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Multi-channel high-order
network representation learning
research

Zhonglin Ye, Yanlong Tang, Haixing Zhao*, Zhaoyang Wang and

Ying Ji

School of Computer, Qinghai Normal University, Xining, Qinghai, China

The existing network representation learning algorithms mainly model the

relationship between network nodes based on the structural features of

the network, or use text features, hierarchical features and other external

attributes to realize the network joint representation learning. Capturing global

features of the network allows the obtained node vectors to retain more

comprehensive feature information during training, thereby enhancing the

quality of embeddings. In order to preserve the global structural features of

the network in the training results, we employed a multi-channel learning

approach to perform high-order feature modeling on the network. We proposed

a novel algorithm for multi-channel high-order network representation learning,

referred to as the Multi-Channel High-Order Network Representation (MHNR)

algorithm. This algorithm initially constructs high-order network features

from the original network structure, thereby transforming the single-channel

network representation learning process into a multi-channel high-order

network representation learning process. Then, for each single-channel network

representation learning process, the novel graph assimilation mechanism

is introduced in the algorithm, so as to realize the high-order network

structure modeling mechanism in the single-channel network representation

learning. Finally, the algorithm integrates the multi-channel and single-channel

mechanism of high-order network structure joint modeling, realizing the

e�cient use of network structure features and su�cient modeling. Experimental

results show that the node classification performance of the proposed MHNR

algorithm reaches a good order on Citeseer, Cora, and DBLP data, and its node

classification performance is better than that of the comparison algorithm used

in this paper. In addition, when the vector length is optimized, the average

classification accuracy of nodes of the proposed algorithm is up to 12.24%

higher than that of the DeepWalk algorithm. Therefore, the node classification

performance of the proposed algorithm can reach the current optimal order

only based on the structural features of the network under the condition of no

external feature supplementary modeling.

KEYWORDS

network representation learning, node embedding, high-order feature, multi-channel

learning, graph assimilation

1 Introduction

With the rapid development of the information age, the explosive growth of data has

occurred, and the scale of network structure data, as one of the carriers of information, has

also increased accordingly. Seeking a convenient method for processing network structure

data has become a focal point of investigation. As one of the methods for handling network
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structure data, network representation learning has attracted

widespread attention in recent years. It allows learning a low-

dimensional and dense vector for each node in the network,

enabling the representation of sparse networks in a concise manner

for ease of subsequent task processing.

Early network representation learning research mainly focused

on methods based on matrix decomposition (Belkin and Niyogi,

2003). For example, the adjacency matrix or Laplacian matrix of

the network is decomposed, and the obtained feature vector is

used as the representation of the node (Ng et al., 2002). This type

of method can capture the global structure of the network, but

has high computational complexity and is not suitable for large-

scale networks (Cao et al., 2015a). Therefore, network embedding

methods based on random walks have become popular, such

as DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover and

Leskovec, 2016). These methods generate a sequence of nodes by

performing a random walk on the network, and then use word

embedding techniques (such as Word2Vec) to encode the nodes

into vectors (Mikolov et al., 2013a). This type of method can

capture the local structure of the network, has high computational

efficiency, and is suitable for large-scale networks (Tang et al., 2015).

Subsequently, inspired by work in the field of word representation

learning (Mikolov et al., 2010, 2013a,b), Perozzi et al. (2014)

introduced deep learning methods into the field of network

representation learning, setting off a new upsurge in research in

this field.

Benefiting from the rapid development of the field of deep

learning, research on network representation learning based on

deep learning has also gained increasing attention from researchers.

In this process, the concepts of local features and global features

gradually surfaced. Local features mainly focus on the relationship

between a single node in the network or a small range of nodes,

such as the degree of the node, clustering coefficient, etc. The global

characteristics start from the perspective of the entire network

and consider the overall structure and properties of the network,

such as the diameter of the network, average path length, etc.

As research progresses, researchers are no longer satisfied with

training only on local structural features of the network. Instead,

attention has shifted to capturing the global structural features of

the network. Currently, due to the relatively insufficient capture

of global structural features in existing work, the performance of

trained node vectors is limited.

In order to more comprehensively capture the global structural

features of the network, we propose a meta-strategy for multi-

channel network representation learning, which we call MHNR.

Unlike mainstream single-channel learning algorithms, the MHNR

algorithm establishes multiple feature channels, one channel

models features of one order, and finally fuses features of different

orders for learning. Joint modeling learning of local features and

high-order features is realized. Specifically, our contributions are

as follows.

• Firstly, we reconstruct the original network structure to obtain

sub-networks of different layers, providing possibilities for

subsequent multi-channel learning.

• Secondly, we perform graph assimilation operations

on different sub-layers, enabling us to extract more

comprehensive network structural feature information.

• Finally, we propose a meta-strategy learning method that can

select appropriate underlying algorithm models for different

types of data. We conduct experiments on multiple datasets,

verifying the feasibility of this strategy.

2 Related works

Early network representation learning algorithms were

primarily based on the computation of matrix eigenvectors.

However, due to their inherent characteristics, these algorithms

faced significant limitations during the computation process,

leading to a lack of widespread development in this category.

Subsequently, inspired by the field of representation learning,

Perozzi et al. (2014) introduced deep learning techniques into

network representation learning, proposing the DeepWalk

algorithm. The introduction of the DeepWalk algorithm inspired

subsequent work, catalyzing the rapid development of the field.

In order to alter the random walk pattern of equally probable

node selection in the DeepWalk algorithm, Grover and Leskovec

(2016) introduced the node2vec algorithm. To address the

shortcomings of the DeepWalk algorithm in extracting network

features, Tang et al. (2015) proposed the LINE algorithm. This

algorithm models the first-order and second-order similarities

of the network, comprehensively preserving the global feature

information of the network. In order to make the obtained node

vectors more suitable for classification tasks, Li et al. (2016)

introduced the DDRW algorithm, integrating the DeepWalk

algorithm and the maximum-margin classifier. The EPDW

algorithm and PDW algorithm proposed by Yin and Yue

(2023), respectively improved the DeepWalk algorithm’s equally

probabilistic way of selecting the next node and the random walk

direction. Matrix factorization algorithms play a crucial role in

recommendation systems. In the VLDB International Conference

of 2011, Professors Jiawei Han from UIUC and Yizhou Sun from

UCLA introduced the concept of Heterogeneous Information

Network (HIN; Sun et al., 2018). In 2017, Huan Zhao from the

Hong Kong University of Science and Technology presented

research results on recommendation systems based on the fusion

of meta-structures in heterogeneous information networks at

KDD (Zhao et al., 2017). During this period, significant progress

was made in recommendation algorithms based on matrix

fusion (Ma et al., 2008; Zhang and Jiang, 2016; Zhu et al., 2017).

Subsequently, some shallow neural network-based network

representation learning algorithms were proven to be effective

in decomposing the feature matrices of networks. For instance,

Levy and Goldberg (2014) and Levy et al. (2015) demonstrated

that Word2Vec essentially decomposes the SPPMI matrix. As

DeepWalk is an improved version based onWord2Vec, subsequent

studies also confirmed that DeepWalk essentially decomposes

the network structure feature matrix transformed from the

adjacency matrix (Yang and Liu, 2018). Furthermore, based on

the insight from DeepWalk’s matrix factorization, they introduced

a text matrix into the matrix factorization process, enriching

the learned network representation with textual feature factors.

Building upon the TADW algorithm, MMDW incorporates the

maximum-margin theory from classification learning into network
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representation learning, resulting in vectors that encompass both

network structure features and node label information (Tu et al.,

2016a). Wang et al. (2017) utilized modular non-negative matrix

factorization to integrate community structure and network

structure into the representation vectors of networks. Additionally,

several algorithms derive network node representations based on

matrix factorization, such as SPE (Shaw and Jebara, 2009), HOPE

(Ou et al., 2016), GraRep (Cao et al., 2015b), M-NMF (Wang et al.,

2017), Deep NMF (Flenner and Hunter, 2018), ULGE (Nie et al.,

2017), LLE (Roweis and Saul, 2000), FONPE (Pang et al., 2017),

and among others.

In order to further improve the classification performance

of network nodes, researchers have turned their attention to the

combination of other network information, such as community,

higher-order features, text features, etc. Tu et al. (2016b) proposed

the CNRL algorithm by capturing the community information

hidden in the network to constrain the vector representation of

network nodes. The vGraph algorithm proposed by Sun et al.

(2019) solves the problem of separating community detection from

node representation in current work, so that the trained nodes

can obtain better performance. Wang et al. (2021a) proposed the

NTF algorithm based on the theory of energy levels, which could

better utilize the neighborhood structure characteristics of nodes.

The BIGCLAM algorithm proposed by Yang and Leskovec (2013)

was able to capture the overlapping communities in the network

nodes. Xue et al. (2022) proposed the BiasedWalk algorithm with

a preference for random walk, which can make nodes with the

same semantics have closer distances in vector space. Zhang et al.

(2023) proposed a restartable random walk strategy to enhance the

capture of both global and local structural features in networks.

Khan et al. (2021) proposed VECODER, a joint learning model

based on variational embedding of community discovery and node

representation, which utilized community aware node embedding

to better detect node communities. Wang et al. (2021b) proposed a

framework that could incorporate local structure information into

a random walk model, which could effectively reconstruct local

subgraphs and capture local structure features.

For other relevant work, please refer to the work of Liu et al.

(2022).

3 Methodology

3.1 DeepWalk

DeepWalk algorithm was inspired by word representation

learning and introduced deep learning techniques into the field

of network representation learning. It is the most classic and

commonly used method in network representation learning, and

is also the basis of the MHNR algorithm in the paper. The

MRNH algorithm proposed in the paper aims to establish different-

order features of the modular network, thereby achieving effective

fusion of local features and global features, so that the learned

network representation vector contains both low-order and high-

order feature factors. Therefore, we will introduce the principle of

DeepWalk algorithm here. Of course, the MHNR algorithm can

also be improved using other algorithms as a basis.

DeepWalk carries out a random walk on the network structure

to obtain a sequence of nodes, and obtains a group of node pairs

(vi | vk) through the sliding window. Skip-Gram algorithm aims to

maximize the probability of the occurrence of context nodes when

the target nodes are given. Its objective function is as follows:

L (V) = argmax
N

∑

i=1

∑

−k ≤ j ≤ k

logP
(

vi+j | vi
)

,

where,N is the total number of nodes in the network, k is the size of

the sliding window, and P
(

vi+j | vi
)

is defined by softmax function:

P
(

vi+j | vi
)

=
∏

vi+j∈C(vi)

exp(vTi+j · vi)
∑

vi+j∈V
exp(vTi+j · vi)

,

where vi represents the representation vector of node vi, C(vi)

represents the set of context nodes for the target node vi. According

to Formula (2), in the process of network training, the whole

network node needs to be calculated, which requires a large

amount of calculation. Therefore, the negative sampling method is

introduced to improve the training efficiency, which is transformed

into a binary classification problem. For a set of node pairs, exists:

P (vi, vk) =

{

P (vi, vk) , L = 1.

1− P (vi, vk) , L = 0.

L = 1 is positive example, it’s indicating that the label of node

pairs from the same corpus is 1; L = 0 is negative example, it’s

indicating that the label of node pairs from different corpora is 0.

Therefore, the Skip-Gram objective function based on negative

sampling is:

L (V) = argmax
∑

N
i=1

∑

−k ≤ j ≤ k
logP

(

vi+j | vi
)

+
∑

vc∈SamplelogP (−vc | vi ),

where Sample represents the set of nodes obtained through negative

sampling, and (−vc | vi) denotes the representation vector of the

context node obtained through negative sampling.

3.2 High-order network generation

In the current work of network representation learning, the

vector representation of nodes is obtained by random walk on the

network structure, such as DeepWalk algorithm, etc., which can

only obtain the low-order features of the network, thus ignoring

the global features of the network.

In order to better model the network structure, this paper

modeled the M-order structure features of the network on the

basis of the low-order network features to obtain the global feature

information of the network, so as to improve the performance

of the network nodes. The feature extraction diagram of M-order

structure of the network is shown in Figure 1.

In order to capture the M-order features of the network, this

paper changes the step size of the random walk of the network

structure to obtain the structural features of different orders. When

the original network is modeled, the step size is set as 1 to obtain the
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structural characteristics of the original network. When modeling

the structural features of the 2-order network, set the step size to 2

to obtain the structural features of the 2-order network. By analogy,

the M-order structure feature information of the network can be

obtained, so as to model the global structure feature of the network.

3.3 MHNR algorithm

The node sequence obtained by DeepWalk algorithm through

random walks in the network is used as the training sample,

and the network features collected are local. In order to better

integrate global features into the training process, this paper

proposes a multi-channel high-order network representation

learning algorithm MHNR algorithm. On the basis of the M-

order graph generated, MHNR algorithm carries out center point

assimilation and edge assimilation operations on the subgraphs of

different orders to reduce the huge graph structure into a smaller

graph structure. By carrying out randomwalks on the smaller graph

structure, more structural information can be obtained and the

quality of network embedding can be optimized. The process of

graph assimilation is mainly divided into two types, namely central

point assimilation and edge assimilation. The assimilation process

is shown in Figure 2.

In order to better coordinate the sequence of assimilation,

the MHNR algorithm stipulates that the central point assimilation

should be carried out first, and then the side assimilation should

be carried out. When the network is not changed, the assimilation

will stop. Then a random walk is carried out on the network

that completes graph assimilation, and the node sequence of the

assimilated nodes is obtained. The obtained node sequence is taken

as the input of Skip-Gram, and the corresponding node vector is

trained. The framework of MHNR algorithm is shown in Figure 3.

The objective function of the assimilated M-order graph is:

Lm (V) = argmax
∑

N
i=1

∑

−k ≤ j ≤ k
logP

(

vmi+j | v
m
i

)

+
∑

vc∈SamplelogP
(

−vc | v
m
i

)

,

where, M represents the order of the graph used for assimilation.

After the training is completed, it is necessary to restore the

node vector obtained after the assimilation of different hierarchy

graphs. The node vector obtained by training has two forms,

one is the node vector representation without assimilation, and

the other is the vector representation after assimilation. For the

vector representation of node vector after assimilation, the node

vector obtained from training can be directly used to represent

the node vector before assimilation. The node vector of each order

is obtained by training, and the final node vector of MHNR is

obtained by splicing the node vector obtained by training of each

order. The vector representation of network nodes is obtained by

concatenating node vectors of all orders:

E = E0 ⊕ E2 ⊕ · · · ⊕ Ei ⊕ · · · ⊕ En,

where E represents the final node vector representation for MHNR.

The pseudocode can be found in Algorithm 1.

Input: graph G(V,E)

network orderm

embedding size d

Output: matrix of vertex representations 8ǫR|V|×d

1. Initialization: Sample 8

2. for in range(m):

3. subgraph_i← build_mth_order_subgraph(i)

4. forj in range(m):

5. subgraph_i← graph_isomorphism

(subgraph_i, subgraph_i)

6. 8i−order← train_on_graph(subgraph_i)

7. end for

8. 8← 8.append(8i−order)

9. end for

10. return 8

Algorithm 1. MHNR.

3.4 Complexity analysis

A distinctive feature of MHNR is its adaptive time complexity,

which is contingent upon the specific underlying model chosen for

the task. In this context, we opt to illustrate the time complexity

analysis of MHNR algorithm by taking the DeepWalk algorithm as

a representative example.

DeepWalk algorithm’s time complexity calculation can be

divided into two parts. The first part involves random walk

modeling, where the algorithm performs T steps of random walks

for each node V in the network, resulting in a time complexity

of O(V∗T). The second part pertains to model training, with a

time complexity of O(V∗E), where V is the number of nodes, E is

the average number of neighbors, and it is typically proportional

to the size of the input data. Therefore, the time complexity of

the DeepWalk algorithm is expressed as O(V∗T) + O(V∗E).

Consequently, the time complexity of the MHNR algorithm based

on the DeepWalk model is O(V∗T) +Õ(V∗E).

4 Experiments and results

4.1 Datasets

In order to verify the feasibility of the proposed algorithm,

experiments were performed on Citeseer, Cora, and DBLP (V4)

data sets. The selected data set is the real network data set, and the

relevant indicators of each data set are shown in Table 1.

If there’re have isolated nodes in the network, the random

walk results of MHNR algorithm and comparison algorithm will

be affected. In order to ensure the accuracy of the experimental

results, the isolated nodes in the DBLP data set were deleted. As can

be seen from Table 1, Citeseer data set, Cora data set, and DBLP

data set have similar number of nodes, but there are significant

differences in the number of edges in the network. Citeseer data sets

and Cora data sets are sparse network data sets, while DBLP data

sets are dense network data sets. Therefore, the three selected data

sets can simulate the experimental effects of the algorithm under

different conditions.
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FIGURE 1

High-order subgraph generation. (A) Original graph. (B) 2-order graph. (C) 3-order graph.

FIGURE 2

Graph assimilation process. (A) Node assimilation. (B) Edge assimilation. (C) Assimilation completed.

4.2 Contrast algorithm

The MHNR algorithm proposed in this paper is a network

representation learning algorithm based on network structure,

which does not use network node tags, text content, known

community tags and other information. Therefore, the comparison

algorithm used in this section is mainly a network representation

learning algorithm based on structure mining. The comparison

algorithms are introduced as follows.

• DeepWalk (Perozzi et al., 2014): DeepWalk algorithm

introduced the technology of deep learning into network

representation learning for the first time. This algorithm

proved that the node sequence obtained by random walk on

the network followed the exponential law, just like the words

in the text. Then the node sequence was put into the neural

network to obtain the node vector representation.

• LINE (Tang et al., 2015): DeepWalk algorithm for random

walks on the network is sparse. In order to solve this problem,

the 2-order similarity is introduced into LINE algorithm. The

2-order similarity defines that the more common neighbors

between two nodes, the closer they should be in vector space.

• node2vec (Grover and Leskovec, 2016): node2vec algorithm

improves the random walk mode of DeepWalk algorithm on

the basis of DeepWalk algorithm. Two random walk strategies

are proposed. Two hyperparameters and are introduced to

control the proportion of breadth-first strategy and depth-first

strategy, respectively.

• GraRep (Sun et al., 2018): In order to better capture K-

order structure information of the network, GraRep algorithm

adopts the method of matrix decomposition to embed

nodes. This algorithm can deal with weighted networks,

and at the same time, this algorithm can integrate the

global structure information of the network during the

training process.

• DeepWalk+NEU (Yang et al., 2017): This algorithm is the

combination of DeepWalk algorithm and NEU algorithm.

In this comparison algorithm, DeepWalk algorithm is first

used to train the network to obtain the vector representation

of the network nodes, and then NEU algorithm is used

to carry out the high-order transformation of the obtained

network embedding.

• EPDW (Yin and Yue, 2023): The EPDW algorithm improves

the wandering mode of DeepWalk algorithm to select the

next hop node with equal probability, and introduces the

gambling wheel method to change the probability of selecting

the next hop node. This method can select the next hop node

more reasonably.
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FIGURE 3

MHNR algorithm.

• PDW (Yin and Yue, 2023): The PDW algorithm changes the

undirected network into a directed network, and introduces

multiple hyperparameters to control the direction of the

random walk. The hyperparameters are determined by the

edge weights of the central node and its neighbors, and

attenuates the weight of the edge traveled while restraining the

probability of returning to the previous hop node.

• MHNR2 (DeepWalk): Algorithm of this paper, the

original network structure channel and the 2-order high-

order network structure channel are simultaneously

modeled. MHNR algorithm uses DeepWalk as the

meta-algorithm when modeling the relationship between

network nodes.

• MHNR3 (DeepWalk): Algorithm of this paper, the original

network structure channel and 2-order and 3-order high-

order network structure channel are simultaneously modeled.

MHNR algorithm uses DeepWalk as themeta-algorithmwhen

modeling the relationship between network nodes.

• MHNR5 (DeepWalk): Algorithm of this paper, the original

network structure channel and 2-order, 3-order, 4-order,

and 5-order high-order network structure channel are

simultaneously modeled. MHNR algorithm uses DeepWalk as

the meta-algorithm when modeling the relationship between

network nodes.

4.3 Experimental parameter setting

In order to verify the generalization ability ofMHNR algorithm,

experimental verification was carried out on Citeseer, Cora, and

DBLP data sets. The data sets were divided into nine proportional

training sets with a ratio from 10 to 90% and an interval of 10%.

The remaining data were used as test sets. Moreover, SVMprovided

by Fan et al. (2008) in LIBLINEAR 22 was selected as the classifier

to conduct a multi-vertex classification accuracy experiment on

network embedding results. The algorithmwas set to walk 40 nodes

each time as the length of random walk sequence, the number

of random walks was set to 10, the size of sliding window was

set to 5, the number of negative samples was set to 5, and the

minimum node frequency was set to 5. In the PDW algorithm,

three groups of hyperparameter control PDW algorithm are set,

in which the inhibition coefficient of the previous hop node in the

random walk return walk sequence is set as 5, 10, 20, and the walk

probability attenuation coefficient is set as 0.05, 0.05, and 0.1. In

EPDW algorithm, the random walk length is set to 40, 60, and 80,

respectively. At the same time, the dimension of node vector in each

channel of MHNR algorithm is set to 100 dimensions. In order to

ensure the accuracy of the experimental results, the experiment was

repeated for 10 times, and the average value of the results of 10

times was taken as the final result of the experiment.
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TABLE 1 Data description.

Ds. Nodes number Edges number Average degree Network diameter Average aggregation coe�cient

Citeseer 3,312 4,732 2.857 28 0.257

Cora 2,708 5,429 4.01 19 0.293

DBLP 3,119 39,516 25.339 14 0.259

TABLE 2 Citeseer data set experimental results (%).

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

DeepWalk 47.55 50.24 51.89 52.32 53.66 53.16 53.75 53.91 54.62 52.34

LINE 41.22 44.61 47.88 49.15 52.18 53.49 53.87 53.25 53.91 49.51

DeepWalk+NEU 48.49 51.23 52.48 53.90 53.54 54.65 54.57 54.43 55.86 53.24

GraRep (K = 3) 45.07 50.95 53.40 54.21 54.87 55.75 55.54 55.15 54.22 53.24

node2vec 50.83 52.58 54.28 54.45 55.71 56.18 55.58 56.22 56.62 54.72

EPDW (l = 40) 51.92 53.84 55.16 55.81 56.86 57.09 57.52 57.90 58.33 56.05

EPDW (l = 60) 51.26 53.40 54.93 55.76 56.59 57.09 57.06 57.22 58.56 55.76

EPDW (l = 80) 50.53 53.57 54.64 55.08 55.66 56.20 56.34 57.15 57.33 55.16

PDW (p= 5, q= 0.05) 53.16 55.19 55.74 56.33 57.26 57.93 57.98 57.96 57.65 56.58

PDW (p= 10, q= 0.05) 52.89 54.99 55.70 56.66 56.26 56.90 57.37 57.42 57.65 56.20

PDW (p= 20, q= 0.1) 53.65 54.77 55.41 55.87 56.07 56.98 56.74 57.89 57.22 56.07

MHNR1 (DeepWalk) 54.43 56.19 57.53 59.03 59.08 59.65 59.34 59.21 60.69 58.35

MHNR3 (DeepWalk) 55.89 58.92 59.38 60.52 60.91 62.31 62.53 62.58 62.18 60.58

MHNR5 (DeepWalk) 56.10 59.48 61.55 61.72 62.42 63.00 62.90 64.17 65.80 61.90

Bold values represent the highest value in the column.

TABLE 3 Cora data set experimental results (%).

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

DeepWalk 67.60 72.09 74.47 75.07 76.68 76.74 77.44 78.08 77.70 75.10

LINE 64.25 68.38 70.11 71.34 73.26 75.81 75.62 77.73 79.51 68.75

DeepWalk+NEU 69.29 74.74 76.08 77.34 77.76 78.59 78.83 79.37 79.07 76.79

GraRep (K = 3) 72.60 77.34 78.34 79.39 79.43 80.30 80.32 80.68 79.88 78.70

node2vec 69.31 73.24 74.13 75.60 76.13 76.58 76.45 77.45 77.44 75.15

EPDW (l = 40) 72.50 75.86 76.84 77.64 77.98 78.65 78.94 79.23 79.65 77.48

EPDW (l = 60) 72.35 75.40 76.46 77.52 77.42 77.96 77.96 78.13 78.78 76.89

EPDW (l = 80) 71.85 74.89 76.07 76.72 77.08 77.27 78.01 78.43 78.25 76.51

PDW (p= 5, q= 0.05) 75.66 78.11 79.40 80.19 80.52 80.97 80.58 80.91 81.00 79.70

PDW (p= 10, q= 0.05) 75.96 78.79 79.51 79.99 80.32 80.42 81.81 81.57 81.63 80.00

PDW (p= 20, q= 0.1) 76.50 78.56 79.86 79.91 80.20 80.78 81.40 81.74 81.07 80.00

MHNR1 (DeepWalk) 75.86 78.81 79.55 80.57 80.62 81.34 81.02 81.92 81.81 80.17

MHNR3 (DeepWalk) 76.56 78.98 80.08 80.49 81.62 81.77 82.50 82.55 82.81 80.82

MHNR5 (DeepWalk) 75.94 78.58 79.83 81.02 81.39 81.63 82.07 82.64 82.41 80.61

Bold values represent the highest value in the column.

4.4 Experimental results and analysis

In the experiment to verify the results of MHNR algorithm,

the three selected evaluation data sets are real network data sets.

Tables 2–4, respectively show the experimental results of MHNR

algorithm and comparison algorithm in different data sets and

different proportion test sets.

From the experimental results on Citeseer data set, it can

be found that MHNR algorithm has the best node classification

performance when trained in the 5-order multi-channel network.
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TABLE 4 DBLP data set experimental results (%).

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

DeepWalk 76.73 79.47 80.78 81.24 82.11 81.60 82.60 83.24 82.60 81.15

LINE 73.28 75.15 76.93 77.42 78.06 78.65 78.92 80.13 80.52 77.67

DeepWalk+NEU 80.86 81.64 82.10 83.84 83.89 83.79 83.89 84.45 84.02 83.16

GraRep (K = 3) 81.59 83.13 84.33 84.07 84.03 84.42 85.24 85.51 85.05 84.15

node2vec 83.17 83.10 83.32 83.62 84.84 84.91 84.29 84.82 84.82 84.10

EPDW (l = 40) 84.06 84.51 84.82 85.31 85.04 85.32 85.60 85.91 86.20 85.20

EPDW (l = 60) 84.50 85.32 85.74 85.99 86.12 86.09 85.91 86.18 86.44 85.81

EPDW (l = 80) 84.05 85.04 85.44 85.66 85.69 85.97 86.16 86.55 86.54 85.68

PDW (p= 5, q= 0.05) 82.91 83.29 83.79 83.86 84.28 84.07 84.96 84.41 84.57 84.02

PDW (p= 10, q= 0.05) 82.58 83.26 83.83 84.19 84.16 84.47 84.36 85.30 85.34 84.17

PDW (p= 20, q= 0.1) 82.74 83.45 84.01 84.77 84.57 84.23 84.09 85.85 85.08 84.31

MHNR1 (DeepWalk) 82.44 82.92 83.28 83.52 83.88 84.23 84.03 84.56 86.14 83.89

MHNR3 (DeepWalk) 82.38 83.54 84.19 84.51 84.78 85.12 85.75 85.30 85.95 84.61

MHNR5 (DeepWalk) 82.28 84.00 84.47 84.95 85.35 85.08 85.07 85.91 85.89 84.78

Bold values represent the highest value in the column.

Compared with DeepWalk algorithm, MHNR algorithm improved

by 9.56%. Compared with EPDW algorithm, it improves by 6.14%.

Compared with PDW algorithm, the improvement is 5.32%. From

the experimental results on Cora data set, it can be found that

MHNR algorithm has the best node classification performance in 3-

order multi-channel network training. Compared with DeepWalk

algorithm, MHNR algorithm improved by 5.72%. Compared with

EPDW algorithm, it improves by 3.34%. Compared with PDW

algorithm, 0.82% improvement. From the experimental results

on DBLP data set, it can be found that MHNR algorithm has

the best node classification performance in the 5th order multi-

channel network training. Compared with DeepWalk algorithm,

MHNR algorithm improved by 3.36%. But it is 1.03% worse than

EPDW algorithm. Compared with PDW algorithm, it is improved

by 0.47%.

From the experimental results, it can be observed that the

proposed MHNR algorithm performs well overall on large-scale

sparse datasets. This is because in large-scale sparse datasets,

the connections between nodes are not tightly knit, and there

may be longer paths between two nodes in the network.

This makes it challenging to capture the relationship between

two nodes. However, the MHNR algorithm can reconstruct

the original network, thereby capturing more comprehensive

features of the network and discovering relationships between

nodes more effectively. Therefore, the experimental results

of the MHNR algorithm are better on large-scale sparse

datasets. Additionally, due to the denser relationships between

two nodes in dense datasets, the experimental results of

MHNR on dense datasets are slightly worse compared to other

algorithms. The experimental results clearly indicate that the

MHNR algorithm is more suitable for handling large-scale

sparse datasets.

The experiment achieves the expected experimental results,

indicating that the MHNR algorithm based on multi-channel high

order network can retain the characteristic information of the

network to a great extent, and the trained nodes are more suitable

for the work of subsequent tasks.

As can be seen from Figure 4, the algorithm proposed

in this paper has obvious advantages in experiments on

different data sets. The main reason is that the algorithm

in this paper adopts the multi-channel mechanism to

model the high-order relationship between network nodes,

and adopts the graph assimilation mechanism to model

the high-order relationship between network nodes on a

single-channel again, which can retain the characteristic

information of the network to a great extent. The trained

node vector has better classification performance. Therefore,

the algorithm in this paper shows very good node

classification performance

Node2vec, PDW, and EPDW all improve the machine

learning performance of the DeepWalk algorithm by

improving the random walk process. However, these two

algorithms mainly capture neighboring nodes with closer

relationships between nodes, and their essence is still a type

of low order network representation learning algorithm.

The MHNR algorithm proposed in this paper is a network

representation learning algorithm that can train both low-

order and high-order features simultaneously, so machine

learning can outperform existing node2vec, PDW, and

EPDW algorithms.

4.5 Visualization analysis

The visual analysis of the training results of the algorithm can

observe the classification effect of the algorithm more directly.

In this section, visualization analysis experiments were performed

on Citeseer, Cora and DBLP data sets, and algorithms such
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FIGURE 4

Experimental result.

as DeepWalk, EPDW and PDW were selected as comparison

algorithms. In MHNR algorithm, 5-channel were selected to train

data sets. DeepWalk and node2vec algorithms are selected as the

basic algorithm models of MHNR algorithm.

In the analysis of visualization tasks, four categories are

randomly selected in three data sets, and 200 nodes are randomly

selected in each category. Meanwhile, t-SNE (Der Maaten and

Hinton, 2008) is selected as the node dimension reduction

algorithm of visualization tasks. The experimental results of

visualization analysis are shown in Figure 5.

The DeepWalk algorithm was able to cluster nodes of the

same class in the visualization results of Cora and DBLP data sets,

but the visualization results of Citeseer data sets were poor. The

visualization results of EPDW algorithm on Citeseer data sets were

similar to those of DeepWalk algorithm, but on Cora and DBLP

data sets, EPDW algorithm could well gather nodes of the same

category together, and there were obvious clustering boundaries.

In the visualization result of PDW algorithm on Citeseer data

set, there is a significant distance between nodes of the same

category and other nodes of the same category, but it fails to gather

nodes of the same category well. On Cora and DBLP data sets,

PDW algorithm can gather nodes of the same category together,

but on Cora data set, The node clustering boundary trained by

PDW algorithm is not clear. MHNR algorithms based on different

underlying frameworks can cluster nodes of the same category

together with obvious clustering boundaries in the visualization

results of Citeseer, Cora and DBLP data sets, which further verifies

the feasibility of MHNR algorithm.

The MHNR algorithm can model features of different orders,

which include both low-order and high-order features. Therefore,

the MHNR algorithm can perceive the relationships between

farther nodes. However, the DeepWalk algorithm only models the

relationship between first-order neighbor nodes and second-order

neighbor nodes, so it is a low-cost feature modeling algorithm.

The MHNR algorithm can model high-order features, enabling it

to capture community information between nodes. Therefore, in

visualization tasks, the MHNR algorithm can perform quite well.

4.6 Vector length sensitivity analysis

In this section, the influence of vector dimension of MHNR

algorithm on model accuracy at Citeseer was analyzed. The

network structure characteristics of 3-channels modeled by MHNR

algorithm were set. The vector dimension of single-channel was set

as 20, 50, 100, 200, and 300, and the final vector dimension was

60, 150, 300, 600, and 900, respectively. The specific experimental

results are shown in Figure 6.

We found that, as the length of network representation

vector increased, the node classification performance of MHNR

algorithm became higher and higher. In the node classification

experiment, the length of the representation vector of MHNR

algorithm was set to 300, and in this experiment, we set the

size of the network node representation vector to different

values. We found that, when the representation vector size

of MHNR algorithm is 60, its node classification performance

is the worst, and when the representation vector size of

MHNR algorithm is 900, its node classification performance is

the best.

4.7 Sensitivity comparison of base model

The MHNR algorithm in this paper is trained based on

node2vec algorithm and DeepWalk algorithm, respectively. In

other words, node2vec algorithm and DeepWalk algorithm are,

respectively used to model the relationship between nodes in
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FIGURE 5

Network visualization. (A) DeepWalk (Citeseer). (B) DeepWalk (Cora). (C) DeepWalk (DBLP). (D) EPDW (Citeseer). (E) EPDW (Cora). (F) EPDW (DBLP).

(G) PDW (Citeseer). (H) PDW (Cora). (I) PDW (DBLP). (J) MHNR (Citeseer). (K) MHNR (Cora; DeepWalk). (L) MHNR (DBLP). (M) MHNR (Citeseer). (N)

MHNR (Cora; node2vec). (O) MHNR (DBLP).
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FIGURE 6

Vector length sensitivity analysis.

FIGURE 7

Sensitivity comparison of base model.

each single-channel, and then the node classification performance

obtained by different meta-algorithms is compared.

The only difference between DeepWalk and node2vec is

that the random walk process is different, and the underlying

models are the same. In this paper, Skip-Gram and Negative

Sampling are adopted to implement the DeepWalk and

node2vec algorithms. It can be seen from Figure 7 that, on

Citeseer and Cora data sets, MHNR algorithms based on

different stratigraphic frameworks show little difference in node

classification performance obtained by training on different

proportion training sets. However, experimental results on dense

data set DBLP show that, the experimental results of the DeepWalk

stratigraphic framework algorithm have obtained better node

classification performance.

5 Conclusion

Based on the original network structure, this paper proposes

a multi-channel high-order network representation learning

algorithm MHNR. The algorithm takes the lead in capturing

the high-order structural features of the network, and at the

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1340462
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Ye et al. 10.3389/fnbot.2024.1340462

same time carries out the graph assimilation of the high-

order structural features of different orders, respectively, and

models the network after the graph assimilation of different

orders to obtain the structural features of different orders.

The final vector representation of the nodes in the network

is composed of node vectors of different orders. The MHNR

algorithm is verified by experiments on three real network data

sets, and the experimental results are 61.9, 80.61, and 84.78%,

respectively, and the expected experimental results are obtained.

In the visualization task, MHNR algorithm has good node

classification performance, which further proves the feasibility of

the algorithm. However, the algorithm still has some limitations,

such as:

(1) Dependency on network structure: The MHNR algorithm

primarily relies on the network structure for node

representation learning, without leveraging additional

information like node labels or text content. This may result

in suboptimal performance in scenarios lacking sufficient

structural information or with a strong dependence on node

content, compared to algorithms that consider a variety

of information.

(2) Channel selection issue: In the MHNR algorithm,

choosing an appropriate number of channels for

training is crucial, and the selection may impact the

algorithm’s performance.

Future directions for improvement include:

(1) Integration of multimodal information: Consider

integrating multimodal information, such as node labels

and text content, into the MHNR algorithm to enhance

its adaptability and generalization. This could potentially

improve the algorithm’s performance in a broader range of

application scenarios.

(2) Adaptive channel selection: Introduce an adaptive

mechanism for channel selection, determining the

appropriate number of channels based on dataset

characteristics or through automatic adjustments to

enhance the algorithm’s robustness.
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