AUTHOR=Lin Chuang , Zhang Xiaobing TITLE=Fusion inception and transformer network for continuous estimation of finger kinematics from surface electromyography JOURNAL=Frontiers in Neurorobotics VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2024.1305605 DOI=10.3389/fnbot.2024.1305605 ISSN=1662-5218 ABSTRACT=

Decoding surface electromyography (sEMG) to recognize human movement intentions enables us to achieve stable, natural and consistent control in the field of human computer interaction (HCI). In this paper, we present a novel deep learning (DL) model, named fusion inception and transformer network (FIT), which effectively models both local and global information on sequence data by fully leveraging the capabilities of Inception and Transformer networks. In the publicly available Ninapro dataset, we selected surface EMG signals from six typical hand grasping maneuvers in 10 subjects for predicting the values of the 10 most important joint angles in the hand. Our model’s performance, assessed through Pearson’s correlation coefficient (PCC), root mean square error (RMSE), and R-squared (R2) metrics, was compared with temporal convolutional network (TCN), long short-term memory network (LSTM), and bidirectional encoder representation from transformers model (BERT). Additionally, we also calculate the training time and the inference time of the models. The results show that FIT is the most performant, with excellent estimation accuracy and low computational cost. Our model contributes to the development of HCI technology and has significant practical value.