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ADAM: a robotic companion for
enhanced quality of life in aging
populations

Alicia Mora *†, Adrian Prados *†, Alberto Mendez †,

Gonzalo Espinoza †, Pavel Gonzalez , Blanca Lopez ,

Victor Muñoz , Luis Moreno , Santiago Garrido and

Ramon Barber

RoboticsLab, Systems Engineering and Automation Department, Universidad Carlos III, Madrid, Spain

One of the major problems of today’s society is the rapid aging of its population.

Life expectancy is increasing, but the quality of life is not. Faced with the

growing number of people who require cognitive or physical assistance, new

technological tools are emerging to help them. In this article, we present

the ADAM robot, a new robot designed for domestic physical assistance. It

mainly consists of a mobile base, two arms with grippers and vision systems.

All this allows the performance of physical tasks that require navigation and

manipulation of the environment. Among ADAM’s features are its modularity,

its adaptability to indoor environments and its versatility to function as an

experimental platform and for service applications. In addition, it is designed to

work respecting the user’s personal space and is collaborative, so it can learn

from experiences taught by them. We present the design of the robot as well as

examples of use in domestic environments both alone and in collaboration with

other domestic platforms, demonstrating its potential.

KEYWORDS

elderly care, assistive robotics, physical assistance, social navigation, learning from

demonstrations, environment perception, multi-robot tasks

1 Introduction

Nowadays, we face a major global demographic challenge. United Nations analyses
reveal a steady increase in life expectancy worldwide, having recovered and exceeded the
values due to the COVID19 pandemic. Simultaneously, the birth rate continues to decline
and this trend is expected to persist for the next 75 years (UN, 2023). This demographic
dynamic translates into an unavoidable aging of the population, posing a far-reaching
global challenge.

Focusing in the case of Spain, during 2021, life expectancy reached one of the highest
levels in Europe, averaging 83.3 years. This statistic, supported by data provided by the
“Instituto Nacional de Estad–stica (INE),” marked a slight recovery from pre-pandemic
value (INE, 2023). However, it is important to note that, despite the upward trend in life
expectancy observed before the pandemic, the age at which diagnosed chronic diseases
begin to manifest themselves does not show a significant delay (Zueras and Rentería, 2021).
This translates into a prolonged period in which people have to cope with these health
conditions.
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In this context, there is a pressing need to seek innovative
solutions to ensure quality aging and provide adequate care
for an ever-increasing elderly population, with new technologies
emerging as a promising tool to significantly improve this situation
(Ma et al., 2022). The application of robotics in this context emerges
as a highly relevant contribution, by virtue of its ability to operate
in human-inhabited environments without requiring substantial
modifications. This approach has considerable advantages in the
context of care and assistance to elderly individuals, allowing care
to be provided in their home environment, and is supported by
the opinion of healthcare professionals (Łukasik et al., 2020). A
key element in the design of robots for this purpose lies in their
versatility, which is manifested in their ability to carry out tasks
of a domestic nature, such as setting the table, preparing food and
cleaning the floor (Christoforou et al., 2020b). Their competence
in the social sphere is also a significant virtue, insofar as these
devices have the capacity to establish close interaction with the
individual, thus mitigating the feeling of loneliness, and even
allowing the monitoring of their state of health (Christoforou et al.,
2020a).

Reviewing the attributes of the robots highlighted in these
research studies, the RoboticsLab team from Universidad Carlos
III de Madrid introduces the robot called Autonomous Domestic

Ambidextrous Manipulator (ADAM), a mobile robot with
bimanipulation capabilities designed specifically for the execution
of domestic tasks, with the purpose of providing support to the
elderly population in their homes.

The ADAM robot is designed in collaboration with the
manufacturer Robotnik. The configuration of the robot can be
divided into four modules: perception system, mobile base, dual-
arm system and robotic hands. The description of each of these
components is detailed on Section 3.1. This configuration provide
the robot with a number of particularly relevant capabilities to fulfill
its function accurately and safely. These capabilities range from
human awareness to the ability to comprehend the environment,
as shown in Figure 1.

• Human awareness: by employing various sensors, the robot
detects individuals in its surroundings, not only to prevent
collisions but also to ensure it doesn’t inconvenience people
when carrying out specific tasks.

• Learning from the user: utilizing perception systems or
through the collaborative capabilities of its arms, users can
teach the robot to perform new tasks. For instance, they can
instruct it in activities like floor cleaning.

• Detection and recognition: to execute tasks accurately, a
perception system has been developed. This system can detect,
recognize, locate, and even determine the shape of objects in
the environment.

• Navigation and comprehension of complex scenarios: in
pursuit of greater adaptability to its environment, the robot
can comprehend the spatial context of the scenario. This
allows it to differentiate between rooms and autonomously
navigate in challenging situations, including negotiating
doorways.

By making use of these capabilities, ADAM is able to provide
quality care to the elderly people. The robot can carry out

a wide range of household chores, from simple tasks such as
picking up and delivering objects at the user’s request, to more
complex tasks such as cleaning the floor after learning from
user’s demonstration. In addition, it performs these tasks without
modifying the environment, being able to provide assistance for
these people in their own home. It should be noted that thematurity
of these capabilities and their success will allow assistive robotics to
play an important role in the future.

2 State of the art

Elderly care robots have been a main research topic in the last
decades (Bardaro et al., 2022). These robots must be able to not
only operate in unknown dynamic environments considering the
humans with whom they share space, but also to be capable of
interacting with all sorts of people by learning and adapting to
them. These factors become evenmore relevant when working with
elder people. When focusing on elderly care, it is very important
to distinguish between two main approaches, cognitive care and
physical task helper.

Cognitive care focuses on working on issues related to cognitive
impairments and social interaction, such as the treatment of
cognitive or psychotic disorders (Singh, 2022; Amaro et al., 2023).
For this purpose, applications are developed in which these elderly
people engage in stimulating interaction with the robot allowing
them to work on issues related to memory or sensory perception
(Andriella et al., 2020). Thus, robot for cognitive care design focuses
on emotion recognition through visual sensors, speech recognition
or even tactile sensors for the robot to respond accordingly,
giving less relevance to the ability to manipulate the environment
(Yamazaki, 2020).

Despite not being initially designed for elderly cognitive
care, there exist several social robots which have been adapted
to improve their adequacy to elderly care and companion
applications. One of the most popular examples is the Pepper
social robot developed by SoftBank Robotics (Japan), a commercial
humanoid robot initially designed for business-to-business (B2B),
later for business-to-customers (B2C) and business-to-academics
(B2A) applications in stores and schools appealing customers and
students thanks to its friendly appearance (Pandey and Gelin,
2018). Nowadays, Pepper is also used for and adapted to elderly
care applications as the one presented in Takanokura et al. (2023),
in which several elderly participants where brought together to
complete cognitive tasks through interaction with the Pepper robot
in a daycare facility. The NAO robot, a humanoid robot similar to
Pepper but of smaller size, is another example of social robot which
has been adapted to monitor vital signs in the elderly, such as blood
pressure and heart rate. This is done by means of a sensor equipped
platform as an extension to NAO named RIA (Vital et al., 2013).
NAOwas more recently used as part of a memory training program
with mild cognitive impairment with participants between 45 and
85 years old (Pino et al., 2020), using visual recognition to detect
emotions and gaze to assess the improvement in behavior after each
session.

Other social robots are specifically built for elderly care
applications from the start, guiding the design process with this
purpose. This is the case of the Mini robot, designed for social
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FIGURE 1

Visual description of the ADAM service robotic platform and its four main capabilities for the development of elderly care tasks: perception of the

environment, navigation and environmental comprehension, social navigation and manipulation learning.

companionship and domestic assistance, particularly catering to
the needs of elderly individuals. This sophisticated robot employs
a range of sensors and artificial intelligence to evaluate user
engagement with tasks, enhancing interaction duration (Salichs
et al., 2020;Martínez et al., 2023). FRED is another robot specifically
designed for elderly care which seeks to alleviate the symptoms of
Alzheimer’s disease and dementia through games and interactions
with the robot (Mitchell et al., 2023). Even though cognitive

assistance presents several psychological benefits as shown in
the cited references, purely cognitive care robots fail to fully
attend the needs of the elderly, and could be complemented with
the advantages of physical assistance robots to help to perform
demanding home tasks.

Physical task helper robots are responsible for assisting elderly
people in the partial or total performance of everyday tasks which,
due to their age or pathologies, they cannot perform optimally.
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These robots differ from those presented for cognitive care in
that they must be able to interact with the environment that
surrounds them. To do this, they must have actuators that allow
them to manipulate different elements on the environment as well
as sensors that help with said interaction. In addition to this, it
is important to take the user into account at all times for these
interactions. This allows to work safely in environments where both
people and robots coexist.

Taking all these characteristics into account, there are a large
number of robotic platforms which were designed in a generic
way and were later given a utility aimed at helping older people
(Asgharian et al., 2022). One of the most widely used general-
purpose robotic platforms is TIAGo, an indoor mobile open-source
robot for application of assistance that can achieve different tasks
using its navigation, manipulation and perception elements. These
robots have been used in projects like the presented in Muscar
et al. (2022), where TIAGo’s sensors are used to detect real time
warning situations such as falls of elderly people in their homes
and act actively in these situations. Another example of the use of
TIAGo is the ENRICHME project presented in Coşar et al. (2020),
where by using the robot’s vision systems and the sensors of a
home automation system, the robot is able to monitor and assist
the elderly in any situation and help them with tasks by activating
different elements of the home automation system. Another robot
is ARMAR6 (Asfour et al., 2019), an initially designed collaborative
humanoid primarily intended for industrial maintenance duties. It
boasts essential functionalities like dual-arm mobile manipulation,
accurate human pose estimation, and proficient object grasping
capabilities.

Different models of assistive robots are also currently being
developed. They are focused on interacting with actions and also
helping in solving certain tasks that they are not capable to perform
or that have limitations. An example of this is Gymmy, presented
in Krakovski et al. (2021), which is a physical and cognitive aid
robot that does not only assists the elderly in simple manipulation
tasks, but also maintains and improves the independence of the
elderly in the performance of certain tasks. For this purpose it
uses a mobile base with manipulators and a screen that shows the
elderly how to perform the task in case they need help. Another
robot created specifically for assisting the elderly with household
chores is the CHARMIE robot, presented in Ribeiro et al. (2021).
This robot was tested during the COVID-19 pandemic and consists
of a humanoid hand and manipulator, a mobile base with wheels
and a head with a camera. CHARMIE was tested for tasks such
as placing objects in inaccessible areas as well as for “carrying the
shopping bag” tasks. One of the best known platforms is Hobbit,
which from its inception was presented as a physical assistive robot
for the elderly (Fischinger et al., 2016). A large number of works
have been developed on this robot within this field, such as the
one presented in Bajones et al. (2018), where it helps and prevents
falls in elderly people. It also has the ability to pick up objects from
the floor pointed out by the elderly, which can be potential sources
of falls. This robot, like those previously presented, is formed by a
manipulator arm, amobile base and a camera to detect the elements
of the environment. It also has a tablet with which the user can
interact directly and give predefined orders. Finally, one of the
most comprehensive current robots is GARMI (Tröbinger et al.,
2021). This robot is made up of different modules that allow it to

perform tasks such as manipulating elements of the environment,
detecting objects and people and moving around in domestic
environments. It also has a virtual reality-based support where the
GARMI robot acts as an intermediary between the doctor and the
user. To this end, they have developed a simulated environment
where the user can connect with different members of the family
or the doctor via video calls, and they have even set up certain
cognitive rehabilitation exercises for users.

Following this classification, the ADAM robot presented in this
work has been created specifically as a robot to physically assist
elderly people and also as a platform for research and development
of new techniques for performing tasks in indoor environments as
efficiently and safely as possible. ADAM, being an indoor robot and
working in domestic environments, has a series of characteristics in
common with the robots previously presented, such as adapting its
size to homes to allow it to work safely, passing through doors and
being able to manipulate the different elements of the environment
(such as objects or furniture). Despite this, ADAM presents certain
elements that differentiate it from the rest of the robots described
in this section:

• ADAM is formed by a combination of modular systems,
facilitating seamless integration of multiple sensory inputs
from the cameras, arms, hands and base. Each component
within this system can work both independently as well as
being able to work in a coordinated manner. Additionally,
each module allows to work in low and high-level, turning
ADAM into a suitable platform for research as well as for
elderly user care tasks.

• People in the environment are taken into account at all times
when carrying out tasks. This makes it possible to work safely
on indoor environments, generating collision-free movements
with users.

• The robot arms are collaborative. This allows users to
operate them and adapt their movements according to the
characteristics of their own environment in each case. It also
has a series of safety criteria where, if it detects collisions, it
stops to avoid any type of damage to the environment or to
the elderly person.

3 Robot design and integration

The ADAM robot is a dual-armmobile manipulator robot with
the capability to perform various assistive household tasks. In order
to be able to perform these tasks, the robot has been designed to
adapt to a human environment, so its dimensions are in accordance
with this. Also its cognitive capabilities must be appropriate to
facilitate the coexistence of the platform with the users. In this
section, a detailed description of the physical and software design
of the robot is given.

3.1 Robot components

The robotic platform is composed of several modules that
enable the performance of navigation and manipulation tasks for
the execution of physical assistance tasks. It comprises a perception
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system, a mobile base, a torso, two arms and two grippers, reaching
a total height of 160 cm and a 50 cm width when the arms are at
rest. These systems are independent and commercial modules that
have been connected together to form the total robot structure. A
schematic of these elements can be seen in Figure 2.

The robot is completely modular, with its different parts being
able to work individually as well as together. In addition, the robot
is completely autonomous, having batteries in its base that provide
it with enough energy to move both the base and the arms and to
include additional sensors such as cameras or 3D LiDAR sensors.
The average battery life is derived from the number of simultaneous
active modules, with the maximum battery life achieved solely with
the base module (using only the navigation module) estimated at
9.3 h. The minimum battery life, with all modules connected and
functioning simultaneously, is 3.8 h. The estimated approximate
charging time for the batteries is 2.2 h. ADAM also has two central
computers, one for the base and one for the arms, which have the
controllers to act on them. These two computers are connected via
an internal cable network. In addition, the robot has aWiFi module
that allows the robot to communicate with external computers
where we execute custommade algorithms that process sensor data
and send commands. Each of the different modules of the robot,
both its own (base and arms) and those added by us (perception
system and manipulators), are presented in detail below.

3.1.1 Perception system
The perception system allows to capture relevant information

from the environment to perform navigation and manipulation
tasks. The robot has sensors that are already integrated into its
commercial components. The robotic base includes an RGBD
camera and a 2D LiDAR. These sensors are located practically at
ground level, a few centimeters above the ground, and pointing
toward the front side of the robot. This means that their range
of vision is quite limited with respect to height. As mentioned in
Section 3.2.2, they are useful for low-level actions like measuring
distances at specific times. However, it is necessary to include
additional devices that extend the range of vision and allow higher-
level tasks to be performed. The proposed selection of additional
components is detailed below.

The additional sensor selection for the perception system on
the ADAM robot combines depth sensors with RGB cameras with
the main purpose of detecting and localizing elements of the
environment in space, which is essential for both manipulation
and navigation tasks. The core components of this system mainly
comprise two sensors: the Realsense D435 depth camera and
the Ouster OS0 LiDAR sensor. Their seamless integration into
the Robot Operating System (ROS) facilitates communication
with other robot components. These sensors have a preinstalled
software that can be used in some simple robotics applications,
but to perform more complex tasks, typical of an assistive
robot, we develop our own software that in certain cases uses
some preinstalled utilities. In addition, due to their versatile
characteristics, these sensors find applications in a variety of tasks.

The Realsense D435 depth camera is an RGBD sensor,
consisting of an infrared stereo vision and a traditional RGB
module. In terms of specifications proper to this type of sensor, this

camera has a maximum resolution of 1,280 × 720 for the depth
stream and 1,920 × 1,080 for the RGB stream, with a frame rate
of 90 and 30 fps respectively and a field of view of 87◦× 58◦, with
an operating range of up to 3 m, an example of the output given
by these two streams can be seen on Figure 3. This specifications
allow to obtain this information accurately with a precision error of
<2% at 2 m. This sensor is placed on a mobile support that allows
to modify the camera angle and its position depending on the task
to be performed, so its coordinate transform is variable.

The LiDAR sensor Ouster OS0 allows to obtain a greater
range of perception both in angle and range. Specifically, it has a
maximum range of 100 m and a vertical field of view of 90◦ and
128 channels of resolution. With this specifications it can obtain
information from almost all the entire room in a single sweep of
the sensor, as shown in Figure 3, if there are no occlusions that may
generate shaded areas affecting the final map result. It is important
to note that it does not only provide spatial information, but it can
also detect other properties such as reflectivity due to the nature of
the sensor. By installing the sensor on top of the robot, occlusions
with its own body are avoided, maximizing its capabilities. The
coordinate transformation with respect to the robot is given by a
translation from the LiDAR to the base. This corresponds to 130
cm in the Z axis.

These sensors have been applied to develop a system for
detecting and recognizing the environment, obtaining both 2D and
3D information. This information gives the robot the ability to
perform manipulation and navigation tasks accurately and safely.
The detailed description of these applications is developed in
Section 3.2.1.

3.1.2 Mobile base
The navigation capabilities of the robot are determined by

its mobile platform, specifically the RB-1 model manufactured by
the company Robotnik. This device has dimensions of 50 cm in
diameter and it is equipped with two motorized wheels and three
supporting wheels. This configuration enables the robot to move
both forward and backward, as well as rotate in place, facilitating
the seamless combination of these two movements. It should be
noted that lateral displacement is not within the capabilities of this
base.

As mentioned above, the base has two integrated sensors, an
RGBD camera and a 2D laser. The base is designed as a stand-alone
module, so in its original design these sensors are sufficient for the
classical navigation algorithms that this base can perform.However,
in our case, we have additional elements mounted on it, more
specifically a torso and two industrial arms, so both perception
and navigation strategies need to be adapted. We have developed
customized algorithms to consider the facts when navigating as
explained in Section 3.2.2.

3.1.3 Dual-arm system
The design and selection of the ADAM robot manipulators

is governed by two main characteristics. The first is its body
composition. The robot has to meet physical standards that
simulate the structure of a human torso and arms. This is because
a human-like structure allows it to work more comfortably in
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FIGURE 2

General scheme of ADAM elements from back and front view.

FIGURE 3

Information captured by the perception system. The main sources of information are the RGB image and the corresponding depth values from the

RGBD sensor and the 3D spatial information from the LiDAR sensor, which covers a full room.

domestic environments because the rooms, doors and furniture
are adapted to humans. The second feature is specific to our own
design, and that is that we want the arms to be collaborative.
These arms allow you to reprogramme and reallocatemovements as
needed in all your operations, maximizing flexibility, efficiency and
productivity. They are also equipped with safety systems to keep the
elderly safe from collisions when performing joint tasks. With these
two characteristics in mind, it was decided to use the UR3 models
provided by Universal Robots.

These arms have a total length of 50 cm and a maximum
load capacity of 3 kg. Each arm is made up of 6 degrees of
freedom (DoF) with a range of movement between ±360◦, with
the exception of the end effector which allows more than one
turn. To achieve human configurations with the UR3 arms, which
are non-anthropomorphic, the positioning of the arms has been
reconfigured. The arms have been rotated with respect to the robot

base (understood as the global reference of the system) 45◦ for
both arms. In addition to this, the arms have been positioned on
the torso of the robot by means of a displacement in the three
XYZ axes with respect to the base. To establish the connection
between these three reference axes, it will be essential to perform
both rotational and translational operations. This will enable us
to ensure that all the points computed concerning the robot base
by the sensors can subsequently be associated with the arms,
preventing any errors in movement execution. This procedure
relies on a sequence of transformations in which the joint positions
are transmitted to create the necessary trajectory in the physical
model of the robot. This process is expressed for the left arm
as Hleft = T(tx,robot , ty,robot , tz,robot)T(x,−π/4) and for the right
arm as Hright = T(−tx,robot ,−ty,robot , tz,robot)T(z,π)T(x,−π/4) as
is presented in Figure 4. These translations make it possible to
reference the handling system with respect to the overall robot
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FIGURE 4

Visualization of the ADAM model in simulation, where the reference systems of the base and arms can be seen. The reference frame transformations

between them are schematically represented.

system, which facilitates the processing of the information to work
together on the whole system.

For manipulation we make extensive use of the collaborative
capabilities of the UR3 arms. First of all we exploit the use of
gravitational compensation. This mode allows us to move the arm
directly by hand without the need of teleoperation, that allows us
to capture data with it in a very simple and intuitive way. These
capabilities are exploited in performing tasks that are adapted to
different human environments. Additionally, if the arm detects a
collision with an external elements it blocks and enter in a safety
mode, that uses the gravitational compensation. The presented
capabilities allow them to work safely in human interaction. In
our case, these capabilities focus on learning tasks by imitating the
human user. UR3 arms has the ability to be programmed using
code by an expert or to be moved by a user. This capability of
programming just with the movement allows us to specify, in a very
simple way, tasks that through classical programming could be very
tedious to adapt to highly changeable environments such as homes.
The application and exploration of these capabilities is developed
in depth in Section 3.2.3

3.1.4 Robotic hands
To grant complete manipulation capabilities to the robot and

allow it to grasp everyday objects, the parallel-jaw gripper named
Duck Gripper was designed (Figure 5). The device constitutes a
simple and ready to use end effector as a physically independent
module to be easily mounted on the robot arms so it does not
require any further wiring, but which can be controlled by the
robot’s central system via ROS over Wi-Fi communication. To
achieve this, the gripper is equipped with its own power supply and
a Raspberry Pi Zero 2 W board with an integrated Wi-Fi module
to execute and communicate the ROS node associated to it. This
gripper node is responsible for reading measurements from two

Force Sensing Resistors (FSR’s) mounted on each jaw to actuate
the servomotor that drives the mechanism based on the obtained
information.

The gripper has a total height of 180 and 118 mm width
measured on its body, and total width of 148 mm measured on
the jaw outer faces when the gripper is completely open. These
dimensions prevent self-collision between the gripper and the arm.
As shown in the exploded view in Figure 5, the chassis acts as the
main skeleton of the gripper supporting the electronic components,
the cases that protect them and the sliders for the gear racks.
Regarding the mechanism, a rack and pinion pair is used to
transform the rotating motion of the actuator into linear motion to
each jaw. This mechanism sets a maximum amplitude of 117 mm
between jaws and minimum of 35 mm (a stroke per jaw of 41 mm).
The actuator is the FEETECH high-torque servomotor FS5115M-
FB with position feedback, directly connected to the Raspberry
Pi. This servomotor rotates from its initial position closing the
gripper until the object to be grabbed is detected by the FSR, and
it stops when the force sensed exceeds a force threshold on each
FSR.

The gripper actuation is programmed in a ROS node
(/LeftGripper or /RightGripper) which publishes a change in state
between “object grabbed” and “object dropped” which is set
by the force threshold. The command to open and close is
received by the gripper as a boolean message via a ROS topic
to which the gripper node is subscribed, and the gripper blocks
its motion whenever the connection to the robot is lost. The
communication between the gripper and the robot is further
explained in Section 3.2.4.

The performance of the gripper is tested on various everyday
objects of different sizes, weights andmechanical properties, such as
bottles, boxes, fruits, and anti-stress balls. On each test, the gripper
performs a series of six movements which simulate a task in which
an object is grabbed and displaced as in real world applications
(Figure 6), considering a successful grab when the object is not
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FIGURE 5

Duck Gripper final design with an exploded view of the gripper and its main components.

FIGURE 6

Duck Gripper performance test movements. From left to right, and from top to bottom. The gripper grabs the object on the workstation. The gripper

displaces away from the robot. The end e�ector rotates 90◦ clockwise. The gripper displaces toward the robot. The end e�ector rotates 90◦

counterclockwise. The gripper opens to release the object.

dropped nor damaged throughout the entire test and when the
correct ROS messages are sent. Various thresholds are selected
increasing the force required to grab, and 10 tests are performed
for each object and threshold obtaining the results in Table 1. The

value with highest grab success rate across all objects is selected as
the standard configuration of the gripper.

In the final gripper configuration, the gripper has a total weight
of 0.49 kg, it has a grab capacity of objects up to 1.20 kg without
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TABLE 1 Grab success per object type and weight for di�erent force thresholds.

Objects Weight (g) Threshold (V)

0.25 0.5 1 1.5 2 2.5 3

Anti stress ball 20 10 8 8 10 10 10 8

Uncooked egg 57 10 10 10 10 10 10 10

Rigif 3D printed bottle 100 10 10 10 9 10 10 10

Apple 157 10 10 10 10 10 10 10

Half-full 1L water bottle 500 2 4 10 10 10 10 2

Cardboard box 815 1 3 10 10 10 2 0

Filled 1L water bottle 1.025 0 0 0 4 10 10 0

Glass jar with water 1.500 0 0 0 0 0 0 0

dropping the object, and its battery life ranges from 2 to 9 h
depending on use (4 h recharge time). These specifications aremore
than adequate for its final use together with the robot, which is
further shown in Section 4.1. Two identical models of the Duck

Gripper are developed and mounted on the left and right robot
arms.

3.2 Functioning modules

The robot, as mentioned above, is modular, so each of its
parts can work independently. Each of the physical modules has
a software module assigned to it that characterizes its operation.
These modules have to be connected to each other for their
coordinated operation. In addition, the robot can be connected
with other robotic devices to work together. A detailed description
of these features is given in this section.

3.2.1 Vision software
In order to perform any task in an environment, obtaining

feedback is imperative. Humans, for example, use their five senses:
sight, hearing, smell, taste, and touch, to perceive the world
around them. When it comes to physically interacting with the
environment, we tend to be guided primarily by the senses of
sight and touch. Following this inspiration, in order to be able to
physically interact with its environment and successfully carry out
manipulation and navigation tasks, a robot needs to be equipped
with a perception system analogous to the sense of sight.

We have developed different algorithms to provide the
perception system the ability to obtain visual information from the
environment. In the case of the RGBD camera, we have focused
mainly on three key developments: the detection and tracking
of relevant human body points, the detection and localization of
daily objects, as well as the extraction of point clouds of objects
of interest. For the LiDAR sensor, our algorithms focus in the
construction of high-level maps and the detection of reflective
surfaces.

Our proposal for the detection and tracking of relevant human
body points is made using the Google’s algorithm Mediapipe
presented in Lugaresi et al. (2019) and Zhang et al. (2020).

This algorithm tracks several points of the human body in pixel
coordinates, then making the pixel correspondence to the depth
frame captured by the RGBD camera, the pose information of
the human body points can be obtained. With this information
the robot is able to perform tasks such as social navigation and
learning from user, explained in detail on Sections 3.2.2 and
3.2.3 respectively. To perform the detection and localization of
daily objects, our solution combines information from the two
data streams of the RGBD camera, that is, RGB and depth data.
This is done by using Deep Learning techniques involving the
detection and segmentation of objects in the RGB image. For that
purpose, we use You Only Look Once (YOLO) Redmon et al.
(2016), a state-of-the-art, real-time object detection algorithm,
whose main advantage is that it uses features from the entire image
to predict each bounding box and is able to make all the predictions
simultaneously, allowing an object detection with high speed and
average precision. In this case, we use a recent version that performs
instance segmentation, specifically the Ultralytics’s YOLOv5x-seg
network that has a mean average precision in masks estimation
(mAPmask) of 41.4% in COCO dataset (Ultralytics, 2022). This
segmentation provides a mask for each detected object, that is used
to extract its center point, calculating its centroid with classical
computer vision techniques. Then, with depth information, the
distance between the object center and the camera is determined.
Finally, by applying coordinate transformations, the actual position
of the detected objects in relation to the robot base is obtained.
Similarly, we developed another algorithm that is used to extract
point clouds of the detected objects, which allows for a more
precise localization. Both processes start from the same detection
in the RGB image, using the same network. But in this case, the
segmentation points provided by the instance segmentation are
filtered out and extracted from the point cloud resulting from the
stereoscopic vision of the sensor, which captures the real three-
dimensional shape of the object. This process can be seen in
Figure 7A. To state that this technique is the best for an accurate 3D
object localization, we performed some tests with different objects
(smaller objects in workspaces like bottles and larger objects like
chairs or sofas) and the following methods: region growing (RG),
LCCP, grab cut (GC) and instance segmentation (INST). In Table 2
there is a summary of the results obtained using various metrics. It
was obtained that all methods have better results with workspace
objects, except Instance Segmentation that provides the best results
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FIGURE 7

(A) Example of Point Cloud Segmentation presented in Mora et al. (2023b). Using the RGBD camera, the robot take a RGB image and a point cloud as

input. Process the image with YOLO, then extract the mask of the object. Finally, projects the mask onto the point cloud and filter outliers, obtaining

the segmented point cloud of the object. (B) Example of Detection of reflective surfaces based on intensity presented in Mora et al. (2023c). In this

case, the robot takes the input from the LiDAR sensor, but in this situation the measurements fails, making an analysis of the intensity values for each

points during mapping, these errors can be solved. To do that, in the analysis of the intensity values a threshold is calculated. With this threshold into

the SLAM algorithm, all the points over are discarded, obtaining a final map without noise.

in both and in almost all metrics. This research was presented in the
paper (Mora et al., 2023b) where we discuss all these techniques in
detail.

For the construction of high-level maps we have develop an
algorithm that uses the 3D information given by the LiDAR
sensor. This valuable information makes possible to better identify
the occupied an unoccupied areas, even in complex situations
for mapping algorithms such as chairs or tables. Section 3.2.2

provides a detailed description of this process. Although the
information given by the LiDAR sensor is highly relevant for
mapping algorithms, it can also introduce measurement errors.
This failure happens when the surface material is reflective, since
projected raysmay not even strike the sensor back. To prevent these
errors on the final map, the solution consist of the detection of the
intensity peaks and filter those points that exceed a threshold, as
shown in Figure 7B. To extract the value of this threshold, we make
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TABLE 2 Performance metrics for the four proposed methods.

Time (s) IoU CD (m) Distance (m)

RG
0.0599± 0.0105 0.5808± 0.2623 4.9550± 10.2449 0.0327± 0.0426 Workspace

0.4415± 0.2291 0.4512± 0.2243 997.7513± 841.9354 0.2085± 0.1225 Larger

LCCP
0.0058 ± 0.0044 0.6042 ± 0.3363 7.7770± 10.8200 0.0489± 0.0872 Workspace

0.0383± 0.0217 0.4551± 0.2591 704.7949± 522.7520 0.2250± 0.1773 Larger

GC
1.0789± 0.1589 0.5076± 0.2330 5.0067± 2.8707 0.0326± 0.0373 Workspace

2.3043± 1.3372 0.4525± 0.2566 600.1952± 490.6789 0.1934 ± 0.1631 Larger

INST
0.0070± 0.0027 0.5246± 0.2391 4.4195 ± 3.5965 0.0263 ± 0.0302 Workspace

0.0124 ± 0.0083 0.4763 ± 0.2038 459.2447 ± 425.6846 0.2195± 0.1367 Larger

Bold numbers indicate which method obtained the best values for the proposed metrics.

several tests with different incident angle, lighting conditions and
distance for various surface materials. In this work, glass, metallic
and marble surfaces are considered as reflective. Painted walls
are treated as non-reflective surface. During the test, we observe
that there as gap on the intensity measurement between reflective
and non-reflective surfaces. The peaks of this measurements are
collected in Table 3. From this results, it is obtained that the
threshold must be over 2,000 units, because all reflective surfaces
are above this value, while painted wall intensity peaks are kept
below this value. This solution was presented in Mora et al. (2023c)
and is used as filtering step in other mappings algorithm to get
better results.

3.2.2 Environment mapping and navigation
Just like people, robots need to know where they are in order to

be able to perform activities in the environment and interact with
it. In an initial stage, when accessing an unfamiliar environment,
people capture information from the environment so that it is
familiar to them thereafter. This is done by robots as well and is
known as mapping. The result of this task is a map with relevant
information of the environment. In our case, it is important that
this representation is robust and secure for applications to be user
friendly. In addition, it must have several levels of information,
from the lowest to the highest, to facilitate communication with
people.

ADAM features a low-level geometric mapping algorithm
based on the Ouster 3D sensor. From the 3D spatial information,
we propose the construction of a robust map in which the complete
geometry of the objects is considered. Thanks to the position of the
sensor (on top of the robot), objects such as tables can be mapped
in their entirety, not just a part as might be the legs, so the model
is more faithful to reality. In addition, reflectivity information is
integrated, so surfaces such as glass or metal walls are detected and
filtered. For this purpose, an algorithm has been developed in which
3D spatial information from the laser scan sensor and intensity
information is mathematically analyzed and used to define a sensor
profile, where information is projected onto the 2D floor plane. A
sensor profile is extracted for every 3D scan that is captured, so
for every data capturing step, there is a corresponding 2D sensor
profile. Then, 2D data is merged using a recursive Bayesian filter
modeled as a Markov Random Field of order 0 to create the

TABLE 3 Intensity peaks measured on reflective and non-reflective

surfaces.

Glass Metal Marble Painted
wall

Min peak 6.502 3.760 2.864 1.173

Max peak 8.749 4.987 4.472 1.681

final map, meaning that each cell in the map is estimated as an
independent variable (Mora et al., 2023a).

However, geometric maps are difficult for people to interpret.
When a robot receives a command from a user, it is not in
geometric coordinates. The command is usually related to a
room in which to perform a task, such as “go to the kitchen”
or “go to the bedroom,” Therefore, a map closer to the way
people partition their environment is needed. By applying Voronoi
diagrams to geometric maps, the environment is partitioned into
rooms, creating a topological map in which the environment is
identified with a graph. Voronoi diagrams partition free space into
regions based on proximity. By looking for the regions of the
diagram closest to occupied areas, it is possible to identify narrow
passages. Other works have already proposed to use these diagrams
for partitioning the environment. Our novelty is applying Voronoi
diagrams not only in free space but also in occupied space. While
diagrams from free space indicate where narrow zones are found,
those extracted from occupied spaces indicate protruding areas.
By combining both approaches, narrow passages are effectively
found (Gonzalez et al., 2022; Mora et al., 2022a). Once rooms
are clearly differentiated, they can be labeled according to the
observed objects inside it. By using object-room co-occurrences,
which indicate how probable it is to find a certain object inside a
room, topological rooms are labeled into room types. A summary
on how the proposed maps are constructed and used is shown in
Figure 8.

Once the maps are available, the robot uses these
representations to navigate the environment. Given the social
nature of the robot’s applications, where it must assist users,
it is important to ensure safety during movement. One of the
most representative algorithms of the ADAM robot that we have
developed is social navigation. This algorithm has been designed to
not only prevent the robot from colliding with dynamic elements
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FIGURE 8

ADAM’s mapping and navigation capabilities. The 3D LiDAR is used to obtain spatial and reflectivity information, turning into a 2D geometric map

with whole object shape and reflectivity awareness. Voronoi diagrams are applied to extract the topological structure of the environment. With that

information, a topological path is planned, containing a sequence of rooms (green) and doors (blue) to be traversed. Social navigation is performed in

rooms, avoiding people’s personal space. Doors are traversed using a low-level strategy using the 2D LiDAR information.

TABLE 4 Comparison of results from selected shapes from the LASA (2D) and RAIL (3D) datasets.

Name
Fréchet SSE Angular

Elastic
map

FML EFML Elastic
map

FML EFML Elastic
map

FML EFML

2D

DoubleBendedLine 0.094 0.165 0.090 0.071 0.295 0.070 0.285 0.397 0.271

Heee 0.106 1.000 0.347 0.065 0.471 1.000 0.385 0.934 1.000

Rshape 0.131 0.173 0.131 0.081 0.105 0.083 0.492 0.626 0.482

Spoon 0.102 0.133 0.102 0.057 0.099 0.054 0.480 0.464 0.454

WShape 0.143 0.285 0.132 0.172 0.481 0.179 0.762 0.883 0.705

3D

Pushing 0.024 0.026 0.019 0.083 0.314 0.071 0.533 0.561 0.540

Reaching 0.032 0.023 0.021 0.041 0.049 0.038 0.553 0.576 0.553

Pressing 0.027 0.021 0.017 0.232 0.384 0.147 0.557 0.571 0.557

Bold numbers indicate which method obtained the best values for the proposed metrics.
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but also to respect the users’ personal space. In this way, the robot
is not only safe but also comfortable to use. For this application,
the topological map is first used to calculate the sequence of rooms
and doors that the robot will have to pass through. Once calculated,
two different navigation strategies are used depending on whether
the robot must traverse a narrow passage or navigate a wide area.

In the first case, the robot should follow a straight line to cross a
passage, but due to irregularities in scenarios such as floor bumps,
it robot tends to leave path. Then, the 2D LiDAR on the mobile base
is used to adjust its pose with greater precision. This is essential, as
the diameter of ADAM’s base is of considerable size, leaving little
clearance between the robot and the door frame, increasing the risk
of collision. If the measured distance is smaller on one of the robot
sides, an angular velocity is added with opposite direction until the
error is compensated. The video https://youtu.be/BAvnfvSnMmo
presents the operation of the algorithm generated for traversing
narrow passages.

In the second case, the robot navigates over a wider area.
The path that must be followed in a room is calculated by Fast
Marching Square. This method is based on the way in which light
is propagated in space, which applied to an occupancy grid map
results into a matrix where each cell indicates the arrival time of
the wave. This matrix is also known as velocity map, and it will
serve as an indication of how fast the robot can move on each
part of the map. This algorithm is capable of finding the shortest
path on the velocity map while optimizing speed, that is to say,
time. Some major highlights of this method are the capability of
finding the fastest possible path, being smooth and avoiding local
minima. In addition, if an obstacle that was not previously included
in the map is encountered by the perception system, it is included
and the path is recalculated. As a social component, the robot
is able to detect the pose of the people around it. To do so, the
skeleton detection method MediaPipe is applied on the RGB image
obtained from the RealSense camera. By additionally including
depth information, the person is located with respect to the robot.
Then, their personal space is modeled with a Gaussian Mixture
Model, where the space is larger toward the direction the person
is looking at. This information is merged into the velocity map by
applying the Haddamard product. In this way, when recalculating
the path, the robot will not enter this area, being more user friendly
than other traditional navigation methods (Mora et al., 2022b).
A video of the proposed method is presented in https://youtu.be/
qCg3jC__fO4 and a summary on how the navigation strategy is
executed is shown in Figure 8.

3.2.3 Manipulation learning
In the resolution of everyday tasks in the home, humans

have developed a great ability to perform them regardless of their
complexity. These skills have “tricks” that each user can have to
perform a certain task in an optimal way in their environment.
The generalization and programming of these processes is highly
complex for a robot, as the tasks they face are different, the
objects are manipulated in more or less complex ways and the
environments in each home are adapted to the users.

In order for ADAM to be able to adapt to different types
of tasks, objects and environments we have decided to make

use of Imitation Learning (IL), also known as Learning from
Demonstration (LfD). In broader terms, IL represents a method
for acquiring and honing new skills by observing these skills being
performed by another agent. In the context of robotics, IL serves as
a technique to simplify the exploration of complex search spaces.
When exposed to either successful or unsuccessful instances, it
allows for a reduction in the search for potential solutions. This
can be achieved by either commencing the search from a observed
effective solution or, conversely, by eliminating what is recognized
as an unsatisfactory solution from the search space. IL provides an
inherent approach to train a robot, with the aim of reducing or
even eliminating the need for explicit and laborious programming
of a task by a human operator. As a result, these types of methods
presents a “intuitive” way to program a robot, designed to be
accessible to individuals without extensive technical expertise. The
use of this type of learning has been applied to different tasks
within assistive robotics for elderly people as can be seen in Joshi
et al. (2019) where a work to help elderly people to get dressed
is presented or in the work of Laskey et al. (2017) where an IL
application is presented to make the bed in a robust way by means
of camera-arm coordination.

The ADAM robot has therefore served as a testing ground
for different Imitation Learning techniques and algorithms for
solving tasks in the home environment. Firstly, we focus on solving
the most commonly used manipulation tasks in the domestic
environment: reaching, pushing and pressing. The combination
of these sub-tasks allows us to generate more complex tasks
such as placing objects on a table or the ability to manipulate
household appliances for cooking tasks (e.g. putting a glass in
a microwave and turning it on). For this process, a proprietary
imitation algorithm, FastMarching Learning (FML), was developed
and presented in Prados et al. (2023b). This algorithm is based
on the use of velocity caps generated by Fast Marching Square
(FM2) which are modified by user demonstrations. An execution
of this method is presented in https://youtu.be/_sklRg0NCM8. In
addition to this, modifications have been made to this algorithm
using its computational advantages such as the absence of local
minima or that it is always able to return a possible solution. These
modifications make use of the FML algorithm in conjunction with
elastic maps, which allow better fitting of the data estimated by this
algorithm, thus allowing constraints to be added to the tasks, such
as additional grip points or objects to be taken into account that
were not previously estimated in the generated demonstrations.
The velocity maps generated through FML allow the paths learned
by demonstrations to be probabilistically marked, thus encouraging
the generation of optimal solutions. If we add to this the use of
elastic maps, we generate not only an imitation learning algorithm
that generates optimal paths, but that can be easily modified by
means of spring meshes that “pull” the solutions to adapt them
to certain critical points such as relevant points through which the
solution has to pass (for example to grab objects that did not exist in
the demonstration) or obstacles that have to be avoided. To evaluate
the efficiency of the Elastic-FMLmethod, tests have been performed
using the LASA (Khansari-Zadeh and Billard, 2011) and RAIL
(Rana et al., 2020) datasets which hav e reach, pull and push task
demonstrations. The results (Table 4) show that the union of both
methods generates better results in terms of Frechet’s evaluation
(which measures spatial dissimilarity), sum of squared error (SSE),
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TABLE 5 Comparison for the pick-and-place skill between EFML and

several other LfD methods.

Frechet SSE Angular Jerk

EFML 0.484 0.113 0.852 0.904

CorrDMP 1.000 1.000 1.000 1.000

GMM/GMR 0.866 0.096 0.831 0.984

ProMP 0.991 0.091 0.787 0.992

Bold numbers indicate which method obtained the best values for the proposed metrics.

which measures temporal and spatial dissimilarity and the angular
distance which measures the difference between the demonstration
and the result.

In addition to these tests, a comparison of Elastic-FML with
other LfD representations was also performed (Table 5). These
representations include Correlated Dynamic Movement Primitives
(CorrDMP), Gaussian Mixture Models with Mixture Regression
(GMM/GMR), and Probabilistic Movement Primitives (ProMP).

This table reveals that EFML excels over alternative
representations in specific categories, notably in Fréchet distance
and jerk, with jerk representing the total jerk of the reproduction.
Moreover, EFML demonstrates comparable performance to other
methods in terms of SSE and angular distance metrics. Notably,
the EFML reproduction exhibits lower jerk than its counterparts,
signifying that it facilitates smoother and safer execution on real
robots. This comparative analysis underscores EFML’s ability to
outperform other LfD algorithms. An example of the solution
provided by this algorithm is presented in Figure 9A and is also
presented in a video: https://youtu.be/TiMh-ilXh8g

The ADAM robot accomplishes another task, which is the act
of sweeping. To achieve this, a combination of the FML algorithm
and Task Parameterized Gaussian Mixture Models (TPGMM)
has been employed (Calinon, 2016). The application of TPGMM
allows us to estimate various initial and final orientations for
the sweeping process. Generating new configurations for this task
can be challenging, as TPGMM requires a substantial volume of
data. Consequently, we have developed an algorithm to address
this issue in the resolution of tasks, such as the sweeping task.
The algorithm is based on a modification of the previously
described FML algorithm, which we use to generate synthetic data
solving sweeping tasks in a two-dimensional environment. These
synthetic demonstrations must be at least as effective as those
generated by humans. Therefore, through a cost function based on
Wasserstein distance measurement (which allows us to quantify the
disparity between human and synthetically generated data), we can
selectively choose only those data points that are as good as human-
generated ones. This enables us to generate a large amount of data
with few human interactions, facilitating the creation ofmuchmore
optimal learning models for the resolution of parameterized tasks,
such as area sweeping. Figure 9B presents a brief example of that
process. To assess the efficiency of this method compared to other
methods that generate synthetic data, an environment has been
established where the length of the generated solution (with shorter
and more direct solutions considered better), the endpoint error
(measuring how close it gets to the actual endpoint), and constraint
satisfaction (evaluating collisions or impossible movements by
the arm in task execution) have been measured. The developed

algorithm has been compared against RF + Noise (Zhu et al., 2022)
and αTP-GMR (Sena et al., 2019), and the results can be observed
in Table 6.

The RF + Noise algorithm exhibits significant constraint
satisfaction errors, particularly when dealing with orientations
different from those in the demonstrations, due to collisions. In
contrast, both the αTP-GMR algorithm and the one introduced in
this paper do not encounter this issue. Both algorithms produce
valid and closely aligned solutions. However, when evaluating
results based on path length, our algorithm outperforms the αTP-
GMR algorithm. Specifically, the average length of the solution
paths generated by our algorithm is considerably shorter than
those produced by the αTP-GMR algorithm, indicating that our
approach yields more optimal results in terms of path length. An
example of that algorithm is presented in this video: https://youtu.
be/pD1HdoWJmfs.

Another relevant and very important factor in the imitation
learning process pertains to data acquisition. To facilitate user
engagement with these data, we have devised two distinct
approaches for this purpose. The first approach involves kinesthetic
data acquisition (presented in Figure 10A), wherein the robot’s
own arm is employed in a gravity compensation mode, enabling
control by the operators. This approach empowers the user to
directly consider the inherent limitations of the robot’s arm while
performing tasks. Data is collected as the user manipulates the
arm for the required task and subsequently subjected to filtering
to eliminate potential redundancies. Despite its effectiveness there
may be users who have limitations in moving the arm, therefore
we have developed a mimicry algorithm that, by using the RGB-
D camera of the ADAM robot, generates movement data for
the arms taking into account the orientation and position of the
relevant points of the arm (shoulder-elbow-wrist). The created
algorithm Tracking Algorithm for Imitation of Complex Human
Inputs (TAICHI) presented in Lopez et al. (2023) and Prados et al.
(2023a) allows the generation of arm movement data that is safe
with itself and with the environment, easy to take by the user and
without the need to have the robot active for it, as it makes use
of simulations to check its effectiveness. A graphical explanation
of the method is presented in Figure 10B. The TAICHI algorithm
begins with a user detection process using the RealSense camera
(presented in Section 3.1.1), and utilizes MediaPipe (presented in
Section 3.2.1) to estimate the person’s skeleton. A Gaussian filter is
applied to reduce noise in the camera data. The algorithm focuses
on characteristic points of the human arm (shoulder-elbow-wrist).
As the UR3 arm used in the robot ADAM is non-anthropomorphic,
an approximation is made using a cost function. This function
evaluates the distance between the robot’s elbow and the human’s
elbow, seeking to minimize this distance. It takes into account
relevant factors such as wrist orientation, movement continuity,
and the absence of collisions with both itself and the surrounding
objects. The algorithm thus converts human configurations for a
task into a series of ADAM robot configurations, directly adapting
them to its characteristics. The algorithm has been tested in
both simulation and real robot movements, as demonstrated in
the following video: https://youtu.be/rSynqgXa_Yc. To assess the
efficiency of the TAICHI algorithm, a validation was conducted
based on the error in position and orientation obtained for various
demonstrations performed by individuals of different heights and
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FIGURE 9

(A) Example of FML presented in Prados et al. (2023b). The FML algorithm allows the generation of the velocity field based on the demonstration data

taken directly from the arms. The modification of FML by means of elastic maps additionally allows to take into account constraints such as grabbing

a glass that we previously did not have in the scene. (B) Example of a sweep task using FML and TPGMM. In this case the generation of the

demonstrations is done by moving the arm with the broom but new synthetic data is generated and compared with the human data in order to have

a greater number of demonstrations for the application of parameterised tasks. This allows the sweeping task to be generalized to previously

undemonstrated data.

TABLE 6 Comparison between the three algorithms for di�erent initial and final frames.

Trajectory lengths Trajectory end-points errors Constrains satisfaction errors

Mean (m) Std. Mean (m) Std. Mean (m) Std.

RF + Noise 3.98 ±0.87 0.080 ±0.00 18.75 ±2.81

αTP-GMR 5.73 ±1.40 0.040 ±0.00 1.00 ±0.00

Our method 2.29 ±0.53 0.038 ±0.00 1.00 ±0.00

Bold numbers indicate which method obtained the best values for the proposed metrics.

physical constitutions (Table 7). As observed, the results indicate
that the error in position and orientation remains consistently low,
demonstrating that the algorithm can effectively generalize from
any human arm to the ADAM robot arm.

3.2.4 Communication between modules and
other robotic platforms

Once the modules that make up the ADAM robot have been
presented, it is important to highlight the need for all of them
to be properly communicated with each other in order to be
able to perform complex tasks. The environment in which the
described modules have been programmed is ROS, a widely used
middleware in the robotics world that provides the necessary tools

for different robotic elements to communicate with each other.
Each of the different modules and algorithms developed on the
robot ADAM are independent and use the ROS system solely
for module-to-module communication. Therefore, each algorithm
takes into account specific safety criteria for each type of task and
communicates it through topics to the rest of the modules when
necessary. This communication capability allows, for example, the
vision module to inform the manipulation module through ROS
about the location of dirt during a sweeping task, enabling the
manipulation module to act on that element and communicate arm
position and orientation continuously. This ensures that, despite
being modular, the system is always communicating, and the user
can be aware of the actions and values each module is taking.
Depending on the task ADAM is to perform, the robot modules
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FIGURE 10

(A) Example of kinesthetic data acquisition for sweeping and grasping tasks. The arm works in gravity compensation so it is easy to move it and

record data directly from the arm itself. (B) Example of the logic used by the TAICHI algorithm for user data collection by RGBD camera presented in

Lopez et al. (2023) and Prados et al. (2023a). The algorithm detects the user and his hands, tracks and filters the noise and then optimizes the human

configuration to the non-anthropomorphic robotic arm by means of the POSE of the shoulder, elbow and wrist.

TABLE 7 Position and orientation errors of TAICHI algorithm for di�erent tests.

Max outlier error Mean error

x (m) y (m) z (m) 2 (rad) x (m) y (m) z (m) 2 (rad)

Test 1 0.0230 0.0310 0.0241 0.1530 0.0014 0.0018 0.0014 0.0097

Test 2 0.0233 0.0311 0.0207 0.1147 0.0024 0.0022 0.0017 0.0084

Test 3 0.0294 0.0177 0.0156 0.0551 0.0050 0.0028 0.0027 0.0062

Test 4 0.0330 0.0401 0.0274 0.2011 0.0100 0.0052 0.0610 0.0146

Test 5 0.0350 0.0300 0.0170 0.1316 0.0036 0.0031 0.0030 0.0175

Test 6 0.0260 0.0160 0.0190 0.1543 0.0019 0.0021 0.0032 0.0187

Bold numbers indicate which method obtained the best values for the proposed metrics.
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must operate in a specific order. For this purpose, a module
sequencer is used to switch between modules at the appropriate
time. The scheme of the proposed communications is shown in
Figure 11A. As an example, the task of bringing a bottle to the
user is used. First, the robot must navigate to the kitchen, so the
“MOBILE BASE” module is activated. By using maps, ADAM is
able to navigate to the room labeled as “kitchen.” Once there,
the “VISION” module is in charge of detecting the object and
returning its pose information so that the “MANIPULATION”
module can thenmove the robotic arms to the corresponding point.
The “GRASPING”module is activated to grab the object and finally
the “MOBILE BASEmodule is activated again to return to the place
where the user is to deliver the bottle.

Thanks to the communication features of ROS, our robot is
also able to work together with other platforms. Since ADAM is a
physical assistive robot, it can work in coordination with cognitive
robots to facilitate communication with the user. A scheme of
the proposed architecture can be seen in Figure 11B. First, ADAM
can receive a command indicating the task to be performed from
another robot, such as the previously described task. The task is
decomposed into the sequence of modules that must be activated
and deactivated in order to perform it. Once this task is performed,
ADAM sends a signal indicating that the task is complete. Finally, in
the case that the task involves the need to transport an object to the
user, the robots go to a delivery point where the object is exchanged.

4 Applications in real environments

The ADAM robot has been tested in various applications in
everyday life and in projects involving users. The tasks it has
demonstrated proficiency in within the everyday context include
object sweeping, object rearrangement, and the preparation of
simple meals, delivering them to the user by navigating safely
through the environment. This section presents two specific
examples of such tasks. Firstly, a specific daily task involving
the arrangement of necessary utensils for eating is described,
showcasing the use of all the modules and communication between
them as presented in this work. Secondly, a collaborative project
with the University of Cartagena (Spain) and the University of
’́Orebro (Sweden) is outlined. This project introduces a multi-
robot system in an assisted home environment to support elderly
individuals in their daily lives. As a specific example, the project
aimed at having the ADAM robot prepare a simple meal and deliver
it to the user’s position.

4.1 ADAM the waiter: table setting task

Once they are operational, the social navigation, vision and
manipulation modules are tested jointly to complete a real home
task which consists on setting the table. The environment of this
task consists of a room with two tables 4 m apart from each other.
Table A where the objects (a cup and a water bottle) are initially
located, and table B as the one to be set.

For this purpose, it is created a master node which centralizes
the flow of information between the individual modules and
controls the execution sequence of 4 different actions (navigation,

object grasp, object drop and water pour) which are associated to
robot’s modules, as detailed in Section 3.2.4. In navigation, the robot
executes the FM2 algorithm to displace between tables A and B
avoiding collisions with any room objects detected using the laser
sensor on its base. For the object grasp action, the robot identifies
the object to be grasped and obtains the grasp point which is later
sent to the FML algorithm as the target point for the end effector
on the robotic arm. When the arm reaches the target position, a
signal is sent the gripper to close its jaws and grab the object. To
drop the object, the gripper opens and the robot arm returns to rest
initial position. The water pour action begins by identifying a cup
and obtaining its location which is later sent to the manipulation
algorithm to move the robot to the target position above the cup
and rotate the end effector to pour the water.

These four actions are combined as shown in Figure 12 to
complete the task. The routine starts with the robot in its initial
position and moving toward table A where the cup and the bottle
are placed. The robot then identifies and grabs the cup and once
the cup is held secure, the robot raises its arm and moves toward
table B. The cup is then placed in table B next to the cutlery and
returns to table A to grab the next object. Again, the robot identifies
the grasping point of the bottle and closes the gripper to grab it.
The robot carries the bottle to table B and identifies the position of
the cup previously placed moving the arm with the bottle above
it and turning the gripper to pour the water. Lastly, the robot
places the bottle on table B and displaces to the initial position
to end the task. Thus, this experiment is considered as successful
when the base arrives correctly to the pick-up position and the final
position, objects are held secure without being damaged during all
trajectories, when the objects are placed at the correct locations and
the robot modules send the corresponding messages to achieve a
correct and fluent communication. In order to obtain the success
rate of the table setting task, we have carried out 6 experiments with
different positions and orientations of objects as well as objects of
different weights and in different rooms. In all cases, the algorithm
was able to successfully complete the manipulation part, reaching
the required position of each object, grasping the objects and not
letting them stray, and the navigation part, reaching both the
pick-up point and the positioning point of the objects.

An example of one of this experiments is presented in https://
youtu.be/9KxwCN91rDA?si=B96lY7wxvRw2ppb2. This video
demonstrate the correct individual operation of the vision,
navigation and manipulation algorithms implemented, as well as
the fluent and efficient communication between them to complete
the table setting task.

4.2 HIMTAE project

The Heterogeneous Intelligent Multi-Robot Team for
Assistance of Elderly People (HIMTAE) project (Barber et al.,
2022a,b) was a collaboration with the University of Cartagena in
Spain and the the University of ’́Orebro in Sweden, where the
aim was to present an application for the care of elderly people in
an Ambient Assisted Living (AAL) by monitoring and assisting
them in the tasks they require. The main idea was to prove that
the ADAM system developed as well as the assistance and home
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FIGURE 11

ADAM robot communications: (A) Communication schematic between the robot modules. A total of six modules make up the operation of the

robot: two for the grippers, two for the arms, one for the mobile base and one for vision. The red arrows indicate the information sent from the

controller to the modules and the black arrows from the modules to the controller. (B) Communications with another robot. ADAM receives a task,

which is decomposed into subtasks assigned to each of its modules. Once executed, ADAM communicates with the other robot to indicate that it

has finished and establishes a meeting point in case it needs to exchange objects.

automation systems presented could be useful with real users in
their homes. For this purpose, the project was based on three
different parts explained below and presented visually in Figure 13:

• Domotic system: the homes of the elderly were adapted
with domotic systems that allowed them to control the
temperature, lights or blinds of the home.
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FIGURE 12

Joint operation of the functioning modules of the ADAM robot to set the table as a complete home task. The robot performs four di�erent actions

(navigation, object grasp, object drop, water pour) initiated by the master node which communicates the di�erent robot modules.

• Assistive robotics for the elderly: a robot was created through
the Robwell project which was responsible for establishing an
empathetic relationship with the elderly user as well as serving
as a node to send orders to both the home automation system
and the ADAM robot to carry out physical tasks. Additionally,
users had a bracelet that monitored their physical and mental
states and were communicated to Robwell, which was in
charge of communicating or reminding them to drink water
according to their specific needs.

• Assistive robot for physical tasks: this part was carried out by
the ADAM robot as part of the HEROITEA (Heterogeneous
Social-Mobile Manipulator Robot Intelligent Teams for
Elderly-People Assistance) project. The robot was constantly
in communication with the Robwell robot which, depending
on the user’s needs, sent them to ADAM so that it could
carry them out. In this project ADAM was limited to solving
tasks in the kitchen, focusing on preparing dishes for the
users. Once it was ready, ADAM took the food to Rowell
who was responsible for giving it to the users. This video
present the kitchen task of the ADAM robot: https://youtu.be/
iV0hNSYEhVM.

In this project, satisfactory results were presented in the
different fields of study. Firstly, the elderly people who used the
multi-robot system were highly satisfied with the domotic systems,

the interaction with the assistive robot and with the ADAM robot
that helped them to prepare certain food in the kitchen. Secondly,
it could be observed that the use of a multi-robot system was
highly efficient because while the assistive robot was constantly in
the human environment and interacting with the user, the ADAM
robot could be able to perform the task in parallel. This made it
possible to avoid situations of frustration on the part of the user
if the task was delayed. Finally, we were able to directly interact
the ADAM robot with real users, as the users could enter the
kitchen while the robot was performing a task, and the ADAM
robot could be able to interact with the user while the user was
performing a task. Although the users tested were highly satisfied
with the tasks performed by the robots (with an average value of
93% satisfaction), these results have been taken as tests in controlled
laboratory environments and therefore cannot be extrapolated to
real domestic environments, where future tests will seek to verify
real satisfaction.

5 Conclusions and future work

This article introduces the ADAM robot, a modular mobile
manipulator robot to provide physical assistance to elderly people
at home. We have shown that ADAM is able to perform everyday
household tasks such as setting the table or cleaning the floor that
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FIGURE 13

General integration scheme of the multirobot system with the home automation system and user control bracelet presented in Barber et al.

(2022b,a). The system is mounted on two di�erent hardware platforms. The user data analysis and home automation control components are

implemented on a Raspberry Pi 4, using communication via MQTT, Zigbee, and Node Red to exchange information and activate system elements.

Communication with the Intel NUC, which serves as the master ROS node, is established through the home’s own WiFi network. This hardware is

responsible for facilitating communication between the two robots, handling user input such as requesting specific tasks in the kitchen, as well as

sharing sensor data, including environment maps necessary for the real-time location of each robot and the user.

can be tedious or complicated for elderly people. Furthermore,
ADAM has the ability to cooperate with other robotic platforms by
communicating with them for tasks where more than one robot is
needed. In addition to this, ADAM has been presented not only as
an elderly care platform, but also as a platform for the development
of new algorithms within the RoboticsLab.

With the current developments, ADAM has reached a
certain degree of maturity in various capabilities such as human
awareness, learning from the user, detection and recognition of
the environment and navigation and comprehension of complex
scenarios. These capabilities allow the robot to provide elderly
people with the assistance they need by working safely, accurately
and adapting to them and the environment. However, there are
some issues that can be an impediment to provide a complete
assistance to elderly people. The perception system is fixed so in
certain situations ADAM will not be able to detect specific parts
of the environment. The bimanipulation capabilities of ADAM are
not fully developed and the arms configuration is not optimized.
Therefore, it is essential to solve this issues to improve the assistance
that the robot offers to elderly people.

Future lines of work on the ADAM robot will be related
to hardware improvements and expansions and the development
of new software that allows to better exploit the robot’s
vision, manipulation and navigation modules. This includes the
implementation of a robotic neck to support a head containing the
vision sensors, allowing to automatically adjust the robot’s point
of view, a redesign of the arms to expand its workspace and the
integration of robotic hands to be used in grasping applications
where more precision is required. In order to take advantage of the

capabilities of the robot, future research will also focus on the use of
3D information to generate new environment representations for
safer manipulation and navigation considering a complete model
of the robot and its real time configuration. Lastly, new task
and motion planning strategies will be implemented to deal with
more complex home tasks, which will make ADAM a much more
complete robot companion for elderly care.
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