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and Pantazi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Dynamic event-based optical
identification and
communication

Axel von Arnim1*†, Jules Lecomte1†, Naima Elosegui Borras2,3,
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Optical identification is often done with spatial or temporal visual pattern
recognition and localization. Temporal pattern recognition, depending on the
technology, involves a trade-o� between communication frequency, range,
and accurate tracking. We propose a solution with light-emitting beacons that
improves this trade-o� by exploiting fast event-based cameras and, for tracking,
sparse neuromorphic optical flow computed with spiking neurons. The system is
embedded in a simulated drone and evaluated in an asset monitoring use case. It
is robust to relative movements and enables simultaneous communication with,
and tracking of, multiple moving beacons. Finally, in a hardware lab prototype,
we demonstrate for the first time beacon tracking performed simultaneouslywith
state-of-the-art frequency communication in the kHz range.
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1 Introduction

Identifying and tracking objects in a visual scene has many applications in sports

analysis, swarm robotics, urban traffic, smart cities, and asset monitoring. Wireless

solutions have been widely used for object identification, such as RFID (Jia et al., 2012)

or more recently UltraWide Band (ITU, 2006), but these do not provide direct localization

and require meshes of anchors and additional processing. One efficient solution is to use a

camera to detect specific visual patterns attached to the objects.

This optical identification is commonly implemented with frame-based cameras,

either by recognizing a spatial pattern in each single image—for instance for license

plate recognition (Du et al., 2013)—or by reading a temporal pattern from an image

sequence (von Arnim et al., 2007). The latter is resolution-independent, since the signal

can be reduced to a spot of light, enabling for much faster frame frequencies. It can be

implemented with near-infrared blinking beacons that encode a number in binary format,

similarly to Morse code, to identify assets like cars or road signs. But frame-based cameras,

even at low resolutions, impose a hard limit on the beacon’s frequency (in the 102 Hz order

of magnitude). This technique is known as Optical Camera Communication (OCC) and

has been developed primarily for communication between static objects (Cahyadi et al.,

2020).

Identifying static objects is possible with OCC as discussed before, but in applications

such as asset monitoring on a construction site, it is also important to track dynamically

moving objects. OCC techniques potentially enable simultaneous communication with,

and tracking of, beacons. However, two challenges arise in the presence of relative

movements: filtering out the noise and tracking the beacons’ positions. Increasing the
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TABLE 1 Characteristics of existing identification methods.

Method Type of
camera

Data
throughput
(bps)

Tracking

von Arnim et al. (2007) Frame-based 250 Yes

Perez-Ramirez et al.

(2019)

Event-based 500 No

Wang et al. (2022) Event-based 500 No

Censi et al. (2013) Event-based Identification

only

Yes

Ours Event-based 2500 Yes

The table presents existing optical camera communication solutions, using frame-, or event-

based cameras.

temporal frequency of the transmitted signal, since noise has

lower frequencies than the beacon’s signal, addresses this problem.

Nevertheless, current industrial cameras do not offer a satisfying

spatio-temporal resolution trade-off. Biologically-inspired event

cameras, operating with temporally and spatially sparse events,

achieve pixel frequencies on the order of 104 Hz and can be

combined with Spiking Neural Networks (SNNs) to build low-

latency neuromorphic solutions. They capture individual pixel

intensity changes extremely fast rather than full frames (Perez-

Ramirez et al., 2019). Early work combined the fine temporal

and spatial resolution of an event camera with blinking LEDs

at different frequencies to perform visual odometry (Censi et al.,

2013). Recent work makes use of these cameras to implement OCC

with smart beacons and transmit amessage with theUART protocol

(Wang et al., 2022), delivering error-free messages of static beacons

at up to 4 kbps indoors and up to 500 bps at 100 m distance

outdoors with brighter beacons, but without tracking. This paper,

combined with the tracking approach presented in von Arnim et al.

(2007), are the baseline of our work. The Table 1 summarizes the

properties of the mentioned methods.

On the tracking front—to track moving beacons in our case—a

widely used technique is optical flow (Chen et al., 2019). Model-free

techniques relying on event cameras for object detection have been

implemented (Barranco et al., 2018; Ojeda et al., 2020). To handle

the temporal and spatial sparsity of an event camera, a state-of-

the-art deep learning frame-based approach (Teed and Deng, 2020)

was adapted to produce dense optical flow estimates from events

(Gehrig et al., 2021). However, a much simpler and more efficient

solution is to compute sparse optical flow with inherently sparse

biologically-inspired SNNs (Orchard et al., 2013), also considering

network optimisation and improved accuracy (Schnider et al.,

2023).

In this paper, we propose to exploit the fine temporal

and spatial resolution of event cameras to tackle the challenge

of simultaneous OCC and tracking, where the latter is based

on the optical flow computed from events by an SNN. We

evaluate our approach with a simulated drone that is monitoring

assets on a construction site. We further introduce a hardware

prototype comprising a beacon and an event camera, which

we use for demonstrating an improvement over state-of-the-

art OCC range. To our knowledge, there is no method

combining event-based OCC with tracking to identify moving

targets. Furthermore, we beat the transmission frequency of

our baseline.

2 Materials and methods

The system that we propose is composed of an emitter

and a receiver. The former is a beacon emitting a temporal

pattern (a bit sequence) with near infrared light (visible to

cameras, but not to humans), attached to the object to

be identified and tracked. The receiver component is an

event-based camera connected to a computer which, in turn,

executes decoding and tracking algorithms. The receiver part

comprises algorithmic components for clustering and tracking

for which an SNN calculates optical flow. The entire process,

from low-level event-processing to high-level (bit-)sequence-

decoding, is schematically depicted in Figure 1. This figure also

introduces specific terms that are used throughout the rest of

this paper.

The proposed system is a hybrid of a neuromorphic and

an algorithmic solution. It follows a major trend in robotics to

exploit the rich capabilities of neural networks, which provide

sophisticated signal processing and control capabilities (Li et al.,

2017). Simultaneously, to handle the temporal and noisy nature

of the real-world signals, neural networks can be extended

to handle time delays (Jin et al., 2022), or to include stages

with Kalman filtering (Yang et al., 2023), leading to a synergy

between neural networks and classic algorithms. Our system

follows a similar approach and subsequent paragraphs describe

its components.

2.1 Event-based communication

The emitter is synchronously transmitting, with a blinking

pattern, a binary sequence S that consists of a start code Sc, a data

payload (identification number) Sp and a parity bit f (Sp), where f

returns 1 if Sp has an even number of ones, or 0 otherwise. The start

code and the parity bit delimit the sequence and confirm its validity,

as illustrated in Figure 2. On the receiver side, the event camera

asynchronously generates events upon pixel brightness changes,

which can be caused by either a change in the beacon’s signal or

visual noise in the scene. The current state of the beacon (on or off)

cannot be detected by the sensor. Rather, the sensor detects when

the beacon transitions between these states. The signal frequency

being known, the delay between those transitions gives the number

of identical bits emitted. In comparison to a similar architecture

with a frame-based camera (200 Hz frame rate) (von Arnim et al.,

2007), our setup relies on an event camera and a beacon blinking

in kHz frequency, allowing for a short beacon decoding time, better

separation from noise and easier tracking since beacon’s motions

are relatively slower.

As the start code Sc is fixed and the identification number Sp is

invariable per beacon, the parity bit f (Sp) remains the same from

one sequence to the next. As a result, once the beacon parameters

are set, it repeatedly emits the same 11-bit fixed-length frame. The

decoding of the transmitted signal exploits these two transmission

characteristics. As the cameras do not necessarily pick up the
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FIGURE 1

Architectural diagram of our system. The beacon’s light is detected by the sensor as events. Events are processed to track the beacons and further
decode the transmitted messages. The event array block shows a snapshot of recorded events.

FIGURE 2

A valid sequence, decoded from blinking transitions.

FIGURE 3

SNN for sparse optical flow. (A) Events from camera at each input
location are processed by 32 1SNU units, each with specific
synaptic delays. (B) The magnitudes of synaptic delays are attuned
to 8 di�erent movement angles (spatial gradient of delays) and 4
di�erent speeds (di�erent magnitudes of delays), schematically
indicated by red arrows.

signal exactly from the start code, 11 consecutive bits are stored in

memory. If the signal is received correctly, these 11 bits constitute

a full sequence. Once this sequence of 11 bits is recovered, it is

necessary to search for the subsequence of four bits corresponding

to the start code Sc (marked below in bold), which enables to

recover a complete sequence through bit rotation:

• Reception of 11 successive bits: 0 0 0 0 0 1 1 1 1 0 1

• Sequence reconstruction after start code detection: 1 1 1 0 1 0

0 0 0 0 1

2.2 Object tracking

Beacons isolated by the clustering and filtering steps described

in Figure 1 are called targets. These are instant detections of the

beacons. But these need be tracked in order to extract the blinking

code that they produce. The tracked targets are called tracks. They

hold a position (estimated or real), the history of state changes (ons

and offs) and meta information like a confidence value. Tracks are

categorized with types that can change over time. They can be:

• new: the target cannot be associated with any existing track:

create a new track

• valid: the track’s state change history conforms to the

communication protocol

• invalid: the track’s state change history does not conform to

the communication protocol (typically noise or continuous

signals like solar reflections). Note that a track can change

from invalid to valid if it’s confidence value rises (detailed

later).

2.2.1 Clustering
Camera events are being accumulated in a time window and

clustered with the Density-Based Spatial Clustering of Applications

with Noise (?), chosen to get rid of noisy, isolated events and to

retrieve meaningful objects from the visual scene. Such clusters are

filtered according to:

Ne

π × |b− d|2
> r, Ne ∈ {Nmin;Nmax} (1)

where Ne is the number of events in the cluster, |b − d|

the Euclidean distance between the cluster’s barycenter b and

d its most distant event, r a shape ratio, and Nmin and Nmax
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FIGURE 4

Tracking steps. (A) Reading optical flow (red arrow) at the track’s location. (B) Prediction of the Kalman state via the track’s location and the optical
flow value. (C) Tracks are assigned to a target in its oriented neighborhood, based upon the track’s motion. (D) The track’s state, its size and its
polarity are updated with the paired target’s properties.

the minimal/maximal emitter size in pixel. The shape ratio is a

hyperparameter. In our setup, it characterizes the roundness of

the cluster, since we are looking for round beacons. It can be

adapted to other shapes if beacons need be flatter for example.

Experimentally, the shape ratio r turned out to play a crucial role in

the communication’s accuracy: limiting the detection to high ratios

(from 0.8 to 0.99) gave the best results. Theminimal target sizeNmin

of target must also be carefully set to be able to detect beacons, but

small values also imply filtering less noise and having to process

more clusters. Depending on the scenario distances, values from 5

to 30 events were chosen.

We reduce the remaining clusters to their barycenter, size and

their polarity and call these “targets.” The polarity of a target P is

given by P = (
∑

i pi)/Ne where pi=1 for a positive polarity and−1

for a negative one for each event i.

2.2.2 Event-based optical flow
Event-based optical flow is calculated by a neural network and

processed by the remaining algorithmic beacon tracking pipeline.

We introduce it as a given input in the main tracking algorithm

presented in the next section.

Optical flow is computed from the same camera and events that

are used for decoding, and delivers a sparse vector field for visible

events with velocity and direction.

We implemented an SNN architecture with Spiking Neural

Units (SNUs) (Woźniak et al., 2020) and extended the model with

synaptic delays that we call 1SNU. Its state equations are:

st = g(Wd1(xt)+ l(τ )st−1(1− yt−1)) (2)

yt = h(st − vth), (3)

where W are the weights, vth is a threshold, st is the state of

the neuron and l(τ ) its decay rate, yt is the output, g is the input

activation function, h is the output activation function, and d is the

synaptic delay function. The delay function d is parameterized with

a delay matrix 1 that for each neuron and synapse determines the

delay at which spikes from each input xt will be delivered for the

neuronal state calculation.

Optical flow is computed by a CNN with 5 × 5 kernels,

illustrated in Figure 3A. Each 1SNU is attuned to the particular

direction and speed of movement through its specific synaptic

if valid sequence then

confidence ← confidence+2

else

confidence ← confidence-1

end if

if confidence ≥ confidencemax then

status = valid

else if confidence ≤ 0 then

status = invalid

end if

if confidence ≤ confidencemin or tc − tt >delaymax then

forget track

end if

Algorithm 1. Track classification with a confidence system.

delays, similarly to (Orchard et al., 2013). When events matching

the gradient of synaptic delays are observed, a strong synchronized

stimulation of the neuron leads to neuronal firing. This

results in sparse detection of optical flow. The synaptic delay

kernels are visualized in Figure 3B. We use 8 directions and 4

magnitudes, with the maximum delay period corresponding to

10 executions of the tracking algorithm. Weights are set to one

and vth = 5. The parameters were determined empirically so

as to yield the best tracking results. Decreasing the threshold

vth yields faster detection of optical flow, but increases the false

positive spikes. Increasing the number of detected directions and

magnitudes theoretically provides more accurate estimation of

the optical flow. However, in practice it results in false positive

activation of neurons detecting similar directions or magnitudes

unless vth is increased at the expense of increased detection

latency.

2.2.3 Tracking
Targets are kept in memory for tracking over time and are

then called tracks. A Kalman filter is attributed to each track and

updated for every processed time window, as depicted in Figure 4.

A Kalman filter is needed to estimate the position of a track from

the last measured one and when is not visible, either because of

an occlusion, or simply because it transitioned to off. We use the

estimated position’s optical flow value to draw a search window
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FIGURE 5

Decoupled loops: The tracking loop has a much lower and fixed frequency to maintain e�ciency, while the decoding loop has the same frequency
as the emitter to be able to decode the received signal.

in which a target is looked for. Similarly to Chen et al. (2019),

predicted tracks’ states are matched to detected targets to minimize

the L1-norm between tracks and targets. Unmatched targets are

registered as new tracks.

2.2.4 Identification
A matched track’s sequence is updated using the target’s mean

event polarity P.

• If P ≥ 0.5 then the beacon is assumed to have undergone an

on transition. We add n = (tc − tt)/fbeacon zeros to the binary

sequence where tc is the current timestamp, tt is the stored

last transition timestamp and fbeacon is the beacon blinking

frequency and set tt = tc.

• If P ≤ −0.5 then the beacon is assumed to have undergone a

transition to the off state. Likewise, we add n ones to the binary

sequence.

• Otherwise, the paired beacon most likely has not undergone a

transition but just moved.

Similarly to von Arnim et al. (2007), a confidence value

is incremented or decremented to classify tracks as new, valid

or invalid, as illustrated in Algorithm 1. Indeed, noise can pass

clustering filters but will soon be invalidated as its confidence will

never rise. To correct for errors (for instance due to occlusions),

the confidence increments are larger than decrements. When a

track’s sequence is long enough to be decoded, it is declared valid

if it complies to the protocol and maintains the same payload

(if this track was previously correctly recognized). New tracks

have an initial confidence value ≤ confidencemax. These values

have been experimentally set to optimize for our protocol and

an expected mean occlusion duration. They can be adapted for

expected longer off states or longer occlusions. Though, the level

of track robustness to occlusion and its "stickyness" have to be

balanced. Indeed, higher confidence thresholds lead to a longer

detection time and also a longer time to become invalid. A clean up

of tracks having been invalid for too long is necessary in all cases to

save memory. This is done with a simple threshold (confidencemin)

or a time out (delaymax) mechanism. These hyper-parameters were

tuned experimentally, and we set them to confidencemin = 0,

confidencemax = 20, and the initial confidence to 10.

To ensure real-time execution, the tracking occurs at a

lower frequency, while the decoding occurs at the emitter

frequency. To achieve this, we only accumulate events in

the surrounding of existing tracks, and tracks’ sequences are

updated accordingly.

2.2.5 Computational performance
The hardware event-based camera can detect up to millions of

events per second, where many of them may correspond to noise,

especially in outdoor and moving camera scenarios. The tracking

algorithm, based on a neuronal implementation of optical flow and

on a clustering algorithm with a square complexity on the number

of events, is computational much more demanding than the

decoding algorithm. Therefore, to ensure real-time performance,

both loops have been decoupled, so that the tracking is updated at

a lower frequency than the decoding, as illustrated in Figure 5. In

this implementation, tracking steps described above occur at 10 Hz,

while the decoding happens at up to 5kHz. The relative motion

of tracked objects in the visual scene being slow compared to the

communication event rate, the tracking update rate is sufficient. To

ensure a working communication, the decoding algorithm must

be fast and computationally inexpensive to match the emitter

frequency.

3 Results

3.1 Static identification

Our hardware beacon has four infrared LEDs (850 nm) and

an ESP32 micro-controller to set the payload Sp = 42 and the

blinking frequency. A study was conducted to find the optimal

wavelenght where the LEDs must be detected as far as possible

in an outdoor use case, as described in Figure 6. To receive the

signal, we used a DVXplorer Mini camera, with a resolution of

640×480 and a 3.6 mm focal length lens. In a static indoor

setup, the hardware event camera enables us to achieve high data

transmission frequencies, plotted in Figure 7. The metric is the
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FIGURE 6

LED wavelength benchmark: The range of LEDs with varying wavelength and half-intensity angle was experimentally determined. AM1.5 Global is the
solar integrated power density. The final choice of 850 nm ensures a good trade-o� between detection range and outdoor solar irradiance.

FIGURE 7

Static OCC performance: MAR for increasing beacon frequencies in
comparison with the state-of-the-art baseline (Wang et al., 2022).
Results were obtained at a 50 cm distance.

Message Accuracy Rate (MAR): the percentage of correct 11-bit

sequences decoded from the beacon’s signal during a recording.

The MAR stays over 94 % up to 2.5 kHz, then decreases quickly,

due to the temporal resolution of the camera. Using a 16 mm focal

length lens we could identify the beacon at a distance of 11.5 m

indoors, with 87 % MAR and a frequency of 1 kHz and obtained

100 % MAR at 100 Hz at 16 m—see Figure 8.

A special note has to be made regarding the range. Results

are given here for information purpose. The range cannot really

be considered a benchmarking parameter because it depends

essentially on the beacon signal power and on the camera lens. To

improve the detection and MAR at a longer range, adding LEDs to

the beacon, or choosing a zooming lens, are good solutions. So this

is basically an implementation choice.

3.2 Dynamic identification

To evaluate our identification approach in a dynamic setup,

where tracking is required, a simulated use case was developed in

FIGURE 8

Static OCC performance: MAR for increasing beacon distance to the
camera in comparison with the state-of-the-art baseline (Wang
et al., 2022).

the Neurorobotics Platform (Falotico et al., 2017). A Hector drone

model, with an on-board event camera plugin (Kaiser et al., 2016),

flies over a construction site with assets (packages and workers)

to be identified and tracked. These are equipped with blinking

beacons. The drone follows a predefined trajectory and the scene

is captured from a bird’s eye view—see Figure 9. A frame-based

camera with the same view is used for visualization. Noise is

simulated with beacons of different sizes blinking randomly. For

varying drone trajectories, assets were correctly identified at up to

28 m, with drone speeds up to 10 m/s (linear) and 0.5 radian/s

(self rotational). Movements were fast, relative to the limited 50 Hz

beacon frequency imposed by the simulator. A higher MAR was

obtained with a Kalman filter integrating optical flow (Section

2.2.3) than without it—see Table 2. MAR and Bit Accuracy Rate

(BAR) are correlated in simulation because they drop together

only upon occlusion. Finally, we conducted hardware experiments

where a beacon was moved at 2 m/s reaching a 94 % BAR

at 5m and a 87 % BAR at 16m. This shows that our system

enables accurate identification and data transmission even with
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FIGURE 9

Simulation setup. (A) Hector quadrotor. (B) Example asset. (C) The drone’s point of view with decoding results.

TABLE 2 Identification performance with moving beacons.

Setup Rate Range MAR BAR

Simulation with optical flow 50 Hz 28 m 74 % 75 %

Simulation without optical flow 50 Hz 28 m 71 % 72 %

Hardware 2,000 Hz 5 m 65 % 94 %

Hardware 2,000 Hz 16 m 27 % 87 %

moving beacons, which, to our knowledge, is beyond the state-

of-the-art.

4 Discussion

We propose a novel approach for identification that combines

the benefits of event-based fast optical communication and signal

tracking with spiking optical flow. The approach was validated in

a simulation of drone-based asset monitoring on a construction

site. A hardware prototype setup reached state-of-the-art optical

communication speed and range. We propose the first—to the

best of our knowledge—system to identify fast moving, variable

beacons with an event camera, thanks to our original tracking

approach. Event-based camera, thanks to their extremely low

pixel latency, do outperform OCC based on frame grabbers

by orders of magnitude. This enables beacon signal frequencies

up to 5 kHz, which in turn, enables for their more robust

tracking, since their relative movement is slow between two

LED state transitions. Nevertheless, tracking is still necessary

for beacons moving fast and that is where this work goes

beyond (Wang et al., 2022), which assumes null or negligible

beacon movement.

Further research includes the port of optical flow computation

to neuromorphic hardware and the full port of the system

onto a real drone, for real world assessment. Although the

current work is mainly algorithmic with optical flow realized

in a spiking neural network, this paper proves that it is

very efficient. Now, as this mixes two computing paradigms

(algorithmics and spiking neural networks), it will entail

having two computing devices on board a real drone. Another

research direction of ours is thus to investigate a full spiking

implementation, so as to carry only neuromorphic hardware

on board.
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