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Introduction: As an interactive method gaining popularity, brain-computer

interfaces (BCIs) aim to facilitate communication between the brain and external

devices. Among the various research topics in BCIs, the classification of motor

imagery using electroencephalography (EEG) signals has the potential to greatly

improve the quality of life for people with disabilities.

Methods: This technology assists them in controlling computers or other

devices like prosthetic limbs, wheelchairs, and drones. However, the current

performance of EEG signal decoding is not su�cient for real-world applications

based on Motor Imagery EEG (MI-EEG). To address this issue, this study proposes

an attention-based bidirectional feature pyramid temporal convolutional

network model for the classification task of MI-EEG. The model incorporates

a multi-head self-attention mechanism to weigh significant features in the MI-

EEG signals. It also utilizes a temporal convolution network (TCN) to separate

high-level temporal features. The signals are enhanced using the sliding-window

technique, and channel and time-domain information of the MI-EEG signals is

extracted through convolution.

Results: Additionally, a bidirectional feature pyramid structure is employed to

implement attention mechanisms across di�erent scales and multiple frequency

bands of the MI-EEG signals. The performance of our model is evaluated on

the BCI Competition IV-2a dataset and the BCI Competition IV-2b dataset,

and the results showed that our model outperformed the state-of-the-art

baseline model, with an accuracy of 87.5 and 86.3% for the subject-dependent,

respectively.

Discussion: In conclusion, the BFATCNet model o�ers a novel approach for

EEG-based motor imagery classification in BCIs, e�ectively capturing relevant

features through attention mechanisms and temporal convolutional networks.

Its superior performance on the BCI Competition IV-2a and IV-2b datasets

highlights its potential for real-world applications. However, its performance on

other datasets may vary, necessitating further research on data augmentation

techniques and integration with multiple modalities to enhance interpretability

and generalization. Additionally, reducing computational complexity for real-

time applications is an important area for future work.
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1 Introduction

The brain-computer interface (BCI) is an emerging interactive

communication method that enables the neural control of

prostheses and external devices, as well as post-stroke motor

rehabilitation by decoding signals generated from brain activity.

This state-of-the-art technology has the potential to revolutionize

various aspects of life and significantly enhance the overall quality

of life. BCIs have a wide range of applications, ranging frommedical

assistance to human enhancement (Ahmed et al., 2022; Altaheri

et al., 2023). Typically, electroencephalogram (EEG) signals reflect

the electrical activity of the brain and are recorded non-invasively

by placing an array of electrodes on the scalp. Obtaining real

values (time and channel) Two-dimensional EEG signal matrix

enables direct communication between people and external devices

(Graimann et al., 2010).

Motor imagery (MI) is an activity of thinking about how to

move a certain part of the body without moving the body. EEG-

based MI activity has been widely used in vehicle control, drone

control, environmental control, smart home, security, and other

non-medical fields (Altaheri et al., 2023). However, the decoding

of MI-EEG signals remains a challenging task. In this task, other

physiological signals, such as facial muscle activity, eye blinking,

and electromagnetic interference in the environment, contaminate

the recorded MI-EEG signals and result in a low signal-to-

noise ratio (Lotte et al., 2018). Individual differences in MI-EEG

patterns are influenced by variations in brain structure and function

across participants. Additionally, the EEG system exhibits a level

of correlation between signal channels, further complicating the

signals processing procedure (Altaheri et al., 2022).

In traditional methods for classifying and recognizing EEG

signals, there is often a reliance on domain-specific knowledge.

This has led to an increased focus on developing effective feature

extraction and classification techniques, primarily due to the low

signal-to-noise ratio inherent in EEG signals (Huang et al., 2019).

Various feature extraction methods have been commonly utilized,

including independent component analysis (Barbati et al., 2004;

Delorme and Makeig, 2004; Porcaro et al., 2015; Ruan et al., 2018),

wavelet transform (Xu et al., 2018), common spatial pattern (Gaur

et al., 2021), and empirical mode decomposition (Tang et al., 2020).

After preprocessing the EEG signals, essential features are extracted

from the processed signals and fed into a classifier to determine

the class of input instances (Vaid et al., 2015). Traditional feature

extraction methods often involve hand-designed feature extractors

such as Filter Bank Shared Space Pattern (FBCSP) (Ang et al.,

2008) or Riemannian Covariance (Hersche et al., 2018) features.

Ang et al. (2012) used the Filter Bank Common Spatial Pattern

(FBCSP) algorithm to optimize the subject-specific frequency band

of Common Spatial Pattern (CSP) on MI-EEG and then employed

the Mutual Information-based Best Individual Feature (MIBIF)

algorithm and Mutual Information-based Rough Set Reduction

(MIRSR) algorithm to extract discriminative CSP features from the

signals. Finally, we use the CSP algorithm for classification and

obtain good performance. It is important to note that all of these

steps are computationally time-consuming.

Although traditional methods have improved the signal-to-

noise ratio of EEG signals through preprocessing methods, EEG

signals collected from different timestamps and subjects usually

exhibit different patterns due to the inter- and intra-subject

variability of the EEG signals, leading to a poor generalization

of traditional methods to datasets with unknown subjects. In

contrast, Deep Learning (DL) has significant advantages because

it can learn complex and meaningful features directly from raw

EEG signals without time-consuming preprocessing or manual

feature extraction, focuses on and learns important signals from

raw EEG signals, and improves the generalization of the model.

DL has demonstrated remarkable success in diverse domains,

such as image, video, audio, and text analysis (Hossain et al.,

2018; Ahmed et al., 2019; Altaheri et al., 2019; Qamhan et al.,

2021). Consequently, researchers have increasingly turned to deep

learning algorithms in recent years to address EEG classification

tasks, capitalizing on the significant advancements achieved by

deep learning in other fields.

In recent years, there has been a surge in the use of deep

learning techniques for MI-EEG classification tasks. Researchers

have introduced various deep learning network models, including

Convolutional Neural Networks (CNNs) (Zhang et al., 2020),

Recurrent Neural Networks (RNNs) (Luo et al., 2018; Kumar

et al., 2021), Deep Belief Networks (DBNs) (Xu et al., 2020), and

Autoencoder (AE) structures (Hassanpour et al., 2019). Among

these models, CNNs have been widely adopted, and a variety

of CNN network designs have been proposed. These designs

aim to learn complex and meaningful features directly from

raw EEG signals, thereby improving the signal-to-noise ratio,

and eliminating the need for time-consuming preprocessing or

manual feature extraction. Examples of these designs include

residual-based CNN (Liu and Yang, 2021), multiscale CNN (Li

et al., 2020), multilayer CNN (Amin et al., 2019), and attention-

based CNN (Altuwaijri et al., 2022). Bai et al. (2018) proposed

a novel variant of CNNs known as temporal convolutional

network for time-series modeling and classification tasks. TCN

has exhibited superior performance compared to other CNNs

and recurrent networks like Long Short-Term Memory (LSTM)

and Gated Recurrent Units (GRU) in sequence-related tasks. The

advantages of TCN are that the size of the receptive field can

be expanded exponentially, the number of parameters increases

linearly, and they are not affected by gradient disappearance or

explosion problems. Ingolfsson et al. (2020) proposed an EEGTCN

model that combines TCN and EEGNet (Lawhern et al., 2018)

to maintain high classification accuracy while reducing memory

footprint and computational complexity. In addition, Altaheri et al.

(2022) proposed a model called ATCNet, which combines TCN,

EEGNet architecture (Lawhern et al., 2018), and a multi-attention

mechanism. It extracts advanced time features through TCN and

EEGNet architecture, highlights the most valuable features in MI-

EEG signals through the multi-attention mechanism and surpasses

the performance of EEGTCN. Superior performance is achieved in

subject-centered and non-subject-centered modes, respectively.

The attention mechanism is an artificial neural network

structure inspired by the selective attention process of the human

brain, which enables the network to focus on pertinent information.

Integrating the attention mechanism into deep learning models

allows for automatic learning of key features from input signals,

which in combination with CNN networks can alleviate some of

the limitations inMI-EEG classification, such as low signal-to-noise

ratios and inter- and intra-subject variability. One of the earliest

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1343249
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Xie et al. 10.3389/fnbot.2024.1343249

attention-based neural network models is the attention layer within

the encoder-decoder framework proposed for language modeling

(Hassanpour et al., 2019). The challenge lies in efficiently learning

attention weights. To address this, Luong et al. (2015) introduced

multiplicative attention, which further improved efficiency. The

multi-head attention network, proposed by researchers at Google,

further optimized attention computation (Vaswani et al., 2017).

Initially, these foundational attention models were applied in

the field of natural language processing (NLP) and achieved

success. Subsequently, they were extended to the domain of

computer vision. Attention mechanisms proposed for the visual

domain include squeeze-and-excitation blocks (Hu et al., 2018)

and convolutional block attention modules (CBAMs) (Woo et al.,

2018). These mechanisms facilitate the network in learning the

correlations between different time steps and channels, thereby

enhancing its ability to capture relevant visual information. Zhang

et al. (2020) proposed a Graph-based Convolutional Recurrent

Attention Model (G-CRAM). The model buildings a graph

structure to represent the positioning information of EEG and

employs a convolutional recurrent attention mechanism to learn

spatial and temporal EEG features, with a focus on the most

discriminative temporal periods, which overcomes the challenges

of complexity, dynamics, and low signal-to-noise ratio of the

EEG signals, and obtains superior performance in the MI-EEG

classification task. Altuwaijri et al. (2022) proposed a novel model

called Multi-Branch EEGNet with squeeze-and-excitation blocks

(MBEEGSE) for decoding EEG-based motor imagery. The model

aims to overcome the challenges of inter-subject and intra-subject

variability of EEG signal and low signal-to-noise ratio to extract

high-level features of EEG signal. The model employs a multi-

branch convolutional neural network architecture with attention

blocks to capture channel interdependencies and adaptively modify

channel-wise feature responses. Superior performance is obtained

in MI-EEG classification tasks.

In the future, MI-EEG classification tasks could benefit from

research on artificial general intelligence methods to achieve high

levels of intelligence, high precision, high robustness, and low

power consumption. In this regard, Yang et al. put forward a

series of innovative methods. First, Yang et al. (2022) propose a

novel spike-based framework with minimum error entropy, called

MeMEE, The framework combines entropy theory and recurrent

spiking neural network (SNN) architecture and establishes a

gradient-based online meta-learning scheme to improve the

accuracy and robustness of SNN in various tasks. Second, Yang

and Chen (2023) propose a novel and flexible learning framework

termed high-order spike-based information bottleneck (HOSIB)

leveraging the surrogate gradient technique for peak-based

machine intelligence. The framework utilizes the surrogate gradient

technique second-order information bottleneck (SOIB) and third-

order information bottleneck (TOIB) to explore the underlying

architecture and peak-based intrinsic information in SNN models.

By discarding redundant information, the HOSIB framework

improves the generalization and robustness of SNN models.

Experiments show that the framework has superior generalization

ability, robustness, and power efficiency. In addition, Yang et al.

(2023) proposes an efficient learning mechanism for spiking

dendrites, addressing the challenge of designing efficient learning

mechanisms with dendrites. The method utilizes a multi-scale

learning rule with dendritic predictive characteristics and employs

a two-phase learning mechanism based on burst-related plateau

potential dynamics of spiking dendrites. The experimental results

have demonstrated that the proposed algorithm improves learning

accuracy and reduces synaptic operations. This reduction in

synaptic operations and spike numbers in the output layer leads

to a reduction of power consumption on neuromorphic hardware.

The combination of the three-factor dendritic prediction principle

and two-phase plateau potential activities enhances learning

capability and sparsity within a single neuron, while also improving

robustness and learning convergence speed.

This study presents a novel bidirectional feature pyramid

network attention-based temporal convolutional network,

BFATCNet, for decoding MI-EEG brain signals. To enhance the

input signals, data augmentation techniques such as data blending,

Gaussian noise addition, and signal scaling are employed. The

proposed BFATCNet model follows a four-stage process for

processing MI-EEG signals. First, the MI-EEG signal undergoes

the encoding stage using a combination of CNN, CBAM, and

Bidirectional Feature Pyramid Network (Bi-FPN) to generate

a series of high-level temporal representations. This stage aims

to capture the correlations between different channels and time

steps, resulting in time series signals for various frequency bands.

Second, an attention layer is utilized to highlight the most salient

information within the time series of different frequency bands.

This attention mechanism assists the model in focusing on

significant features and enhancing the discriminative power of the

network. Third, a temporal convolutional layer is employed to

extract high-level temporal features from the attention-highlighted

information. This layer leverages temporal relationships in the

signals to capture important patterns and dynamics. Finally, a fully

connected layer analyzes the extracted high-level temporal features

for classification purposes. This study makes several significant

contributions:

1. The proposed BFATCNet model integrates the mechanisms of

TCN, CBAM, Bi-FPN, attention, and convolution-based sliding

window to achieve state-of-the-art performance in the BCI

Contest IV-2a dataset.

2. The incorporation of CBAM facilitates the model’s ability to

capture correlations between different channels and time steps

in the signals. Moreover, the multi-head attention mechanism

enhances the model’s focus on important MI information

within the MI-EEG signals, allowing for effective learning and

utilization of essential patterns and relationships.

3. The utilization of the Bi-FPN structure addresses the limitation

of previous models that only focus on a single frequency

band of EEG. By considering the information from the time

series of different frequency bands, the model can improve

its performance by leveraging the diverse and complementary

information available across various frequency bands. This

demonstrates the effectiveness of the Bi-FPN structure in

enhancing the model’s understanding of the MI-EEG signals.

2 Design of the BFATCNet model

The proposed BFATCNet model consists of four main blocks:

temporal feature block, attention (AT) block, and temporal
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FIGURE 1

The components of the BFATCNet model.

convolution (TC) block with full connectivity, as shown in

Figure 1. The temporal feature block encodes the original MI-EEG

signals using temporal convolution layers, which include temporal

convolution, channel depth convolution, and spatial convolution.

It also incorporates the channel attention mechanism CBAM and

the Bi-FPN structure. The block learns the correlation between

channels and different time steps, extracts low-level temporal

feature representations for different frequency bands and time

steps, and resolves the effects of inter- and intra-subject variability

and low signal-to-noise ratios of EEG signals on the classification

performance of the model. Next, the AT block utilizes the Multiple

Self-Attention (MSA)mechanisms to emphasize the components of

the time series that have the highest correlation between different

features, enhancing the generalization of the model to unknown

subject datasets. Finally, the TC block applies TCN to extract high-

level temporal features in the time series. The temporal features

from different frequency bands are then concatenated and fed into

the fully connected block for classification and identification.

The output of the time series generated by the temporal

feature block can be divided into multiple windows. Each

window is separately processed by the AT/TC block. The

outputs of all windows are then concatenated and passed

through the softmax classifier. This approach enhances

data efficiency and improves accuracy. More information

about the BFATCNet block is provided in the subsequent

subsections.
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FIGURE 2

Temporal feature block consists of four convolutional layers and CBAM attention mechanism, which receives the original MI-EEG signals and outputs

the temporal signals in di�erent frequency bands.

2.1 Temporal feature block

The temporal feature block is based on the EEGNet

architecture originally proposed by Lawhern et al. (2018), but

with modifications. Unlike the original design that uses separable

convolution, the temporal feature block utilizes 2D convolution,

which has shown enhanced performance. Additionally, this

block incorporates the CBAM attention mechanism to capture

correlations between channels and different time steps. Moreover,

the Bi-FPN architecture is employed to obtain representations

of the time series in various frequency bands. The temporal

feature block is used to extract high-dimensional features of

different bands in EEG signals, and the CBAM attention

mechanism is used to capture the correlation between channels

and different time steps, which improves the generalization of

the model.

The temporal feature block consists of four convolution (conv)

layers and the CBAM attention mechanism, as shown in Figure 2.

Firstly, a temporal convolution is applied using F1 filters with a size

of (1, Fs/4), where Fs/4 represents the length of the filter along the

time axis. In the BCI-2a dataset, which has a sampling rate of 250

Hz, Fs/4 becomes 62.5. To conform to standard lengths, the closest

value, 64, is selected. This choice ensures the extraction of temporal

information associated with frequencies above 4 Hz. The output of

this layer corresponds to the F1 temporal feature maps. This design

facilitates the extraction of temporal information related to higher

frequencies within the time series signals, enabling the capture of

subtle changes and dynamic features present in the signals.

Convolutional block attention module (CBAM) (Woo et al.,

2018) comprises both channel attention and spatial attention

mechanisms as shown in Figure 3. The channel attention

mechanism focuses on extracting significant information from
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FIGURE 3

CBAM attention mechanism consisting of channel attention and spatial attention.

the input signals along the channel dimension. It consists of

three main components: the Adaptive Average Pooling Layer

(AdaptiveAvgPool2d), the Adaptive Maximum Pooling Layer

(AdaptiveMaxPool2d), and the Shared Multi-Layer Perceptron

(SharedMLP). Initially, the input signals undergo pooling

operations using the adaptive average pooling layer and adaptive

maximum pooling layer, resulting in the average pooled output

and maximum pooled output, respectively. Subsequently, the

shared multi-layer perceptron applies a convolution operation to

these outputs, allowing the extraction of feature representations

within the channel dimensions. Finally, the convolution output is

activated by a sigmoid function, producing the channel attention

weights. These weights are then used to emphasize important

channel information by appropriately weighting the different

channels of the input signals.

On the other hand, the spatial attention mechanism aims to

extract significant information from the input signals along the

spatial dimension. It consists of a convolutional layer (Conv2d)

that is subsequently followed by a sigmoid activation function. The

input to this convolutional layer is the data that has been processed

by the channel attention mechanism, resulting in a two-channel

input. After the convolution operation, the output is activated by

the sigmoid function, producing spatial attention weights. These

weights are used to highlight important spatial information by

assigning different weights to different spatial locations of the

input signals accordingly. The integration of the channel attention

mechanism and the spatial attention mechanism enables the model

to learn correlations between channels and different time steps,

thereby enhancing its understanding of the signals.

The second layer utilizes deep convolution with F2 filters of size

(C, 1), where C denotes the number of EEG channels. This deep

convolution allows each filter to extract spatial features, particularly

features related to the EEG channels, from a single temporal feature

map. As a result, the output of this layer consists of F2×D feature

maps, where D represents the number of filters associated with

each temporal feature map in the previous layer. Based on practical

experience and signal characteristics, the value for D is determined

as 2.

After the deep convolution layer, an average pooling layer with

a size of (1, 8) is utilized to achieve an eight-fold abstraction of

the temporal signals. This pooling operation reduces the signal’s

sampling rate to approximately 32 Hz. The rationale behind this

design choice is to improve the extraction of spatial features and

abstract the signal. By enabling more effective feature extraction

and dimensionality reduction of the signals, this approach enhances

the overall performance of the model.

The third and fourth layers involve spatial convolutions

using F2×D filters with a size of (1, 16) to perform spatial

convolutions. The filter length along the time axis is 16, and

these convolutions are applied to decode the 4–32 Hz motor

imagery (MI) activity and 4–16 Hz activities, respectively.

To decrease the sampling rate and adjust the length of

the resulting time series, an average pooling layer with a

size of (1, 2) is used. Additionally, batch normalization is

implemented to expedite network training. The nonlinear

activation function applied in these layers is the sigmoid

activation function.

The Bi-FPN is critical in improving the model’s performance

by effectively integrating feature map information from different

layers. In this case, the time series outputs from convolutional layers

2, 3, and 4 are fed into the Bi-FPN. As a result, integrated outputs

for layers 2, 3, and 4 are obtained, encompassing the 4–32, 4–16,

and 4–8 Hz time series across three distinct frequency bands.

The temporal feature block outputs three-time series zj ∈

R
Tc×d in three different frequency bands consisting of time vectors

Tc of 140, 70, and 35 respectively. We empirically set d to 32. The

length of the time series zj is determined by Tc =
T
P , where T

refers to the time point of the original EEG signal, and P is the

cumulative multiplication of the kernel of the pooling layer that has

passed through.
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2.2 Sliding window

To capture the dynamic properties and timing patterns of the

signals more effectively, a sliding window approach is employed

instead of directly inputting the entire zj into subsequent layers

(Schirrmeister et al., 2017). By utilizing a sliding window of

length Tw, the time series zj is systematically divided into multiple

windows denoted as zwj ∈ R
Tw×d, where w represents the

window index ranging from 1 to n, the total number of windows.

Subsequently, each window zwj is individually processed by the

subsequent Attention block and Temporal Convolutional block.

According to Equation (1), a specific value for the window length

Tw can be calculated in the following way:

Tw = Tc − n+ 1, Tc > n ≥ 1 (1)

Suppose the temporal feature block utilizes three pooling layers

with respective sizes of P1 = 8, P2 = 2, and P3 = 2. In that case, it

generates three time series z1i, z2i, and z3i comprising three vectors

of size T1 = 140, T2 = 70, and T3 = 35, respectively. Each of these

time series represents 32 (= 8 × 2 × 2), 16 (= 8 × 2), and 8-time

points, respectively, from the original MI-EEG signal x. Therefore,

one step of sliding in z1i, z2i, and z3i corresponds to 32, 16, and 8

steps of sliding in the original signal x.

2.3 Attention (AT) block

The attention mechanism, introduced by Vaswani et al.

(2017), is a neural network structure that emulates the selective

information-focusing behavior observed in the human brain. By

integrating the attention mechanism into deep learning models,

it becomes possible to automatically extract essential information

from the input signals. Improving the generalization of the model.

An important feature of the multi-head attention mechanism is

the internal variability, which allows the model to learn different

attention weights among different heads, thus further improving

the generalization performance. Following the division of the

time series into multiple segments through the sliding window

approach, N segments of eij, where i represents the ith head and

j denotes the jth vector of ei, are created, corresponding to the

number of heads N in the multi-head attention mechanism. Each

instance of the time series, denoted as eij, is then multiplied byWq,

Wk, and Wv to derive the respective query vector qj, key vector kj,

and value vector vj as shown in Equations 2–4:

qj = eij ·Wq (2)

kj = eij ·Wk (3)

vj = eij ·Wv (4)

The attention value is computed based on the query vector

qij, key vector kij, and value vector vij. To calculate the normalized

correlation score between the ath coding vector eia and the bth

coding vector ei
b
, as shown in Equation 5

sia = softmax

(

qia(k
i
b
)T

√

dk

)

(5)

where dk is the dimension of ki
b
. Then, the attention-weighted

output zia is defined as Equation 6

zia =

T
∑

b=1

siav
i
b, a ∈ {1, 2, . . . ,T} (6)

where T is the number of rows of the vi matrix set to coincide with

the time length of the time series output from the temporal series

block empirically. Finally, zis are spliced as Z = [z1, z2, ..., z8] to

obtain the time series after highlighting the important information.

2.4 Temporal convolutional (TC) block

TCN architecture is composed of multiple residual blocks. Each

residual block comprises two dilated causal convolution layers

(Ingolfsson et al., 2020), followed by batch normalization and

Exponential Linear Unit (ELU) activation, as depicted in Figure 4.

The adoption of dilated causal convolution exponentially extends

the receptive field, ensuring that no information propagates from

future time steps to past time steps. Therefore, the output of time

tis completely dependent on the input of time tor before, so that

the relationship in the long series can be better learned, ensuring

that the model is invariant to the translation of the time series,

that is, robust to the translation of the signal in time. The residual

block employed in the TCN performs element-level summation,

denoted as F(x) + x, on the input and output feature maps. This

summation aids in learning constant functions and prevents the

vanishing or exploding of gradients in the model. With residual

blocks, the model can be sensitive to translation while learning

local changes and global trends in the time series data. When the

signal shifts in time, residual blocks can help the model adapt better

to this change, thus improving translation invariance. Within the

residual blocks, a constant mapping strategy is employed, resulting

in an exponential increase in the receptive field size (RFS) of the

TCN with the number of stacked residual blocks L. This increase

is attributed to the exponential expansion D observed in each

subsequent block. The RFS is computed as in Equation 7 and is

determined by two key parameters: the number of remaining blocks

L and the convolutional kernel size KT .

RFS = 1+ 2(KT − 1)(2L − 1) (7)

A typical configuration of the TC block in BFATCNet consists

of L = 2 residual blocks and 32 filters of size KT = 4 for all

convolutional layers, so RFS is 19. With this setting, the TCN can

process up to 19 elements in a sequence.

2.5 Fully connected block

In the final stage of the proposed model, three groups of time

series with distinct frequency bands undergo sliding window, AT

block, and TCN processing. Following the derivation of advanced

time features, Adaptive Average Pooling is implemented on the

three groups of advanced time features to compress them into

predetermined features. The flattened advanced time features are

then concatenated and subsequently passed through a three-layer
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FIGURE 4

The architecture of a temporal convolutional network (TCN)

consists of two residual blocks.

fully connected layer. To expedite network training, batching

is employed in combination with the fully connected layers.

Additionally, Dropout is utilized to mitigate overfitting. Finally, the

resulting outputs are fed into a softmax function for probability

computation. The hyperparameters of the model are determined

empirically and further tuned using Optuna (Akiba et al., 2019).

The specific values of these hyperparameters are as follows: for the

AT block, two attention heads are used with a head size of 32. For

the TC block, two residual blocks are utilized with a kernel size of

4 and a total of 32 filters. The dropout rate for both AT blocks and

TC blocks is set to 0.12.

3 Experimental results and discussion

3.1 Datasets and data enhancement

The BCI Contest IV-2a (BCI-2a) dataset (Brunner et al.,

2008) is a widely recognized publicly available dataset for Motor

Imagery Electroencephalography (MI-EEG) analysis. This dataset

serves as a benchmark for MI-EEG decoding research. The BCI-

2a dataset includes EEG data recorded from nine subjects, with 22

channels sampled at a rate of 250 Hz. During the data collection

process, participants were given instructions to perform four

different motor imagery tasks: left-hand movement, right-hand

movement, foot movement, and tongue movement. Two sessions

were conducted for each subject on separate days, resulting in a

total of 288 trials per session. In each trial, participants performed

motor imagery from the interval of 2s to 6s. It’s important to note

that only one session in the dataset contains class labels for all trials,

whereas the other session was used as the target domain.

The BCI Contest IV-2b (BCI-2b) dataset (Leeb et al., 2008) is

a widely recognized publicly available dataset for Motor Imagery

Electroencephalography (MI-EEG) analysis. This dataset serves as

a benchmark forMI-EEG decoding research. In the BCI-2b dataset,

EEG data from three channels (C3, Cz, and C4) were captured

at a sampling rate of 250 Hz from nine subjects. During the

experiments, after the cue appeared, all subjects were instructed

to imagine left or right-hand movements for four seconds. Each

subject was provided with five sessions, with each session consisting

of 120 trials. The first three sessions in the dataset were well-

labeled, while the last two sessions were not. In the conducted

experiments, the first three sessions were treated as source domains,

and the remaining two sessions were considered as target domains.

Additionally, since the first three sessions were collected at different

times, they naturally represent three distinct source domains.

The proposed model is evaluated using subject-dependent

(subject-specific). Themodel is trained and tested based on the data

of individual subjects. Data augmentation was applied to the BCI-

2a dataset and BCI-2b dataset to enhance themodel’s generalization

capabilities and improve noise robustness. The augmentation

involved mixing the signals from two different samples with the

same label, adding Gaussian noise n, and scaling the signal using

the formula where w ∈ (0, 1), noise level ∈ (0, 0.3), and scale

∈ (0.8, 1.2), as shown in Equations (8, 9, 10).

To assess the impact of the data enhancement process on

model performance, we evaluated the performance of two models:

accuracy and kappa, on the BCI-2a dataset and the BCI-2b

dataset. We compared the performance of the model using data

enhancement with that of the model without data enhancement.

The results show that on the BCI-2a dataset, the overall accuracy of

the model using data augmentation increased by 13.3% and kappa

increased by 0.17. On the BCI-2b dataset, the overall accuracy

of the model using data augmentation increased by 4.5% and

kappa increased by 0.08. The results show that data augmentation

improves the performance of the model on different datasets with

a certain effect, especially the performance improvement on the

BCI-2a dataset is more significant.

xh ← w · x1 + (1− w) · x2 (8)

xh ← xh + noise level · n (9)

xh ← scale · xh (10)

3.2 Performance metrics

In this study, the model performance was assessed using

the following methods Accuracy (Acc), Equation 11 and κ score,

Equation 12.

Acc =
1

n

n
∑

i=1

TPi

Hi
(11)

where TPi is the true positives,Hi is the number of samples in class

i, and n denotes the number of classes;

κ =
1

n

n
∑

a=1

Pa − Pe

1− Pe
(12)
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where Pa is the actual percent agreement, and Pe is the expected

percent agreement probability (Cohen, 1960).

3.3 Training procedure

The models in this study were trained and evaluated using the

PyTorch framework. A consistent configuration was followed for

the training process. The model parameters were initialized with

weights drawn from a normal distribution with a mean of 0 and

a standard deviation of 0.01. The AdamW optimizer was used for

training the models, with a learning rate of 1.795 × 10−3 and a

weight decay rate of 5.015× 10−8. A batch size of 128 was utilized,

and the training was conducted for more than 40 epochs. The

categorical cross-entropy loss function was used as the objective

function during training. To mitigate overfitting, a dropout rate

of 0.12 was applied. These hyper-parameters were determined

through a series of experiments, coupled with Optuna tuning,

to ensure optimal generalization of the model. The proposed

BFATCNet model achieved an impressive overall accuracy of 87.5%

and a κ score of 0.83, surpassing the state-of-the-art performance in

this domain.

3.4 Ablation study

Table 1 presents the impact of removing one or more blocks

from the BFATCNet model onMI classification performance, using

the BCI-2a dataset. The blocks were removed before training

and validation procedures. The results demonstrate that the Bi-

FPN blocks contribute significantly to the overall accuracy of the

model, improving it by 8%, while the CBAM block improves

the accuracy by 2.4%. The combination of Bi-FPN and CBAM

blocks leads to an overall accuracy improvement of 8.7%. Table 2

presents the impact of removing one or more blocks from the

BFATCNet model on MI classification performance, using the

BCI-2b dataset. The blocks were removed before training and

validation procedures. The results demonstrate that the Bi-FPN

blocks contribute significantly to the overall accuracy of the model,

improving it by 10%, while the CBAM block improves the accuracy

by 2.8%. The combination of Bi-FPN and CBAM blocks leads

to an overall accuracy improvement of 11.5%. These findings

underscore the pivotal role of the Bi-FPN block in the BFATCNet

model, primarily through the acquisition of multiple time series

featuring distinct frequency bands. Additionally, the incorporation

of the CBAM block also contributes to improving performance.

Notably, the combination of Bi-FPN and CBAM blocks results

in a synergistic effect that amplifies the benefits of each block,

leading to a greater improvement in the overall accuracy of the

model.

3.5 Comparison with recent studies

Table 3 presents a comprehensive summary of the accuracy and

kappa scores achieved by the BFATCNet model and its comparison

model on the BCI-2a dataset for different subjects. The results

demonstrate that the BFATCNet model, the ATCNet model, and

TABLE 1 The contribution of each block in BFATCNet was evaluated

using the BCI-2a dataset.

Removed block Acc κ

None (BFATCNet) 87.5% 0.83

Bi-FPN 79.5% 0.72

CBAM 85.1% 0.80

Bi-FPN + CBAM 78.8% 0.71

TABLE 2 The contribution of each block in BFATCNet was evaluated

using the BCI-2b dataset.

Removed block Acc κ

None (BFATCNet) 86.3% 0.73

Bi-FPN 76.3% 0.52

CBAM 83.5% 0.67

Bi-FPN + CBAM 74.8% 0.49

the TSCT model exhibit the capability to learn distinct attention

weights based on the EEG signals from different subjects, utilizing

the multi-head attention mechanism to enhance generalization

performance. They have shown superior performance compared to

other models in terms of average accuracy and standard deviation

of accuracy. The BFATCNet model, in particular, leverages the

features of different frequency bands in the EEG signals, resulting

in further improved model performance. It outperforms the other

models with an average accuracy of 87.5% and a kappa score of

0.83. Table 4 presents a comprehensive summary of the average

accuracy and kappa scores achieved by the BFATCNet model

and its comparison model on the BCI-2b dataset for different

subjects. A comparison is made with other similar models: DRDA,

DAFS, DAWD, GAT, and DJDAN. The results clearly show

that the GAT model uses an attention-based domain adaptation

approach for capturing globally correlated features between the

source and target domains to address inter- and intra-subject

variability of EEG signals and to enhance the generalization

performance. The BFATCNet model learns different attention

weights based on EEG signals from different subjects through

the multi-attention mechanism algorithm, which enhances the

generalization performance. It outperforms the other models with

an average accuracy of 86.3% and a kappa score of 0.72.

It is worth noting that the standard deviation of BFATCNet’s

performance is only 4.4% across subjects in the BCI-2a dataset

and 5.2% across subjects in the BCI-2b dataset, which suggests

that it has a high degree of stability in its classification effect

across individuals. In addition, the performance consistency of

the BFATCNet model among different users is also improved.

In addition, the BFATCNet model shows higher performance

consistency among different users.

According to the results in Tables 5, 6, the BFATCNet model

outperformed the other models in decoding all MI categories in

a subject-specific motor imagery (MI) categorization study. In

particular, the BFATCNet model showed higher overall accuracy

and kappa scores in a per-subject MI-EEG classification task

compared to recent studies using raw EEG signals. These findings

suggest that the BFATCNetmodel learns different attention weights
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TABLE 3 Comparison of the performance between the proposed model and other replicated models for topic-specific classification using the BCI-2a

dataset.

Subject EEG-TCNet EEGNet TCNet TSCT ATCNet BFATCNet (ours)

Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%)

A01 84.0 88.5 86.1 87.9 88.5 82.1

A02 66.3 66.0 66.0 71.9 70.5 86.3

A03 94.1 95.1 93.4 95.8 97.6 91.2

A04 72.6 73.6 72.6 84.0 81.0 86.1

A05 76.0 75.4 79.9 78.1 83.0 96.0

A06 62.9 64.2 66.7 67.7 73.6 89.3

A07 89.9 90.3 90.3 91.0 93.1 89.0

A08 84.7 85.8 85.8 85.1 90.3 85.1

A09 85.4 86.5 85.4 88.2 91.0 83.2

MEAN (Acc) 79.6 80.6 80.7 83.3 85.4 87.5

STD (Acc) 10.7 11.1 10.1 8.59 9.1 4.4

Kappa 0.73 0.74 0.74 N/A 0.81 0.83

The bold values indicate the performance of the model that performs best among all the models compared in a single subject, while bold underlined values indicate the performance of the

model that performs best among all the models compared in all the subjects.

TABLE 4 Comparison of the performance between the proposed model and other replicated models for topic-specific classification using the BCI-2b

dataset.

Subject DRDA GAT DJDAN DAFS DAWD BFATCNet (ours)

Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%)

A01 81.4 84.6 75.8 70.3 84.6 84.2

A02 62.9 61.7 58.5 73.5 66.6 77.1

A03 63.6 60.8 73.0 80.3 68.0 89.1

A04 95.9 99.6 96.7 94.7 96.8 97.5

A05 93.6 87.5 98.9 95.0 94.3 87.7

A06 88.2 93.3 87.6 83.7 82.6 85.4

A07 85.0 85.4 85.7 93.7 88.4 84.1

A08 95.2 95.0 84.3 95.0 93.9 89.1

A09 90.0 92.0 85.3 75.3 90.1 82.9

MEAN(Acc) 83.9 84.4 84.6 84.6 85.0 86.3

STD(Acc) 12.6 13.1 12.3 9.6 10.4 5.2

Kappa 0.67 0.68 0.69 0.69 0.70 0.72

The bold values indicate the performance of the model that performs best among all the models compared in a single subject, while bold underlined values indicate the performance of the

model that performs best among all the models compared in all the subjects.

for different subjects’ EEG signals through a multi-head attention

mechanism that adapts to the individual differences of different

subjects, which enables the BFATCNet model to better decode the

MI task for a specific subject, showing higher performance and

accuracy compared to other models.

4 Conclusion

The present study proposes a novel attention-based

bidirectional Feature Pyramid Network temporal convolution

network (BFATCNet) for EEG-based motor imagery classification.

BFATCNet comprises four key blocks: a temporal feature block,

an attention (AT) block, a temporal convolution (TC) block,

and a fully connected block. The temporal feature block encodes

the raw MI-EEG signals using a temporal convolutional layer, a

channel attention mechanism CBAM, and a Bi-FPN structure. The

low-level temporal feature representations of different frequency

bands and time steps are extracted to learn the correlation between

cross-channel signals and different time steps and to address the

impact of inter- and intra-subject variability and low signal-to-

noise ratio of EEG signals on the classification performance of the
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TABLE 5 Classification performance of di�erent methods on BCI-2a

dataset.

Method Acc (%) κ

Shallow CNN (Schirrmeister et al., 2017) 74.31 0.66

EEGNet: CNN (Lawhern et al., 2018) 80.59 0.74

DBN-AE (Hossain et al., 2018) 71.00 N/A

Multi-layer-CNN and MLP (Amin et al., 2019) 75.00 N/A

EEG-TCNet: CNN and TCN (Ingolfsson et al.,

2020)

79.55 0.73

Attention multi-scale CNN (Li et al., 2020) 79.90 N/A

TCNet fusion: multi-layer CNN+ TCN

(Musallam et al., 2021)

80.67 0.74

Attention multi-branch CNN (Altuwaijri et al.,

2022)

82.84 0.77

ATCNet: attention-CNN and TCN (Altaheri et al.,

2022)

85.38 0.80

TSCT: temporal-spatial convolution and

transformer (Shi et al., 2023)

83.3 N/A

BFATCNet: Bi-FPN attention-CNN and TCN

(proposed)

87.50 0.83

The bold values indicate the performance of the model that performs best among all the

models compared in a single subject, while bold underlined values indicate the performance

of the model that performs best among all the models compared in all the subjects.

TABLE 6 Classification performance of di�erent methods on BCI-2b

dataset.

Method Acc (%) κ

FBCSP: filter bank common spatial pattern (Ang

et al., 2008)

80.00 0.60

EEGNet: CNN (Lawhern et al., 2018) 82.37 0.65

CCSP: composite common spatial pattern (Kang

et al., 2009)

72.70 0.45

ConvNet: CNN (Schirrmeister et al., 2017) 79.37 0.58

DRDA: deep representation-based domain

adaptation (Zhao et al., 2020)

83.98 0.67

DJDAN: dynamic joint domain adaptation

network (Hong et al., 2021)

84.66 0.69

DAFS (Phunruangsakao et al., 2022) 84.63 0.69

DAWD: domain adaptation network based on

Wasserstein distance (She et al., 2023)

85.06 0.70

GAT: global adaptive transformer (Song et al.,

2023)

84.44 0.68

BFATCNet: Bi-FPN attention-CNN and TCN

(proposed)

86.38 0.72

The bold values indicate the performance of the model that performs best among all the

models compared in a single subject, while bold underlined values indicate the performance

of the model that performs best among all the models compared in all the subjects.

model. Second, the AT block uses the Multihead Self-Attention

mechanism to learn different attention weights based on the EEG

signals from different subjects to emphasize the components of the

time series with the highest correlation between different features

and improve the generalization performance. Finally, the TC block

utilizes TCN to extract high-level temporal features in the time

series. The temporal features of different frequency bands are then

concatenated and fed to the fully connected block for classification

and identification.

Furthermore, this study implements the combination of

Bi-FPN and CBAM modules. The ablation analysis reveals

that both Bi-FPN and CBAM blocks contribute significantly

to the performance of the BFATCNet model. In the BCI-2a

dataset, CBAM improved the overall accuracy by 2.4%, BiFPN

improved the overall accuracy by 8%, and the combination of

BiFPN and CBAM improved the overall accuracy by 8.7%. In

the BCI-2b dataset, CBAM improved the overall accuracy by

2.8%, BiFPN improved the overall accuracy by 10%, and the

combination of BiFPN and CBAM improved the overall accuracy

by 11.5%.

The proposed BFATCNet model surpasses state-of-the-art

techniques for MI-EEG classification using the BCI-2a dataset

and BCI-2b dataset, achieving accuracy of 87.5 and 86.3% for

the subject-dependent, respectively. The model demonstrates an

exceptional ability to extract MI features from raw EEG signals,

without the need for data preprocessing operations such as artifact

removal, major component extraction, and signal filtering. The

augmentation of the BCI-2a dataset and BCI-2b dataset through

data blending, signal scaling, and the addition of Gaussian noise

contributes to improving the model’s generalization ability and

increasing its noise immunity. BFATCNet exhibits an overall

improvement in EEG decoding for all MI categories and all

subjects in the BCI-2a dataset and BCI-2b dataset, indicating its

potential to learn universal EEG representations across categories

and subjects.

However, our approach does have certain limitations.

The model’s performance evaluation is primarily based

on the BCI-2a dataset and BCI-2b dataset, which may

result in decreased performance when applied to other

datasets. Although data augmentation has been applied to

the BCI-2a dataset and BCI-2b dataset, the effectiveness

of data augmentation may vary for different datasets

or real-world data. Additionally, the complexity and

computational requirements of the model may impose

restrictions on its usage in real-time applications or

embedded systems.

In future work, the proposed model can be further improved by

researching and validating the effectiveness and applicability of data

augmentation methods in different scenarios. Additionally, cross-

modal deep learning models can be explored to integrate brainwave

signals with othermodalities such as functional magnetic resonance

imaging (fMRI, eye-tracking data, text) to obtain a more

comprehensive understanding of brain functionality. By combining

multiple modalities, the interpretability and generalization of

the model can be enhanced for brainwave signals. Alternatively,

research can be conducted on reducing the computational

complexity of the model to achieve higher performance and

efficiency in real-time brain-computer interface applications.
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