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Fusion inception and transformer 
network for continuous 
estimation of finger kinematics 
from surface electromyography
Chuang Lin * and Xiaobing Zhang 

School of Information Science and Technology, Dalian Maritime University, Dalian, China

Decoding surface electromyography (sEMG) to recognize human movement 
intentions enables us to achieve stable, natural and consistent control in the 
field of human computer interaction (HCI). In this paper, we present a novel 
deep learning (DL) model, named fusion inception and transformer network 
(FIT), which effectively models both local and global information on sequence 
data by fully leveraging the capabilities of Inception and Transformer networks. 
In the publicly available Ninapro dataset, we selected surface EMG signals from 
six typical hand grasping maneuvers in 10 subjects for predicting the values 
of the 10 most important joint angles in the hand. Our model’s performance, 
assessed through Pearson’s correlation coefficient (PCC), root mean square error 
(RMSE), and R-squared (R2) metrics, was compared with temporal convolutional 
network (TCN), long short-term memory network (LSTM), and bidirectional 
encoder representation from transformers model (BERT). Additionally, we also 
calculate the training time and the inference time of the models. The results 
show that FIT is the most performant, with excellent estimation accuracy and 
low computational cost. Our model contributes to the development of HCI 
technology and has significant practical value.
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1 Introduction

Extracting feature information from sEMG signal and converting it into control 
commands is a natural and efficient way of human-computer interaction (HCI). EMG signals 
are generated 50–100 milliseconds prior to the actual movement (Artemiadis, 2012), which is 
characterized by real-time and can reflect the human movement intention. EMG is acquired 
by recording the action potential difference generated during muscle contractions via wearable 
devices, including action potential and noise. Depending on the placement of the electrodes, 
it can be classified as either non-invasive sEMG and invasive intramuscular electromyography 
(iEMG) (Xiong et al., 2021). The sEMG is favor for its capability to provide a versatile array of 
information without harming the muscle, and it is easy of accessibility. sEMG has various 
applications in fields including medicine (Meekins et al., 2008), kinesiology (Vigotsky et al., 
2018), and robotics (Kim et al., 2016).

The hand is a versatile and complex structure (Kapandjl, 1971), with numerous joint angles 
that allow for a wide range of tasks to be executed with remarkable dexterity and precision 
across various contexts. With the progression of technological advancements, prosthetic hands 
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(Cipriani et al., 2011) available in the market have been furnished with 
an increasing number of degrees of freedom (DOF) to cater to 
amputees’ requirements in their daily life endeavors. However, the 
present limitations of human-computer interaction make it 
challenging for prosthetic hands to attain the level of dexterity and 
functionality of a biological hand. Hand amputees continue to face 
challenges in their daily lives, such as difficulties with fine motor 
control and haptic feedback (Ortiz-Catalan et  al., 2015; Chadwell 
et al., 2016).

In recent years, deep learning (DL) (LeCun et al., 2015) techniques 
have rapidly advanced and have been applied in various research 
domains, with great potential in EMG recognition tasks. The 
traditional approach, which relies mainly on manually selected 
features and machine learning algorithms, is referred to as myoelectric 
pattern recognition (MPR) frameworks. In contrast, DL is a feature-
based approach and is a branch of machine learning. DL employs a 
layered model architecture, whereby feature extraction and model 
construction are carried out concurrently. High-level feature data is 
automatically obtained from the hidden layer with no manual 
intervention, enabling an end-to-end learning process (Li et al., 2021).

DL-based tasks for recognizing EMG can be classified into two 
primary types: classification tasks and regression tasks (Bi et al., 2019). 
Classification tasks include gesture recognition problems, while 
regression tasks offer a more fluid and natural approach of HCI, such 
as continuous motion estimation. Methods for continuous motion 
estimation can be  classified as either model-based or model-free. 
Model-based methods consist of kinematic, musculoskeletal, and 
dynamic models. These models rely on a representation of the 
correlation between the EMG signal and the desired movement 
parameters. The parameters get adjusted iteratively to attain the 
desirable performance of the model. At present, researchers typically 
utilize model-free techniques, specifically DL methodologies, that do 
not demand any prior understanding of muscle physiology.

Côté-Allard et al. (2017) propose utilizing a convolutional neural 
networks (CNN) (LeCun et  al., 1989) model based on a transfer 
learning strategy to achieve accurate and consistent operation for a 6 
DOF robotic arm, solving the issue of lengthy training. Liu et  al. 
(2019) utilized an enhanced CNN model to predict knee angles with 
increased accuracy for smooth control of wearable robots. Bai et al. 
(2021) employed long short term memory networks (LSTM) 
(Hochreiter and Schmidhuber, 1997) and CNN models to recognize 
sEMG signals through a multimodal approach in combination with 
EMG imagery. Guo et al. (2021) proposed a long exposure mechanism 
for training a convolutional LSTM neural network to predict 10 joint 
angles with an average PCC accuracy of 0.82 Chen et al. (2023) used 
a decoding scheme that combined two different modalities of 
information, surface electromyography and force electromyography, 
and achieved higher accuracy than using a single modality 
of information.

In this paper, we introduce ‘Fusion Inception and Transformer’ 
(FIT), a neural network that effectively combines inception (Szegedy 
et al., 2015) and transformer (Vaswani et al., 2017) features to achieve 
higher precision, lower computational cost, and faster inference. The 
model employs the inception network’s efficient downsampling 
method and multi-scale design to extract local feature information, 
while utilizing the transformer network’s attention mechanism to 
achieve a uniform modeling of global information. Our approach has 
been validated on the Ninapro dataset and benchmarked against 

LSTM, temporal convolutional networks (TCN) (Bai et al., 2018) and 
bidirectional encoder representation from transformers (BERT) 
(Devlin et al., 2018). The experimental results demonstrate that FIT 
outperforms all other methods.

2 Related work

This section describes three classical algorithmic models for 
processing sequence information: LSTM, TCN, and BERT. These 
models are often used for sEMG recognition tasks.

2.1 Long short-term memory

LSTM (Hochreiter and Schmidhuber, 1997), a type of RNN 
(Elman, 1990), are used for modeling sequential data. Compared to 
traditional RNN, LSTM have a higher memory capacity and can 
capture long-term dependencies, thereby overcoming the issue of 
gradient vanishing in recurrent neural networks. LSTM introduce 
“cell states” as memory units, along with “gating units” structures to 
govern the flow of information and memory updating. Memory 
units can store previous states and determine the updating and 
transferring of cell states based on both present data input and past 
states. The gating unit comprises the forget, input, and output gates. 
The forget gate determines which information to discard from the 
previous state, the input gate regulates the amount of new 
information that the current state receives. The output gate decides 
which parts are forwarded to the subsequent cell state. This allows 
the LSTM to perform better over long sequences. The structure can 
be  seen in Figure  1. The study incorporates an LSTM with two 
layers, each consisting of 128 channels. Subsequently, a fully 
connected layer is added to obtain the estimated values of 
joint angles.

2.2 Temporal convolutional network

TCN (Bai et al., 2018) are an extension of CNN (LeCun et al., 
1989) that captures effective feature information in time series data 
through multiple one-dimensional convolutional layers, while 
utilizing the convolutional features of CNN to achieve efficient 
parallel computation. Unlike traditional CNN, TCN utilize a 
technique called “dilated causal convolution” for their convolutional 
layers. Expansion convolution can expand the receptive field size 
without adding extra parameters in the convolutional layer, enabling 
the processing of long sequential data. The structure can be seen in 
Figure  2. Moreover, TCN utilizes residual connectivity to better 
capture the periodicity and patterns of time series, while avoiding the 
issue of gradient vanishing. TCN can handle various input sequences 
and possesses high generalizability, making it an advantageous tool 
in signal processing applications like speech recognition (Lin et al., 
2021) and myoelectric signal processing (Tsinganos et al., 2019). In 
this study, a 5-layer TCN architecture was utilized with a 
convolutional kernel size of 3. The channels were configured at 32, 
64, 64, 64, and 128. In the final stage, a fully connected approach was 
implemented for the extraction of the last moment features that can 
be used to predict the joint angles.
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2.3 Bidirectional encoder representation 
from transformers

BERT (Devlin et  al., 2018) is a technique for bidirectional 
modeling that constructs itself through stacking encoder components 
of transformer (Vaswani et al., 2017). The self-attention mechanism 
calculates the relationships between sequence elements, allowing for 
comprehensive contextual modeling and enhancing semantic 
comprehension within sentences. BERT finds wide usage in natural 
language processing tasks (Cambria and White, 2014). Unlike the 
hidden layer states in RNN and the positional offsets of CNN that 
characterize word order, the BERT model uses positional encoding 
techniques to understand the sequence’s relationships before and after. 

In our experiment, BERT model consisted of two transformer encoder 
blocks, an embedding layer channel with 128 dimensions, and eight 
heads in the multi-head attention. The predicted joint angle values are 
determined through class token mapping. As shown in the Figure 3.

3 Methodology

3.1 Overview of our model

LSTM and TCN are commonly utilized in sEMG signal 
processing (Simão et al., 2019; Chen et al., 2021). However, when 
sequence length increases, convergence difficulties and significant 

FIGURE 1

The structure of LSTM cell. The Ct, Ht, and Xt stand for cell state, hidden state and input information, respectively. The σ is sigmoid activation function.

FIGURE 2

The structure of five layers dilated causal convolution. The Xt is the information at moment t, and d is the expansion factor.
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regression task fluctuations arise. Real-time performance suffers 
due to the cyclic structure of LSTM, which renders hardware 
acceleration in parallel impossible. TCN uses a convolutional 
structure with a long computational path, while BERT uses a self-
attentive mechanism with a computational complexity that is 
quadratic in the length of the sequence. Despite being capable of 
parallel computation, implementing faster speeds with less 
computational resources is difficult for both TCN and BERT, as 
each layer processes sequences with a fixed sequence length. 
Consequently, we  propose the new network model, FIT, which 
exhibits superior performance.

To enhance accuracy, we employ convolutional kernels of varying 
sizes to capture local feature information in sEMG sequences across 
different scales. Additionally, we integrate the Transformer structure, 
leveraging the attention mechanism, to globally model the sequence 
information. To address the computational complexity of the 
Transformer, which scales quadratically with sequence length, 
we introduce efficient downsampling for sequence length reduction 
and channel dimension increase. We also utilize the inductive bias of 
convolutional neural networks to provide the Transformer with 
sequence position information. For further parameter reduction, 
we initially apply equal-channel convolution and subsequently enrich 
semantic information through splicing operations. In summary, our 
model is designed to comprehensively and efficiently process diverse 
levels of EMG sequence information, with a focus on enhancing overall 
performance and generalization. The model primarily incorporates 
inception and transformer blocks. As shown in the Figure 4.

3.2 Inception block

The Inception block mainly consists of a highly 
efficient downsampling (HED) sublayer and a multi-scale 

convolution (MSC) sublayer. The batch normalization (BN) is 
implemented after the HED, while nonlinear activation exponential 
linear unit (ELU) and the BN operations are applied after MSC. As 
shown in Figure 5 it can be described as follows:

 X Xh i= ( )( )BN HED

 X Xo h= ( )( )( )BN ELU MSC

where Xi is input of the inception block, Xh is output of the HED 
sublayer, and Xo is output of the inception block.

HED is an improved downsampling approach. Formerly, the 
downsampling involved two separate operations: an up-dimensional 
operation on the channel dimension and a down-dimensional 
operation on the size. Attempting first step one and then step two led 
to increased computation, while doing step two and then step one 
resulted in feature loss. Therefore, we adopted a more efficient approach 
utilizing parallel branching same-latitude transformation to decrease 
the parameters. Specifically, a single sample Xi L×C∈   is inputted, 
where the sequence length (the window size of sEMG signal) is denoted 
as L and C  represents the input channel. The inputs are then directed 
into different two branches. One branch comprises a convolutional 
layer with a stride length and kernel size of 2, while the other branch 
includes an average pooling layer with a 2-unit kernel. After completing 

two branching processes, we  obtain two X p
L×C

∈  2 . Finally, 

we accomplish channel upscaling by performing splicing operations to 

obtain Xh
L× C

∈  2
2 .

MSC is to analyze the input by multiple convolutional kernels of 
varying sizes simultaneously to capture features of diverse dimensions. 

FIGURE 3

The structure of the BERT model. The CLS is class token and POS is the is position-coded information.

FIGURE 4

The overall structure of the FIT model. C is for channels set 32 dimensions. L is for sEMG window length set to 200 sampling points.
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These feature maps are then combined in subsequent layers, resulting 
in a more comprehensive feature representation. Specifically,  

we  divide a single sample Xh
L× C

∈  2
2  over the channel to get 

X ,X ,X ,Xh h h h

L×C

1 2 3 4 2 2∈  , inputting them to separate branching 

paths. Except for the final path, which preserves initial essential 
features, all other paths are convolved with filters of varying sizes to 
extract more abstract information. The resulting information is then 

combined on the channel to produce the final output Xo
L× C

∈  2
2 .

3.3 Transformer block

We utilized the transformer encoder module to globally 
model the pairwise sequence information. Each encoder 
contains two sublayers: one for multi-head attention (MHA), 
and one for a fully connected feedforward network (FFN). 
Residual connectivity and layer normalization are incorporated 
into each sublayer. As shown in Figure 5, and it can be described 
as follows:

 X X Xm i i= ( )( ) +MHA LayerNorm

 X X Xo m m= ( )( ) +FFN LayerNorm

where Xi  is input of the transformer block, Xm is output of the 
intermediate MHA sublayer, and Xo is output of the transformer block.

MHA is based on the mechanism of self-attention. The initial 
input Xi L×C∈   undergo linear mapping resulting in acquisition of 
query matrix Q , key matrix K , and value matrix V . To extract distinct 
subspace features, Q , K , and V  are divided into N  heads, like 

Q,K,V
N×L×C

N∈  . The function for attention score calculates how 

similar individual moments are to other moments within the entire 
myoelectricity window. The attention weight is then acquired through 

the use of the soft-max function. The single head output 
H

L×C
N∈ 

 

is then obtained by multiplying the matrix of V . The outputs of N  
heads are subsequently combined into Xh L×C∈   and linearly 
mapped to produce the result Xm L×C∈  . The formula is as follows:

 Q,K,V = X W W Wi q k v, ,( )

 

H
Q K

d
Vi

T

=
×( )













softmax

 X H H Hh N= ( )Concat 1 2, , ,

 X = X Wm h m

FIGURE 5

(A) Inception and (B) Transformer. The structure of FIT block, including one inception block and one transformer block. The num of Conv (num) 
represents the size of the convolution kernel. GELU and ELU are activation functions known as Gaussian error linear unit and exponential linear unit, 
respectively. Additionally, BN and LN refer to batch normalization and layer normalization, respectively.
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Where the weight matrix  W ,W ,W ,Wq k v m
C×C∈  in the two FIT 

blocks, we assigned the values of 4 and 6 to N, respectively, while 
setting d equal to c numerically.

FFN scales the input Xm L×C∈   expansion to X f L× C∈  4 , and 
then passed through a GELU nonlinear activation function to provide 
enhanced semantic information. Finally, after downscaling operation, 
it is return to its original form as Xo L×C∈  . The formula is as follows:

 X X Wf m f= ( )GELU

 X = X Wo f o

Where the weight matrix Wf
C C∈ × 4  and Wo C C∈ ×4 .

4 Experiment

4.1 Data

Ninapro (Atzori et al., 2015) is a publicly available dataset aimed 
at exploring the connection between sEMG, hand kinematics and 
hand strength. It comprises 9 data bases, with second one (DB2) 
offering the most informative movements consisting of 49 diverse 
hand movements performed by 40 intact subjects. Each movement 
was lasted for 5 s, followed by a 3 s pause, completing total of 6 
repetitions. The study used the Delsys Trigno wireless EMG system, 
which employed 12 active dual-differential radio poles to collect 
sEMG generated by muscle activity at a sampling rate of 2 k Hz. For 
kinematic information, a data glove (Cyber-GloveII) equipped with 
22 sensors was mainly used, sampled at 20 Hz and re-sampled to 
2 kHz to maintain synchronization with sEMG signals. The collected 
sEMG signals are used to estimate joint angles recorded by the data 
glove, thus enabling a smooth HCI.

4.1.1 Selection
To encompass a diverse representation of real-life demographics, 

we selected 10 subjects from DB2. The selected group includes 3 
females and 7 males, whose height ranges from 169 to 187 cm with a 
weight range of 58 to 75 kg, and an age range between 23 and 32. For 
each subject, we selected the six most practical everyday gripping 
movements. We  chose 10 joint points, including the proximal 
interphalangeal joint points and the metacarpophalangeal joints, as 
the estimated joints because they are the main active joints in 
grasping maneuvers and are more generalizable. As shown in 
Figure 6.

The datasets from every subject were divided into training and 
testing sets, with a ratio of 7:3. In conducting cross-subject 
experiments, the training set of each subject was combined, and 
validated on a single test set, as well as on overall test sets, which were 
taken from the test set of each subject.

4.1.2 Preprocess
The root mean square (RMS) features can assess the muscle 

contraction strength objectively (Arabadzhiev et al., 2010). To extract 
the effective information, we use a 100 ms size with a 0.5 ms sliding 
window. The RMS features are then μ-law normalized for data 
analysis. The formula is as follows

 
RMS 1

0

1
2= ( )

=

−

∑N
x

t

N
t

 
F x x

x
t t

t( ) = ( )
+( )
+( )

sign
1
1

ln

ln

µµ

µµ

where, N  is the window size, xt  is the EMG data sampled at each 
moment, and µ  hyperparameter determine the normalized range.

FIGURE 6

(A) CyberGloveII data glove, with yellow dots representing the finger joints. (B) The six selected hand movements.
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4.2 Evaluation

4.2.1 Metrics
To assess our method in relation to others, we  present three 

rubrics as described subsequently.

4.2.1.1 Pearson correlation coefficient
Pearson correlation coefficient (PCC) is a commonly used metric 

for measuring the linear relationship between two variables with a 
value ranging from −1 to 1. A positive PCC indicates a positive 
correlation between the variables, with higher coefficients signifying 
a closer approximation of the estimated joint angle to the true joint 
angle. The formula is as follows:

 

PCC 1

1
2

1

=
−( ) −( )

−( )
=

= =

∑

∑ ∑
i
N

est est real real

i
N

est est i
N

re

θθ θθ θθ θθ

θθ θθ θθ aal real−( )θθ
2

4.2.1.2 R-squared
R-Squared (R2), also referred to as the coefficient of 

determination, is a frequent tool used to evaluate the adequacy of 
a regression model. R2 indicates the portion of variance in the 
dependent variable which is attributed to the independent variable. 
The R2 score can range anywhere from 0 to 1, with higher values 
signifying better model approximation. The formula is as follows:

 

R 12 1
2

1
2= −

−( )
−( )

=

=

∑
∑

i
N

est est

i
N

real real

θθ θθ

θθ θθ

4.2.2 Normalized root mean square error
Normalized root mean square error (NRMSE) is a widely used 

metric to assess the performance of regression models. In predicting 
joints at various locations, NRMSE addresses the issue of inconsistent 
data distribution ranges. NRMSE has a range of values from 0 to 1, 
where a lower value indicates higher proximity between the predicted 
and actual results. The formula is as follows:

 
RMSE 1

2
=

−( )
=∑ i
N est real

N
θθ θθ

 
NRMSE RMSE

=
−θθ θθmax min

The formulas use variables θθ θθ θθ θθest est real real, , ,  to represent the 
predicted joint angle, average predicted joint angle, true joint angle, 
and average true angle, respectively. Variables θθ θθmax min,  indicate the 
maximum and minimum values of the true joint angle, while N  
signifies window size.

4.2.3 Significance analysis
To assess disparities between the four DL methods, we analyzed 

the PCC, NRMSE, and R2 of each algorithm as dependent variables. 
We  initially used Friedman’s test, a non-parametric extension of 
ANOVA, and then made test pairwise the four methods through the 

Wilcoxon signed-rank test. In this paper, our statistical significance 
threshold is p < 0.05.

4.3 Platform and parameters

Our approach was compared to previous models to fully validate 
its performance in a continuous hand motion estimation task. All 
models were created utilizing Pytorch 2.0 (Ketkar and Moolayil, 2021) 
and trained on NVIDIA GeForce RTX 3060 GPU. The batch size for 
training, number of epochs, and learning rate were 64, 100, and 0.001, 
respectively. However, due to sluggish convergence, the LSTM model 
necessitates 200 epochs of training. Additionally, to improve 
performance, the learning rate for all model parameters was decreased 
to 0.0001 after half of the rounds were completed.

5 Results

5.1 Experimental results

For every evaluation metric, FIT and the other models were 
collectively subjected to Friedman’s test, yielding a p-value of less than 
0.001. Following this, FIT and the other models were individually 
paired and underwent the Wilcoxon signed-rank test, resulting in a 
p-value of 0.002 for each pairing. The statistical analysis demonstrated 
a significant difference between the proposed FIT model and the other 
models, with superiority over three deep learning models.

Figures  7A–F shows the accuracy various subjects. The FIT 
demonstrated average PCC, NRMSE, and R2 of (0.87 ± 0.02, 0.09 ± 0.01, 
0.75 ± 0.04) across all subjects, which was significantly superior to TCN 
(0.75 ± 0.04, 0.12 ± 0.01, 0.55 ± 0.07) and LSTM (0.71 ± 0.06, 0.13 ± 0.01, 
0.50 ± 0.09), and marginally better than BERT (0.83 ± 0.03, 0.10 ± 0.01, 
0.68 ± 0.05). Notably, our model displayed superior results with the 
highest PCC (0.91) and R2 (0.82) values for subject 5, as well as the 
lowest NRMSE (0.08). According to Figure 7A, the FIT estimation 
accuracy surpassed 0.83  in all subjects, indicating a remarkable 
generalization capacity. Additionally, Figures 7D–F demonstrate the 
estimation accuracy for various joints. The FIT delivers the highest PCC 
of (0.90 ± 0.03), the lowest NRMSE of (0.07 ± 0.01), and the highest R2 
of (0.79 ± 0.06) for certain one joint. In contrast, the performance of 
TCN (0.81 ± 0.06, 0.10 ± 0.01, 0.64 ± 0.10), LSTM (0.75 ± 0.08, 0.11 ± 0.02, 
0.56 ± 0.13), and BERT (0.85 ± 0.04, 0.08 ± 0.01, 0.72 ± 0.08) was 
significantly inferior. In its application to different subjects and joint 
angles, FIT demonstrates its efficacy, stability, and versatility.

To provide a clearer characterization of the errors, we graphed the 
curves of true and predicted values for joints 5 and 12 of subject 13 as 
shown in Figure 8. The FIT and BERT models outperformed the TCN 
and LSTM models in aligning with the true angle curves. While the 
FIT model was less desirable compared to the BERT model for some 
samples, the overall match was still considered optimal.

FIT performs well across various joint angles and for different 
subjects, making it a suitable choice for continuous movement 
prediction. To further validate the strong generalization ability of FIT, 
cross-object training was included in the experimental. Each subject’s 
training set is consolidated into one training set, and we assess the 
overall subject PCC (the test sets for all subjects were also merged 
together), the individual subject’s PCC, and the average performance 
regarding single subject conditions. Despite the decrease in 
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performance, our model, which is based on cross-subject training, still 
maintains its leading position with an overall PCC (0.86 ± 0.01) that is 
higher than TCN (0.74 ± 0.05), BERT (0.84 ± 0.01), and LSTM 
(0.68 ± 0.05), as well as an average PCC (0.83 ± 0.03) that is higher than 
TCN (0.69 ± 0.07), BERT (0.80 ± 0.03), and LSTM (0.61 ± 0.08). Please 
refer to Figure 9 for the results.

The average PCC from all DB2 subjects was tested using a 
5-fold cross-validation and an experiment based on a 7:3 division 
of the data. The results indicate that our model performs the best 
overall. Fold3 has the highest PCC value, while fold4 and fold5 have 

a larger PCC than fold2 and fold1. The specific results of Fold3 are 
displayed in Figure 10. This is because the execution of a movement 
involves both extension and contraction, and due to the lack of a 
priori knowledge, fold1’s result performs the worst. In the case 
where the gesture is fully opened and remains stable, and due to the 
fact that the time before and after provides enough information, 
fold3 performed the best. The fold5 experiment outperformed the 
7:3 experiment due to the larger amount of data used for training, 
resulting in a greater amount of knowledge gained. The results are 
presented in Table 1.

FIGURE 7

Experimental results on joints and subjects based on four models TCN, FIT, BERT, and LSTM. the (A,C,E) depict the mean and variance of PCC, NRMSE, 
and R2 based on each object, respectively. The (B,D,F) depict the mean and variance of the PCC, NRMSE, and R2 based on each joint, respectively.
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We conducted 64 batches of training and collected data for duration 
of different model training. The results indicate significant discrepancies. 
Besides, we conducted tests for inference time (IT) on a CPU system 
with a batch size of 1. The obtained results indicate that our model is the 
quickest, implying that it demands less computational resources when 
compared to other models under similar conditions (Table 2).

6 Discussion

We propose a new deep learning model, FIT, for continuous 
motion prediction estimation based on sEMG signals, comparing it 
with the classical deep learning models, LSTM and TCN, with the 
recently outperformed BERT model (Table 3).

The results indicate that the FIT model exhibits heightened 
accuracy and stability across all subjects in comparison to other 
models, displaying superior generalization ability concerning cross-
subject training methods. LSTM has some limitations, as prolonged 
sequence lengths can lower its performance. Conversely, the TCN 
model employs convolution operations, which reduces its sensitivity 
to sequence length. However, TCN can only concentrate on future 
moment information and belongs to one-way information flow. 
Although BERT has the capacity to encode information in both 
directions for global modeling, the utilization of a stacked transformer 
encoder structure does not reduce sequence length, which presents 
difficulties when further fusing feature information at different time 
points. Inspired by the inception network, we first use one-dimensional 
convolutions of different sizes to extract rich shallow information. 
Simultaneously, we maintain the characteristics of the residual link by 
the identity operation to preserve the original information. The 
sequence length is efficiently reduced and the channel dimension 
information is increased through the efficient downsampling module, 
allowing for global processing of deep information by the transformer. 
This design aims to improve performance by reducing model 
parameters and sequence length, resulting in faster calculations.

Furthermore, we  conducted experiments to determine the 
amount of time it takes for different models to converge and infer on 
various systems. This time is influenced by the structure of the model, 
the batch size, and the model size under the same physical device 
conditions. Typically, the recurrent structure is the most time-
consuming, followed by the convolutional structure, with the 
attention-based model being the quickest. Of the models tested, the 
FIT model displayed the greatest training efficiency and fastest 
convergence. The model sizes of BERT (1.62 M) and LSTM (1.75 M) 
were comparable, although BERT proved twice as fast as LSTM due to 
its inclusion in the attention network. Additionally, FIT model size is 
0.87 M, slightly larger than TCN (0.60 M), but FIT is faster due to its 
branching structure for processing sequence elements and its attention 
mechanism for global computation at the same time.

FIGURE 8

Angles fitting curves for joints 5 and 12 of subject 13 are for four models: (A) FIT model, (B) BERT model, (C) TCN model, and (D) LSTM model. The 
orange curve represents the true joint angle and the blue curve represents the model-predicted joint angle curve. Sample is the data sample of the test 
set based on sliding window segmentation and joint is the joint angle value.

FIGURE 9

Cross-subject experimental results. ALL represents the PCC 
performance on the overall test set, which include the test set of 
each subject. AVG represents the average PCC performance on the 
test set of individual subjects.
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TABLE 1 The average PCC of all DB2 subjects.

Model TCN FIT BERT LSTM

Fold1 0.6529 0.7564 0.7316 0.6233

Fold2 0.6871 0.8077 0.7772 0.6578

Fold3 0.7133 0.8359 0.809 0.6750

Fold4 0.7015 0.8216 0.7905 0.6663

Fold5 0.7051 0.8163 0.7855 0.6653

7:3 0.6920 0.8124 0.7781 0.6488

TABLE 2 Model training time on Intel I7 12,700 with a bath size of 1.

Model TCN FIT BERT LSTM

Subject(s) 52 ± 2 46 ± 2 178 ± 6 114 ± 3

Epoch(s) 0.52 ± 0.02 0.45 ± 0.02 1.70 ± 0.02 0.47 ± 0.02

Our model was validated on six maneuvers in 10 subjects, yielding 
the best results. However, it is important to note that these results may 
not be fully representative of other special populations or all complex 
hand movements in daily life. Additionally, practical application 
scenarios are complex due to potential changes in electrode position, 
electrode quality, subject skin state, as well as motion disturbances and 
noise that can affect surface EMG. Therefore, future research entails 
meticulous validation of all themes in diverse scenarios and 
assessment of algorithm performance through transfer learning 
strategies to enhance the adaptability to the above variables to overall 
improve our algorithm performance.

7 Conclusion

In this paper, we introduce an innovative, lightweight model that 
combines Inception and transformer features for the continuous 

estimation of hand motion. Utilizing the Ninapro public dataset, 
we selected three prominent deep learning models (TCN, LSTM, and 
BERT) in the field of HCI as benchmarks. The outcomes of our 
experiments demonstrate that the FIT model surpasses all other 
models in terms of both accuracy and speed. These findings suggest 
that our model is well-positioned to make a substantial impact on 
future HCI.
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The specific results of fold3.

TABLE 3 Model inference time Intel I7 12,700 with a bath size of 1.
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