be expressed as

 G F E� � �, ,� , (25)

According to factor graph theory, factor graph G  describes the 
factorization of the function f �� �, expressed as

 
f f

i
i� �� � � � �� ,

 
(26)

In the multi-source information factor graph framework, a 
measurement model h �� � is defined, which can predict the observed 
information of the sensor based on the given state estimate. The factor 
node is defined as the difference between the predicted and actual 
measurements, and the corresponding indicator function is 
established to estimate the state variable. Based on the assumption of 
the Gaussian white noise model, a measurement factor node can 
be expressed as follows:

 f d h zi i i i i� �� � � � � ��� �� , (27)

where hi i�� � represents the measurement model; zi represents the 
actual observation information; d �� � represents the cost function.

According to the full probability Bayes formula, the state variable 
with the largest posterior probability density is considered the 
optimal estimate:

 ( )arg max | ,χ χ=

MAP
i ii p z

 (28)

FIGURE 5

Global model factor for the VIU navigation system.
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For a complete factor graph system, the maximum a posteriori 
estimate of the joint probability density function is equivalent to 
minimizing the sum of the error equations for all nodes as follows:

 
( ) ( ) ( )arg max | arg min , ,χ χ= = ∑

k

MAP i
i i k ii kV i

p z W V h V z
 
(29)

where, W Vk� �  is the weight function. The 3-stage method was 
used to construct the weight function as follows:
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(30)

Vk  is the prior residual at time k. Assume that the measurement 
covariance matrix before adjustment is [ ]1 2, , ,δ δ δ ndiag and the 
covariance after adding the adaptive factor is 

[ ]1 1 2 2, , ,λ δ λ δ λ δ n ndiag . According to Eq. (30), the dynamic weight 
function W Vk� � can be regarded as a generally decreasing function. 
The larger the measured and predicted values residuals, the smaller 
the assigned weights. The measurement was considered acceptable 
when the residual was smaller than a certain threshold. If the residual 
error between the sensor’s actual measurement value and the system 
state’s prediction is too large, it can be  considered that the 
corresponding sensor is unreliable. Therefore, the trusted distance is 
so large that the fusion result does not depend on the measurement of 
the corresponding sensor, and the weight of the corresponding 
measurement is small and close to zero. When the trusted distance is 
greater than the threshold but not too large, the weight assigned to the 
corresponding sensor measurement information is dynamically 
adjusted according to the weight function. The specific operation is 
illustrated is shown in Appendix Figure A4.

The weight function is mainly set to the above form for the 
following considerations. First, the weight of each factor can 
be adjusted in real-time according to the residual. Second, in the case 
of sudden changes in vehicle motion, the measurement is prevented 
from being misjudged as an abnormal value owing to the significant 
deviation between the actual measurement and prediction of the 
system state. This not only provides the dual functions of weight 
adjustment and gross error removal but also enhances the robustness 
of the factor graph algorithm. This method differs from existing factor 
graph algorithms in that after all state variables are optimized, 
prediction residuals are computed before adding new metrics to the 
factor graph. The residual thresholds k0 and k1 define the credible 
range. We must set Vk  between the independent variable with the 
highest probability and the distribution mean to ensure that the 
probability of the credible probability is not too small and is 
statistically significant.

3.2 Real-time estimation of adaptive factor 
based on sliding window

Real-world navigation scenarios are complex and unpredictable. 
In other word, the real measurement noise is strongly dependent on 

the navigation scenarios. However, in many applications, it is difficult 
to predict the navigation environment. To solve this problem, the 
adaptive factor graph optimization is the most commonly-used 
method. However, this method is always an innovation sequence-
based adaptive estimation approach and will involve the priori 
information χ  during the calculation of the measurement noise 
covariance. Therefore, if the priori information is not well estimated, 
a negative effect properly occurs for the optimization performance. 
Hence, to avoid such risks, a novel adaptive model is proposed based 
on redundant measurement information. The specific derivation steps 
of the proposed model are as follows.

Assume that z k1 � �  and z k2 � � are measurements of the value z 
from different systems at time k .
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where V kP,1 � � and V kP,2 � � are independent and zero mean white 
noises of UWB ranging; f kP,1 � � and f kP,2 � � are trend items of the 
measurement errors of UWB ranging.

First, calculate the difference sequence (i.e., the differences 
between every two adjacent measurements) of the two separate 
measurement systems:
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Then, subtract the two difference sequences and yield the second 
order difference sequences; the trend items fP,1 and fP,2 are extremely 
small values compared to the measurement noise, so they are 
neglected after subtraction:
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Since V kP,1 � �  and V kP,2 � � are uncorrelated, zero mean white 
noises, the auto-correlation of the second order difference sequences is:
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(35)

When the prerequisite Eq. (5) is satisfied, the variance of 
measurement zP,1 can be calculated as:
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 R D V k D z k z kP P P P, , , , /1 1 1 2 2� � �� � � � � � � ��� ��� �� �  (36)

The precondition of the theorem is that two separate measurement 
systems are available for the same value z. This is suitable for the 
tightly-coupled system VIU, because UWB can provide the 
measurements of UWB ranging in a direct manner, and the Vision/
IMU can provide them in an indirect approach. Hence, the UWB and 
Vision/IMU are treated as systems 1 and 2, respectively, in the 
proposed system.

On the other side, as the Vision/IMU owns the short-term 
accuracy characteristic, the errors that accumulated in several seconds 
are much smaller than the UWB ranging errors and, thus, can 
be neglected. Therefore, the tightly-coupled VIU also meets the prior 
condition in Eq. (33). Hence, the proposed method can be applied in 
the tightly-coupled VIU system to estimate the variances of the UWB 
ranging. Furthermore, a sliding window strategy is designed for noise 
estimation. The measurement noise is not always identically 
distributed and may change during the process; thus, using a sliding 
window can track the real-time noises accurately and mitigate the 
influence of historical information.

 
R D V k D z k W k z k W kP P P P, , , ,: : /1 1 1 2 2� � �� � � �� � � �� ��� ��� �� �

 (37)

where k  denotes the current time epoch and W  denotes the size 
of the sliding window, which is usually set as 10–20. To improve the 
efficiency of using current observation information and reduce 
the contribution of historical parameters to current state parameters, 
the exponential expansion method is used as follows:
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where, τ  is the UWB sampling interval. The standard deviation Vk 
can be written as:

 V Rk P= ,1 (39)

4 Multi-scenes experimental 
verification

In this section, we describe an experiment conducted to test the 
performance of the proposed method in a vehicle experiment using a 
tightly coupled VIU navigation system. The UWB adopts products 
released by Noop-loop manufacturers, and the ranging accuracy is 
approximately 5 cm under LOS conditions. The speed is relatively low; 
therefore, the influence of asynchrony among the base stations can 
be ignored.

The camera adopts the standard version of Mynteye’s mono-
inertial camera, and the IMU adopts a 6-axis system (3-axis 
accelerometer +3-axis gyroscope) that comes with Mynteye’s mono-
inertial camera. A specific experimental setup is shown in 

Appendix Figure A5A. The data collected by the infrared motion 
capture camera are used as the true value reference, and the accuracy 
can generally reach the millimeter level. The IMU parameters are 
listed in Appendix Table B1. The collected accelerometer and 
gyroscope data are connected to TX2 through the UWB 3.0 interface 
and published to the ROS platform so that each program can access 
the measurement data.

We used three different datasets to compare RFG-TVIU with 
three other models, including FG-VIO (VINS-Mono without loop), 
IMU/UWB (UWB hardware’s own IMU/UWB fusion algorithm, a 
relatively stable UWB localization algorithm) and FG-TVIU (VIU 
with tightly coupled based on factor graph) through several different 
scenes and present the comparative analysis results, and provided 
comparative analysis results. In this study, the RMSE can be defined as

 
RMSE
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(40)

where N  denotes the total sample number, Vk  represents the 
difference between the reference value and the sampled value at time 
k. RMSE is used to reflect the deviation between the estimated value 
and the reference value, and it is very sensitive to large errors in a set 
of data. Therefore, we used the RMSE to evaluate the influence of 
outliers on the localisation results.

 (1) Scenes 1-1, 1-2, and 3 were performed in an open environment 
with UWB under LOS conditions, and the experiment took 
approximately 150 s.

 (2) Scenes 2-1, 2-2, and 2-3 were performed in an indoor 
environment where the UWB signal was weak, and NLOS 
errors were present. The NLOS scene was mainly imitated by 
the occlusion of three large plastic wooden boards. A specific 
scenario is shown in Appendix Figure A5B. The experiment for 
each scene lasted for approximately 120 s.

 (3) Scenes 3-1 and 3-2 were performed in an outdoor environment 
on the playground of Southeast University, which is used for 
conducting ablation experiments.

Scene 1 and Scene 2 belong to indoor scenes, and their true values 
are collected by infrared motion capture cameras; Scene 3 belongs to 
an outdoor scene, and the true values are collected from the 
GNSS antenna.

4.1 Comparison of performance among 
different schemes under the condition of 
UWB LOS in scenes 1-1 and 1-2

The raw data analysis of the IMU and UWB in Scene 1-1 is shown 
in Appendix Figure A6. The IMU includes 3-axis accelerometer and a 
gyroscope angular velocity. The top two in Appendix Figure A6 are the 
acceleration and angular velocity, and the bottom two are the UWB 
original data and adjacent time differential data. Due to the similarity 
between Scenes 1-1 and 1-2, we will only analyze Scene 1-1 below.

Given that the IMU is in the horizontal direction, the acceleration 
value in the X (vertical direction) direction fluctuates around 10 m/s2, 
and the angular velocity values in the Y and Z directions fluctuate 
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around 0. Nguyen et al. (2021) shows that when the original data of 
UWB fluctuates significantly, for example, when NLOS occurs, it can 
be detected by the difference in adjacent time data. It can be seen from 
Appendix Figure A6 that, except for a few moments, the UWB data 
are stable. Table 1 lists the root mean square errors (RMSE) of the 
position errors obtained using different methods.

4.1.1 Trajectory and RMSE comparison of 
Scenes 1-1

Figures 6, 7 show the trajectory and RMSE comparison of the four 
schemes in Scene 1-1, respectively. The percent increase in RMSE was 
calculated as the percent increase in RMSE = (a-b)/a.

First, we compare the advantages and disadvantages of scheme 
1 with other schemes. Since scheme 1 is based on VIO positioning, 
the error accumulates over time. As shown in Figures  6, 7, 
schemes 2, 3 and 4 are far better than scheme 1, compared with 
scheme 1, which is improved by 43.36, 55.75, and 62.83%, 
respectively.

We then compare the advantages and disadvantages of the 
other three schemes. Figure 7 and Table 1 show that the RMSE of 
scheme 4 is the smallest, and the error is maintained within 0.2 m. 
The scheme 3 is the second best, and scheme 2 is the worst. Given 
that schemes 3 and 4 are optimized based on the factor graphs, it 
can be seen from Table 1 that they are better than scheme 2. The 

TABLE 1 The RMSE results on Scenes 1-1 and 1-2.

Algorithm type Scene 1-1 (cm) Increase (%) Scene 1-2 (cm) Increase (%)

FG-VIO 22.6 - 24.9 -

IMU/UWB 12.7 43.36 13.5 45.78

FG-TVIU 10.1 55.75 10.4 58.23

RFG-TVIU 8.4 62.83 8.9 64.26

The translation (m) errors are listed as follows. The numbers in bold represent the estimated trajectory that is more close to the benchmark trajectory. Given that the reference of the rotation of 
Scene 1-1 and Scene 1-2 cannot be collected, we only give the comparison of translation.

FIGURE 6

Comparison of the proposed method RFG-TVIU (D) versus FG-VIO (A), IMU/UWB (B) and FG-TVIU (C) on the Scene 1-1 sequence. The blue line 
denotes the localization error. Quantitative results can be found in Table 1. It can be seen that our method produces better localization accuracy.
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scheme 4 has added a robust equivalent weight algorithm based 
on scheme 3, which can allocate the weight of the original UWB 
ranging more reasonably; therefore, it is more stable than 
scheme 3.

4.1.2 Analysis of UWB pre-test and post-test 
residuals of Scene 1-1

The size of the residuals reflected the quality of the observed 
data. Generally, we can analyze the quality of the observed data by 
outputting the residual. The residuals include pre- and post-
optimization residuals. The pre-optimization residual reflects the 
degree of consistency between the prior prediction of the system 
and the current measurement, and the degree of consistency 
between the current optimization model and the current 
observation of the post-test residual. The difference between the 
pre-optimization and post-optimization residuals reflects the 
accuracy of the system algorithm.

The pre- and post-optimization residuals of each UWB base 
station in Scene 1-1 is shown in Appendix Figure A7. It can be seen 
from the Appendix Figure A7 that after the system converges, the 
pre-optimization and post-optimization residuals fluctuate between 
−0.1 m and 0.1 m, which is basically the same as the variation of the 
ranging noise of UWB. Moreover, the changes in the pre-and post-
optimization residuals are basically the same, which indicates that the 
algorithm model and observation quality in this study are 
relatively good.

4.2 Comparison of performance among 
different schemes under the condition of 
UWB NLOS in Scenes 2-1, 2-2, and 2-3

The schematics of Scenarios 2-1, 2-2, and 2-3 are shown in 
Appendix Figure A8. Three baffles were placed in the scenarios to 
simulate a complex environment. One baffle (see Appendix Figure A5B) 
was placed in Scene 2-1, and two and three baffles were placed in 
Scenarios 2-2 and 2-3, respectively, as shown in Appendix Figure A8. 
The combined system moved back and forth between the three baffles. 
We can use infrared motion capture cameras to obtain the true values 
of trajectories.

Figure 8 shows the original UWB differential ranging analysis of 
the three scenarios in scene 2. It can be seen from Figure 8 that there 
are relatively serious NLOS phenomena in the three scenarios, 
especially in Scenarios 2-2 and 2-3. NLOS lasted for a long time in the 
three scenarios, almost throughout the observation stage. During 
many periods, four base stations had serious NLOS errors at the same 
time. Compared to Scenarios 2-2 and 2-3, the NLOS phenomenon of 
Scene 2-1 is relatively slight.

4.2.1 Trajectory and RMSE comparison of 
Scenarios 2-1, 2-2, and 2-3

The trajectories and RMSE comparison of different schemes for 
the three scenarios in Scene 2 are shown in Appendix Figures A9–A16. 
In the RMSE comparison, the blue line represents the positioning 

A B

C D

FIGURE 7

RMSE of the proposed method RFG-TVIU (D) versus FG-VIO (A), IMU/UWB (B) and FG-TVIU (C) on the Scene 1-1 sequence. The blue line denotes the 
localization error. The red and black lines represent the residuals of the X and Y axes, respectively. Quantitative results can be found in Table 1. We can 
see that our method produces better localization accuracy.
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error, and the red and black lines represent the errors on the X- and 
Y-axes, respectively. The quantitative results are presented in Table 2. 
The red numbers indicate that the percentage of the algorithm 
decreases relative to that of FG-VIO. To compare the advantages of 
this study more vividly, we join the tight combination IMU/UWB 
algorithm that comes with NOOP-LOOP.

From the RMSE and trajectory comparison in the three scenarios, 
it can be  observed that RFG-TVIU produces better localization 
accuracy. Given that the positioning error of IMU/UWB is generally 
larger than that of FG-TVIU in NLOS scenarios, a comparative 
analysis of FG-VIO, FG-TVIU and RFG-TVIU is performed below.

First, we  analyzed FG-VIO and FG-TVIU. The 
Appendix Figures A9–A12 show that in Scenarios 2-2 and 2-3, due to 
serious NLOS errors, the positioning accuracy of the combined system 
is seriously affected. Owing to the influence of NLOS errors, the 
accuracy worsens, and the RMSE of FG-TVIU is greater than that of 
FG-VIO. In particular, for Scene 2-3, the maximum error can reach 
6 m. In Scene 2-1, the NLOS error of the UWB ranging was relatively 
small, and the positioning accuracy of FG-TVIU was better than that 
of FG-VIO.

Then we analyzed FG-VIO and RFG-TVIU. The conclusion can 
be  drawn from Appendix Figures A9–A12 that RMSE of 
RFG-TVIU in the three scenes is much smaller than that of 
FG-VIO and FG-TVIU. Compared with FG-VIO, the RMSE of 
RFG-TVIU in the three scenes is improved by more than 70%, the 
plane error is within 0.2 m after convergence, and both Scenes 2-1 
and 2-3 are within 0.1 m. Table  2 shows that the NLOS error 
impacts the filter-based combination system more than the factor 
graph-based optimization. After adding the robust model, the 
NLOS error has little effect on the positioning accuracy of the 
combined system. In Scene 2-3, although there is a severe NLOS 
phenomenon in this scene, the added robust model has 
characteristics of weight adjustment and gross error elimination 

simultaneously, which can make better use of the ranging 
information of the UWB.

It can be observed from the above analysis that when one baffle 
is placed in the scene, although the positioning performance of 
FG-TVIU is also affected, the impact is relatively small, and the 
positioning accuracy of FG-TVIU is still better than that of 
FG-VIO. When two or three baffles are placed, the positioning 
performance of the FG-TVIU is significantly affected by the NLOS 
error, and the positioning accuracy decreases rapidly. However, the 
positioning performance of the RFG-TVIU is not affected by 
the NLOS error, and the accuracy can still reach approximately 
10 cm. The UWB NLOS error for each moment is further 
analyzed below.

4.2.2 Analysis of UWB pre-optimization and 
post-optimization residuals of Scenes 2-1, 2-2, 
and 2-3

Figure 9 shows the real-time NLOS errors of tags to UWB base 
stations in Scenarios 2-1, 2-2 and 2-3. By comparing Figure 9 and 
Appendix Figure A7, we  can see that owing to the three NLOS 
scenarios included in Scene 2, UWB ranging has a more severe NLOS 
phenomenon, which is more complicated than in Scene 1.

Given that the estimation of UWB base station parameters is 
already relatively stable, we can consider it as a known value when 
analyzing NLOS errors. When the posterior coordinate information 
of the UWB tag is relatively accurate, the NLOS error in the range of 
each base station can be calculated using Eq. (23).

According to Appendix Figure A7, when the NLOS error is not 
included in the ranging, the ranging residual fluctuates around the 
positive and negative 0 values after optimization, and the maximum 
fluctuation range is 0.2 m. Given that the NLOS error is semi-random, 
when the NLOS error is included in the range if the robust model is 
accurate enough, the main part of the NLOS error is included in the 

A B C

FIGURE 8

Analysis of UWB raw differential ranging NLOS errors in Scenarios 2-1 (A), 2-2 (B), and 2-3 (C).

TABLE 2 Comparison of RMSE of Scenarios 2-1, 2-2 and 2-3.

Type Scene 2-1 
(cm)

Improve (%) Scene 2-2 
(cm)

Improve (%) Scene 2-3 
(cm)

Improve (%)

FG-VIO 62.2 - 56.6 - 42.5 -

IMU/UWB 28.3 54.50 67.8 −19.79 89.4 −110.35

FG-TVIU 26.5 57.40 57.6 −1.77 76.9 −80.94

RFG-TVIU 11.1 82.15 16.8 70.32 10.5 75.29
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TABLE 3 Results of ablation experiment (cm).

Scheme Node1 Node2 KF ROBUST Dataset 3-1 Dataset 3-2

RMSE Percentage RMSE Percentage

Model 1 √ 9.9 0 14.0 0

Model 2 √ √ 9.4 +0.5 12.6 +1.4

Model 3 √ √ √ 9.1 +0.8 12.1 +1.9

Model 4 √ √ √ √ 8.2 +1.7 10.8 +3.2

post-optimization residual. As shown in Figure 9, the NLOS errors in 
the three scenarios reached a maximum of 10 m. From Figure  9, 
we can see that the NLOS error from the tag to the same UWB base 
station can last for 5–10s. In the short term, the NLOS error of UWB 
base stations is relatively stable, which also verifies the effectiveness of 
the algorithm model in this paper. In addition, through comparison, 
we can also draw the following conclusion: when a robust model is 
added and the robust model is accurate enough, the UWB ranging 
error is mainly reflected in the posterior residual. When robust models 
are not added to tightly combined systems, the non-line of sight error 
of UWB is generally allocated to various parameters and 
posterior residuals.

4.3 Comparison of different UWB initial 
calibration schemes in Scene 3

When conducting VIU tight coupling, there are two schemes 
based on the initial calibration mode of UWB base stations: 
pre-calibration of UWB base stations and real-time estimation of 
UWB base stations as parameters. Scheme 1 requires us to use other 
equipment (such as a total station) to measure the coordinates of the 
UWB base station in advance, and to perform trajectory calibration 
in advance during fusion to solve for the rotation and translation 
matrices of the UWB base station coordinate system and the VIO 
initial world coordinate system. This mode not only limits the usage 
scenarios (such as when UWB needs to be moved in real-time), but 
also requires additional devices to assist in completing. Scheme 2 is 
more flexible compared to Option 1. By using UWB base stations as 
parameters for real-time estimation, it is possible to directly use UWB 
base station coordinates for global constraints without prior 
calibration and conversion during tight coupling. This study adopts 

Scheme 2 for tightly coupled research. The trajectory comparison and 
error comparison of the two schemes are shown in 
Appendix Figures A17, A18, respectively.

Comparing Appendix Figures A17A,B, it can be seen that at the 
initial time of 0–13 s, the accuracy of Scheme 2 is better than that of 
Scheme 1. After analysis, it can be concluded that due to the lack of 
pre calibration of the UWB base station in Scheme 1, real-time 
parameter estimation is required. Scheme 1 has more parameters to 
be estimated than Scheme 2, and the model structure is not as stable 
as Scheme 2. Therefore, Scheme 1 converges more slowly than Scheme 
2 at the initial time. But after 13 s, the convergence of Schemes 1 and 
2 tends to stabilize, and the results of Scheme 1 are better than those 
of System 2. The UWB base station in Scheme 1 is estimated in real-
time as a parameter during initialization, so the coordinates of the 
base station are consistent with the initialized world coordinate system 
and there is no conversion problem. Therefore, after the UWB base 
station coordinate parameters converge in Scheme 1, the accuracy of 
system pose estimation is better than that of Scheme 2 estimation.

4.4 Ablation experiment

The effectiveness of the VIU tightly coupled model and the robust 
adaptive model were validated through ablation experiments, and the 
results are shown in Table 2. “Node1” in Table 3 refers to using only 
the original distance to participate in constraints in factor graph based 
VIU compact combinations; “Node2” refers to the distance difference 
participation constraint based on adjacent moments; “KF” refers to 
the addition of UWB raw ranging Kalman filtering module; “Robust” 
refers to the addition of an adaptive robust model in tight combinations.

A real testing scene for dataset 3 is shown in Appendix Figure A19, 
located on the Sipailou playground of Southeast University. Figure 10 

A B C

FIGURE 9

NLOS errors of UWB ranging on Scenarios 2-1 (A), 2-2 (B), and 2-3 (C) Sequences.
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shows the test trajectory calculated by this scheme for scenes 3-1 and 
3-2, and the mean error calculated by this scheme for scenarios 3-1 
and 3-2 is shown in Appendix Figure A20. From the error chart, 
we can see that the mean error of both scenes is around 10 cm, and the 
error is relatively uniform with little significant fluctuation.

Scenes 3-1 and 3-2 both show some improvement in accuracy 
compared to Model 1, with accuracy of 0.5 cm and 1.4 cm, respectively. 
In contrast, Scene 3-2 shows a greater improvement in accuracy. 
Similarly, in Scenes 3-1 and 3-2, Model 3 has improved by 0.8 mm and 
1.9 mm compared to Model 1, respectively. The KF module only 
performs smoothing filtering on the raw UWB ranging, so the 
improvement is relatively small. Model 4 has improved by 1.7 mm and 
3.2 mm compared to Model 1, respectively. We  can see that the 
addition of Node 2, KF and ROBUST models have significantly 
improved its accuracy, but overall, the accuracy of scene 3-1 is higher 
than that of scene 3-2. Through analysis, it can be concluded that due 
to the presence of dynamic scenes and complex trajectories in scene 
3-2, the overall accuracy is not as good as in scene 3-2. Meanwhile, 
due to the fact that Node 2 and ROBUST models are specifically 
designed to resist gross errors, the accuracy improvement in scene 3-1 
is smaller than that in Scene 3-2. The specific comparison of the 
ablation experiment can be seen in Figure 11.

5 Conclusion

This paper proposes a “plug and play” VIU multi-sensor tightly-
coupled system based on robust factor graph. The difference from 
traditional UWB-based tightly-coupled models is that the VIU 
tightly-coupled model in this study uses UWB base station coordinates 
as parameters for real-time estimation without pre-calibration. This 
study also proposes a novel adaptive robust factor graph model to 
solve the serious problem of traditional factor graph in the weight 
distribution of observation information.

Through a comparative analysis of Scenes 1 and 2, we can see that 
RFG-TVIU has a great improvement compared with other VIU 
methods that are tightly coupled. When the NLOS error of the UWB 
ranging is large, the positioning accuracy of the FG-TVIU decreases 

rapidly. RFG-TVIU is hardly affected by the NLOS error, and the 
RMSE can still reach approximately 10 cm. Even if four base stations 
have significant NLOS errors simultaneously, RFG-TVIU can ensure 
the output of high-precision positioning results. Comparing the 
localization RMSE in several scenarios, we can draw a conclusion that 
UWB NLOS has a more significant impact on the filter than the factor 
graphs. Compared with the algorithm based on the standard factor 
graph, the larger the NLOS error of UWB, the more pronounced the 
improvement in RFG-TVIU. It can be seen from the three scenarios 
in Scene 2 that the NLOS error is transient and systematic, and the 
rational use of this characteristic in back-end optimization can 
improve the accuracy and robustness of the fusion system. The 
effectiveness of each module proposed in this study has been 
demonstrated through ablation experiments.

Although increasing the UWB base station parameters for 
estimation reduces accuracy in the initial stage, as the UWB base 
station coordinate system is consistent with the world coordinate 
system and does not require coordinate conversion, the accuracy after 
system convergence is better than a tightly combined system with 

A B

FIGURE 10

Trajectory of RFG-TVIU for Scenes 3-1 (A) and 3-2 (B).

FIGURE 11

Results of ablation experiment.
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UWB base station coordinate pre-calibrated. Next, we will study tight 
combination localization under dynamic UWB base stations.
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