
TYPE Original Research

PUBLISHED 29 January 2024

DOI 10.3389/fnbot.2024.1290853

OPEN ACCESS

EDITED BY

Luciano Luporini Menegaldo,

Federal University of Rio de Janeiro, Brazil

REVIEWED BY

Fernando Lizarralde,

Federal University of Rio de Janeiro, Brazil

Feihu Zhang,

Northwestern Polytechnical University, China

*CORRESPONDENCE

Wen Wu

wuwen66@163.com

RECEIVED 08 September 2023

ACCEPTED 15 January 2024

PUBLISHED 29 January 2024

CITATION

Xiao M, Zhang X, Zhang T, Chen S, Zou Y and

Wu W (2024) A study on robot force control

based on the GMM/GMR algorithm fusing

di�erent compensation strategies.

Front. Neurorobot. 18:1290853.

doi: 10.3389/fnbot.2024.1290853

COPYRIGHT

© 2024 Xiao, Zhang, Zhang, Chen, Zou and

Wu. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

A study on robot force control
based on the GMM/GMR
algorithm fusing di�erent
compensation strategies

Meng Xiao1, Xuefei Zhang1, Tie Zhang2, Shouyan Chen3,

Yanbiao Zou2 and Wen Wu1,4*

1Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China,
2School of Mechanical and Automotive Engineering, South China University of Technology,

Guangzhou, China, 3School of Mechanical and Engineering, Guangzhou University, Guangzhou,

China, 4Rehabilitation Medical School, Southern Medical University, Guangzhou, China

To address traditional impedance control methods’ di�culty with obtaining

stable forces during robot-skin contact, a force control based on the Gaussian

mixture model/Gaussian mixture regression (GMM/GMR) algorithm fusing

di�erent compensation strategies is proposed. The contact relationship between

a robot end e�ector and human skin is established through an impedance control

model. To allow the robot to adapt to flexible skin environments, reinforcement

learning algorithms and a strategy based on the skin mechanics model

compensate for the impedance control strategy. Two di�erent environment

dynamics models for reinforcement learning that can be trained o	ine are

proposed to quickly obtain reinforcement learning strategies. Three di�erent

compensation strategies are fused based on the GMM/GMR algorithm, exploiting

the online calculation of physical models and o	ine strategies of reinforcement

learning, which can improve the robustness and versatility of the algorithmwhen

adapting to di�erent skin environments. The experimental results show that the

contact force obtained by the robot force control based on the GMM/GMR

algorithm fusing di�erent compensation strategies is relatively stable. It has

better versatility than impedance control, and the force error is within ∼±0.2 N.

KEYWORDS

robot force control, impedance control, reinforcement learning, deep Q-network

(DQN), Gaussian mixture model/Gaussian mixture regression (GMM/GMR)

1 Introduction

The applications of robot-skin contact are diverse, including uses in robotic medical-

aided diagnosis, massage, aesthetic nursing, and other scenarios (Christoforou et al., 2020).

In these scenarios, robots can work continuously without rest, and simultaneously, they

can maintain highly consistent movements, strength, and speed, so they can partially

replace human labor (Kerautret et al., 2020). Good robot force control is essential for

efficient and comfortable robot-skin contact experiences. Robot force control requirements

must address safety, precision, and variability; if the robot applies too little force, it may fail

to achieve the intended effect, and if it applies excessive force, it may cause skin pain or

injury. The biological characteristics of the skin determine differences in the mechanical

characteristics of the skin of different individuals (Zhu et al., 2021); therefore, the robot

usually faces unknown contact environments. Ensuring the accuracy of robot interaction

considering the characteristics of different people’s skin is the focus of current research.
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Many researchers and institutions have studied robot force

strategies, and impedance control plays an important role in these

strategies. Impedance control constructs a contact model between a

robot and human skin and flexibly changes dynamic characteristics

during interactive tasks (Jutinico et al., 2017). Some scholars,

such as Li S. et al. (2017) and Sheng et al. (2021) conducted

experimental research on the contact process between the robot

and skin based on impedance control. The control parameters

of impedance control, such as stiffness and damping, require

utilizing manual adjustment or trial and error, and the controller

is insensitive to the uncertainty of the external environment. To

adapt robots to the flexible environment of human skin, other

scholars, such as Liu et al. (2021), Khoramshahi et al. (2020),

Li et al. (2020), Ishikura et al. (2023), Huang et al. (2015), and

Stephens et al. (2019) used adaptive algorithms and intelligent

algorithms for optimizing the impedance control parameters.

The skin, being a living tissue, has biomechanical properties,

such as elasticity, viscoelasticity, non-linearity, and anisotropy

(Joodaki and Panzer, 2018). The mechanical characteristics

of the flexible contact environment faced by the robot are

often dynamic, and traditional force controllers cannot explore

unknown environments.

Reinforcement learning can be used to explore control

strategies in robots. Through reinforcement learning, robots can

learn how to adjust their control strategies to perform better and

adapt to external environmental changes by interacting with that

environment (Suomalainen et al., 2022). Many scholars have used

reinforcement learning to explore the optimal control strategy;

for example, Luo et al. (2021) proposed a method based on Q-

learning to optimize online stiffness and damping parameters.

Ding et al. (2023) used reinforcement learning to analyze and

optimize the impedance parameters. Bogdanovic et al. (2020)

used a deep deterministic policy gradient to learn the robot

output impedance strategy and the required position in the

joint space. Meng et al. (2021) adaptively adjusted the inertia,

damping, and stiffness parameters through the proximal policy

optimization algorithm. These reinforcement learning algorithms

have good versatility and self-adaptability in the interaction process

and perform well in the simulation environment, but when

used in practical applications, they must often address multiple

interactions. Therefore, some scholars have begun using the

model-based method to reduce the number of actual interactions

and improve the utilization rate of the algorithm (Hou et al.,

2020). For example, Zhao et al. (2022) proposed a model-

based actor-critic learning algorithm to safely learn strategy and

optimize the impedance control. Anand et al. (2022) used a

model-based reinforcement learning algorithm, which integrates

probabilistic inference for learning force control and motion

tracking. Roveda et al. (2020) proposed a variable impedance

controller with model-based reinforcement learning, and Li Z.

et al. (2017) identified adaptive impedance parameters based on

the linear quadratic regulator. In most of the aforementioned

studies, the contact environments are rigid, and the established

models are relatively stable. These models can predict the dynamic

evolution of the environment and the generation of rewards.

Furthermore, reinforcement learning agents can identify and make

better decisions, so the quality and accuracy of the model directly

affect the performance results of reinforcement learning. While

the contact between the robot and human skin is flexible, this

environment is more uncertain than the rigid environment, and

using reinforcement learning to quickly and efficiently find the

optimal strategy in practice has not been achieved (Weng et al.,

2020).

Compared to traditional control for robot massage, the main

contributions of this work are as follows.

(1) A robot force controller based on the Gaussian mixture

model/Gaussian mixture regression (GMM/GMR) algorithm

fusing different compensation strategies is proposed,

which combines a traditional robot force controller and

reinforcement learning algorithm.

(2) Two environmental dynamics models of reinforcement

learning are constructed to simulate the contact process

between the robot and the skin. The number of actual

interactions of the reinforcement learning is reduced. At the

same time, the practicability of the reinforcement learning

algorithm is improved.

(3) The GMM/GMR algorithm fuses online and offline

compensation strategies to improve the robustness and

versatility of the algorithm and to adapt to different

skin environments.

The remainder of the paper is structured as follows:

in the second section, the impedance control strategy is

constructed in the contact process of the robot. In the

third section, two robot force control compensation strategies

based on a deep Q-network (DQN) with dynamic models

are proposed, and the strategy of reinforcement learning is

learned offline. In the fourth section, an online compensation

strategy is built based on a skin mechanics model. In the

fifth and sixth sections, the experimental platform is built

and experiments are conducted to verify the feasibility of

the algorithm. A list of variables used in the paper are shown in

Table 1.

2 Robot force control based on
impedance control

In robot-skin interaction scenarios, the robot end-effector is

equipped with a probe, which makes skin contact and moves

along a set trajectory, and the force signal is collected through

the sensor between the robot and the probe. To ensure safety

during the contact process, the reference force of the contact

force must be set and a force controller must be used to adjust

the contact state of the robot and ensure that the robot follows

the reference force. Impedance control can be used to ensure

reasonable contact between robots and human skin; it simplifies

the contact model between the robot and the human into a

linear second-order system contact model with inertia, damping,

and stiffness characteristics. The contact model adjusts the robot

displacement based on the difference between the actual measured

force and the reference force, while the characteristics of the

contact model are adjusted using the inertia, damping, and stiffness

parameters (Song et al., 2017). In the Cartesian coordinate system,

in the normal direction of the contact between the robot and
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TABLE 1 List of variables used in the paper.

Placement Variable Description

Impedance control md Inertia parameter of impedance control

bd Damping parameter of impedance control

kd Stiffness parameter of impedance control

1ẍ Acceleration of the robot end-effector

1ẋ Velocity of the robot end-effector

1x Offset displacement of the robot end-effector

fr Reference contact force

fe Actual contact force

k k-th sampling period

Ts Sampling period

e Difference between reference force and actual force

DQN s State

a Robot action, i.e., robot offset displacement

τ Trajectory of reinforcement learning

r Reward

ėt Change of the force error

R Discounted return

γ Discount factor

π
∗ Optimal strategy

Q(s, a, θ−) Target value deep neural network

Q(s, a, θ) Predicted value deep neural network

L Loss function

y Value of the target network

G Experience samples

N Training iterations

Z Net activation value

Up Activation value

bl Bias of the l-th layer

Wl Weight of the l-th layer

ϕ Activation function, the ReLU activation function is selected.

δl Error term for the l-th layer

α Learning rate

λ Regularization coefficient

BP neural network dynamics model NeT1.W Weight in the BP neural network

NeT1.b Bias in the BP neural network

ϕ BP neural network

a1 Compensation displacement obtained by DQN with BP neural network dynamics

model

LSTM neural network dynamics model φ LSTM neural network

NeT2.W Weight in the LSTM neural network

NeT2.b Bias parameters in the LSTM neural network

Ct Memory state

(Continued)
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TABLE 1 (Continued)

Placement Variable Description

ot Output gate

it Input gate

f t Forget gate

Xt Input at the current moment

Net2.Wf , Weights of the forget gate

Net2.Wi , Weights of the input gate

Net2.Wc Weights of estimated state

Net2.Wo Weights of output gate

⊙ Hadamard product

σ Logistic function with an output interval

Ht Hidden state

a2 Compensation displacement obtained by DQN with LSTM neural network

dynamics model

Skin mechanics model fs Force generated by skin deformation

x Coordinate of the robot when it is deformed

xe Initial coordinates of the skin

ks Elasticity coefficients

bs Damping coefficients

us Compensation displacement based on displacement compensation with skin

mechanics model

GMM/GMR algorithm t Time information

n Number of samples

u Represents the three kinds of compensation displacements

P(t, u) Joint probability distribution

M Number of Gaussian components in the GMM

πm Prior probability of them-th Gaussian component

µm Mean of them-th Gaussian component

6m Covariance of them-th Gaussian component

t∗ The predicted time

u∗ Predicted compensation displacement

uf Central distribution of/, final fusion strategy

the skin, analysis is performed from only one dimension, and

the position and contact force of the robot meet the following

conditions (Li et al., 2018):

md1ẍ+ bd1ẋ+ kd1x = fr − fe (1)

where md, bd, and kd are the inertia, damping, and stiffness

parameters of impedance control, respectively; 1ẍ, 1ẋ, and

1x are the acceleration, velocity and offset displacement

of the robot end-effector, respectively; fr is the reference

contact force; and fe is the actual contact force, which

obtained after filtering. In the actual sampling system,

the difference can be calculated as follows (Song et al.,

2019):

1ẋ(k) =
1x(k)−1x(k− 1)

Ts

1ẍ(k) =
1ẋ(k)−1ẋ(k− 1)

Ts
(2)

where k is used to represent the k-th sampling period, and

Ts represents the sampling period. Substituting Equation 2 into

Equation 1, can be calculated online as

1x(k) =
eTs

2
+ bdTs1x(k− 1)+md(21x(k− 1)−1x(k− 2))

md + bdTs + kdTs
2 (3)

where e = fr − fe. If the parameters of the contact

environment are well-defined, the contact force can be well-

tuned by selecting appropriate impedance parameters. However,
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the skin environment is usually unknown, and simply maintaining

target impedance parameters does not guarantee a well-controlled

contact force.

Therefore, a robot force control algorithm is proposed to

compensate for the offset displacement of the robot 1x(k). A deep

reinforcement learning algorithm and a traditional compensation

algorithm based on a physical model of the skin are integrated into

the proposed algorithm. The flow chart of robot force control is

shown in Figure 1. The actual force fe is processed by a first-order

low-pass filter to remove high-frequency noise. The difference

between the actual force and the reference force is passed through

the impedance controller to obtain the offset displacement of the

robot. The offset displacement is compensated by integrating the

DQN strategy and a compensation strategy based on the physical

model of the skin. The compensations of the two different DQNs

are a1 and a2, the compensation based on the physical model of the

skin is us, and the compensation after fusing offset displacement

and strategy is uf . This compensation is sent to the internal

displacement controller of the robot, thereby indirectly adjusting

the contact state between the robot and the outside world.

3 Decision-making process of
di�erent strategies

3.1 Robot displacement compensation
process with DQN strategies

Manually optimizing the compensation displacement selection

is very tedious and time-consuming, whereas the reinforcement

learning algorithm can independently identify the optimal control

strategy. The reinforcement learning algorithm uses the Markov

decision process as its theoretical framework. In the Markov

decision process, the contact force state between the robot and

the skin is denoted by s, the agent selects the robot action a

according to the current contact state, and the robot executes action

a to change the robot state. Simultaneously, the agent obtains

an immediate reward r and then continues to choose the action

according to the state at the next moment. The final trajectory τ

obtained by the agent is τ = {s0, a0, r0, s1, a1, r1, s2, a2, r2, ...,

st , at , rt , ..., sT, aT, rT}, where rt is the instant reward at the t-

th moment, tǫ[0, T]. The robot-skin interaction process is used

to maintain the actual force within a certain range, so the instant

reward can be set as the distance between the actual force and the

reference force:

rt = −kr*
∣

∣fr
t − fe

t
∣

∣ (4)

where kr is the proportional factor. The contact state s can be set as

the force error and the change of the force error, namely,

st = [et , ėt] (5)

where et is the force error at time t, et = fr
t − fe

t , ėt is the change

of the force error, ėt = et−et−1. The robot action a is the impedance

control compensation. Given a policy π , the discounted reward

received by the trajectory τ of an interaction between the agent and

the environment is:

R(τ ) =

T−1
∑

t=0

γ trt+1 =

T−1
∑

t=0

γ tr(st , at , st+1) (6)

where γ is a discount factor between 0 and 1. When the time is t,

the contact state is st , and the action selection is at , the expectation

E(Rt |st , at) of the defined discounted return R is the state-action

value function, that is, the Q-function:

Q(st , at) = E[R(t)|St = s|At = a] (7)

where E is the expectation and S and A are the sets of states and

actions, respectively.

In the Q-learning algorithm, for each state s, the agent adopts

the ε-greedy strategy. In the first action value function table,

an action at is selected, and then the action atis executed and

transferred to the next state st . In the second action value function

table, an action at+1 that maximizes Q(st+1, at+1) is selected

according to the state st+1, and the predicted value and target

value are used to update the Q-value function. The prediction value

uses the current state and the known Q-value function to estimate

the Q-value of an action being taken in the current state, and the

prediction value is Q(st , at). The target value updates the Q-value

function, which is rt+γmaxQ(st+1, at+1), and the Q-value function

gradually adjusts the Q-value through the difference between the

predicted value and the target value:

Q(st , at)← Q(st , at)+ α[rt + γ maxQ(st+1, at+1)− Q(st , at)] (8)

where γ is the discount factor (0≤γ≤1) and α represents the

learning rate of the model.

Through the learned Q-value function, the

agent selects the action with the highest Q-value

according to the current state to be the optimal

strategy π
∗:

π∗ = argmaxQ(st , at) (9)

However, the state space of robot-skin contact is high-

dimensional. To calculate the value function Q(s, a) in the state

and action space, the neural network fitting method can be

used to fit the action value function. However, if directly using

one neural network updates the Q-learning algorithm, that is,

the Q-value rt+γmaxQ(st+1, at+1) and target Q value Q(st , at)

are the same network structure with the same parameters, the

predicted value and the target value will change together, which

increases the possibility of model oscillation and divergence to

some extent. To address this, the predicted value deep neural

network Q(s, a, θ) and the target value deep neural network

Q(s, a, θ−) are used. When training parameters, samples are

usually strongly correlated and non-static; if the data are applied

directly, the model will have difficulty converging and the loss

values will constantly fluctuate. The DQN algorithm introduces a

mechanism for replaying experience: at each stage, the predicted
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FIGURE 1

Flow chart of robot force control.

value deep neural network executes action a through the ε-greedy

strategy, namely:

a =

{

arg max Q(s, a, θ) l− ε

random action ε
(10)

After the experience sample data are obtained, the state and

action data are stored in the experience pool. When the predictive

value network needs to be trained, minibatch data are randomly

selected from the experience pool for that training. On the one

hand, introducing the experience pool replay mechanism makes

backing up rewards easy; on the other hand, using a small

number of random samples helps eliminate the correlation and

dependence between samples. The loss function of the deep

neural network for the predicted value is set to Mnih et al.

(2015):

L(θ) = E[(y− Q(s, a, θ))2] (11)

where L represents the loss function and y is the value of the target

network, as follows:

yt = rt + γ ∗max

[

⌢

Q
(

st+1, at+1, θ
−
)

]

(12)

In the initial state, the parameter θ of the predicted value

network is the same as the parameter θ− of the target network.

Equation 11 is used to optimize the parameters of the predicted

value network by gradient descent, and the parameter θ in

the predicted network is updated. After the agent collects G

group experience samples and N training iterations, the θ

of the prediction network is copied to the θ− of the target

network, i.e., Q̂ = Q. As the above steps are repeated, the

parameters of the predictor network are continuously updated

to improve the predictive power and performance of the

network, whereas the parameters of the target value network

are relatively stable and are only periodically copied from the

predictor network. The fitting ability of the Q-value function is

gradually optimized, and the agent selects the action with the

highest Q-value as the current optimal decision according to the

current state.

The neural network is constructed by a multilayer feedforward

neural network, which consists of an input layer, multiple hidden

layers, and an output layer. The contact state of the robot is

passed through the input layer to the output layer along with

connections between neurons in the hidden layer. Finally, the

Q-value is output. In the hidden layer, the neural network first

calculates the net activation value Zp of the neurons in the l-

th layer according to the activation value U l−1 of neurons in

layer (l-1)-th and then uses an activation function to obtain the

activation value of neurons in the l-th layer. Let the input be

the state value of the robot, that is, U0 =s; information is

disseminated by continuously iterating the following equation (Li

et al., 2012):

Zl = W lU l−1 + Bl

U l = ϕ(Zl) (13)

whereWl is the weight of the l-th layer; bl is the bias of the l-th layer;

Zl is the net activation value of the l-th layer; Ul is the activation

value of the l-th layer; and ϕ is the activation function. The ReLU

activation function is selected:

Re LU(Z) =

{

Z Z ≥ 0

0 Z < 0
(14)

The parameters of the neural network are trained by

backpropagation, and the partial derivative of the loss function

for each parameter in the network is calculated. Then, the chain

rule is used to backpropagate these partial derivatives to each layer

in the network, thereby updating the parameters to minimize the

loss function. The error term δl for the l-th layer is calculated by

backpropagation, and the sensitivity of the final loss to the neurons

in layer l is defined as Shi (2021):

δl ,
∂L(θ)

∂Zl
(15)
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The derivative of each layer parameter is:

∂L(θ)
∂W l = δl(U l−1)

T

∂L(θ)
∂bl
= δl

(16)

where δl is the error term of neurons in the l layer. Finally, the

neural network parameters are updated:

W l ←W l − αδl(U l−1)
T
+ λW l

bl ← bl − αδl (17)

where α is the learning rate and λ is the regularization coefficient.

3.2 Dynamics models of reinforcement
learning

The agent of reinforcement learning must go through trial

and error when improving the policy and conducting multiple

experiments in the actual interaction to achieve the desired result.

However, frequent trial and error processes will not only negatively

impact the interactive experience but also cause damage and

pain to the human skin due to repeated friction. Therefore,

fast convergence of the algorithm during robot-skin contact is

crucial. Since the DQN algorithm is a model-free algorithm, it

must conduct multiple experiments to obtain sufficient data. To

accelerate the convergence, dynamic models of the reinforcement

learning environment can be constructed so that DQN can

iteratively train in a virtual environment, reducing the number of

actual training and improving the practicality of the algorithm.

3.2.1 BP neural network dynamics model
Since skin has biological characteristics, the mechanical

characteristics of skin are non-linear. The dynamic model of the

robot is also non-linear, so the contact process between the two

can be set as a non-linear system; the BP neural network has non-

linear mapping capabilities, so it can construct the relationship

between the contact state and robot displacement. The network

inputs the contact state et , ėt , and the compensation displacement a

of the robot, and the output state is et+1, ėt+1. The dynamics model

constructed by the BP neural network is composed of the data of

multiple impedance algorithms, and the fitted model is as follows:

st+1 = ϕ(st , at ,NeT1.W,NeT1.b) (18)

where NeT1.W and NeT1.b are the weight and bias parameters

in the BP neural network. The network can be updated through

Equations 13–17. After the BP neural network constructs

the environmental dynamics model, the DQN algorithm

can be used to train the strategy offline in this model. Once

the compensation strategy satisfies Equation 9, the output

compensation displacement a1 can be obtained.

3.2.2 LSTM neural network dynamics model
The presence of noise information in the robot state data is

likely to lead to inaccurate information in the network results.

A recurrent neural network can establish the correlation of state

model information in time series and integrate multiple state

information according to the characteristics of spatiotemporal

context information; through doing so, the network can reduce

noise interference and purify the sample set so that a more accurate

state model can be obtained. A certain connection exists between

the robot state data; the long short-term memory (LSTM) neural

network has short-term memory ability, so it can build further

connections between the data. Neurons in LSTM can receive

information not only from other neurons but also from themselves,

forming a network structure with loops. The LSTM better aligns

with the structure of the biological neural network than with the

feedforward neural network, and the fitted model is as follows:

St+1 = φ(St ,At ,NeT2.W,NeT2.b) (19)

LSTM can effectively capture and store long-term dependencies

by introducing memory units and gating mechanisms. The gating

mechanism controls the path of information transmission; the

forget gate ft determines whether to retain the memory unit Ct−1

at the previous moment, and the input gate controls how much

information must be saved at the current moment. The output

gate ot controls how much information the memory state Ct−1

at the current moment must output to the hidden state Ht. The

memory unit in LSTM is a linear structure that can maintain the

chronological flow of information. When ft = 0 and it = 1, the

memory unit clears the historical information; when ft = 1 and

it = 0, the memory unit copies the content of the previous moment,

and no new information is written. The key operations of LSTM are

expressed as follows (Shi et al., 2015):

it = σ (NeT2.WxiXt + NeT2.WhiHt−1

+NeT2.Wci ⊙ Ct−1 + NeT2.bi)

ft = σ (NeT2.WxfXt + NeT2.WhfHt−1

+NeT2.Wcf ⊙ Ct−1 + NeT2.bf )

ot = σ (NeT2.WxoXt + NeT2.WhoHt−1

+NeT2.Wco ⊙ Ct−1 + NeT2.b0)

Ct = ft ⊙ Ct−1 + it ⊙ tanh(NeT2.WxcXt

+NeT2.WhcHt−1 + NeT2.bc)

Ht = ot ⊙ tanh(Ct) (20)

where, it, f t, and ot represent the input gate, forget gate, and output

gate in the LSTM, respectively; t represents the period, Xt denotes

the input at the current moment, Ct represents the memory state,

Htrepresents the hidden state, andNet2.Wf ,Net2.Wi,Net2.Wc, and

Net2.Wo are the weights of the forget gate, input gate, estimated

state, and output gate, respectively. ⊙ denotes the Hadamard

product. σ is a logistic function with an output interval of (0,1),

and Ht−1 is the external state at the previous moment.

After the LSTMneural network constructs the dynamicsmodel,

the DQN algorithm can also be used to train offline in the
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constructed model, and the output compensation displacement a2

can be obtained.

3.3 Robot displacement compensation
strategy with a skin mechanics model

For the skin contact environment, the amount of skin extrusion

deformation first increases and then slowly increases as pressure

increases, which has the non-linear elastic characteristics of

compliant materials. The Hunt-Crossley skin mechanics model

defines the relationship between the force on the skin and the depth

of extrusion as a power function, which can conform to the non-

linear elastic and viscous mechanical properties of skin-like soft

material objects. In the one-dimensional direction, when the skin

is squeezed, the deformation force of the skin is Schindeler and

Hashtrudi-Zaad (2018):

fs = ks(|x− xe|)
β + bs(|ẋ− ẋe|)

β (21)

where fs is the force generated by skin deformation; x is the

coordinate of the robot when it is deformed; xe are the initial

coordinates of the skin when it is not deformed by force; |x-xe| is

the amount of deformation; ks and bs are the elasticity and damping

coefficients, respectively; and bsis the power exponent, determined

by the nature of the skin in the local contact area. The parameters of

the skin of different parts of the human body differ in certain ways,

and the parameters in Equation 21 also change, so directly using

Equation 21 to calculate the parameters online is cumbersome.

Therefore, when the robot moves along the skin, the axis is fine-

tuned in the Z-axis direction, that is, ẋ ≈ 0; for calculation ease,

Equation 21 is simplified to:

fs = ks(|x− xe|)
β (22)

The parameters ks and β are fitted by an offline collection of

deformation and contact force data of different parts of the body by

using the least square method. Therefore, the online compensation

displacement of the robot is:

us =
β

√

fe

ks
−

β

√

fr

ks
(23)

where us is the compensation displacement based on displacement

compensation with skin mechanics.

4 Force control strategy fusion
process based on the GMM/GMR
algorithm

All strategies for the environment dynamics model built by

the BP neural network or the LSTM neural network are offline

training strategies, and some errors will still exist in the actual

process regardless of which strategy is chosen. Although the robot

displacement compensation strategy under the physical model

of skin mechanics is an online strategy, experience data cannot

improve it. Therefore, the fusion strategy is employed to effectively

fuse the prediction results of different data sources or models to

improve the accuracy and robustness of the overall prediction.

The GMM/GMR algorithm is flexible, highly efficient,

adaptable to multivariate data, interpretable and robust. These

advantages can support the fusion of robot force control strategies.

GMM is a probability model based on a Gaussian distribution that

assumes the data are a mixture of several Gaussian distributions.

By training the data, the GMM can learn the parameters (mean

and covariance matrix), as well as the weight, of each Gaussian

distribution. These parameters can be used to describe the data

distribution and to generate new samples.

Under the three strategies, the robot may obtain

three different predicted robot force trajectories, that is,

{{tn, a
1
n}

Nm
n=1, {tn, a

2
n}

Nm
n=1, {tn, u

s
n}

Nm
n=1}, and the predicted values

of the deep neural network model and the skin mechanics

model. Here, n is the number of samples, Nm is the length of the

trajectory, t is the time information, a1, a2, and us are the output

compensation displacements of the robot, u represents the three

kinds of compensation displacements, and the GMM can model

the joint probability distribution P(t, u) of the input and output

variables in the sample as follows (Man et al., 2021):

p(t, u) ∼

M
∑

m=1

πmN(µm,6m) (24)

whereM is the number of Gaussian components in the GMM. πm,

µm, and 6m represent the prior probability, mean and covariance

of them-th Gaussian component, respectively, and µm and 6m are

defined as follows:

µm =

[

µt,m

µu,m

]

6m =

[

6tt,m 6tu,m

6ut,m 6uu,m

]

(25)

The parameters of the GMM are iteratively optimized through

the expectation-maximization (EM) algorithm (Hu et al., 2023),

the posterior probability of each sample point belonging to each

Gaussian component is calculated, and the mean value, covariance

matrix and mixing coefficient of the Gaussian component are

updated. After obtaining the trained GMM model, GMR is used

to make a regression prediction on the robot force trajectory.

The posterior probability of each Gaussian component is first

calculated, and the weighted sum of the posterior probability is used

to obtain the weighted Gaussian component mean and covariance

matrix. A new trajectory point is then obtained by sampling

from each Gaussian component. GMR is used to predict the

conditional probability distribution of the corresponding trajectory

of a new input:

p(u∗|t∗) =

M
∑

m=1

hm(t
∗)N(µ̄m(t

∗, 6̄m) (26)
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where t∗ and u∗ are the predicted time and compensation

displacement, respectively, and hm, µ̄c, and 6̄m are calculated

as follows:

hm(t
∗) =

πmN(t∗|µt,m,6tt,m)
M
∑

i=1
πiN(t∗|µt,i,6tt,i)

µ̄c(t
∗) = µu,m +6tt,m6−1tt,m(t

∗ − µt,m)

6̄m = 6uu,m −6ut,m6−1tt,m6tu,m (27)

For calculation convenience, Equation 26 can be

approximated as

p(u∗|t∗) ≈ N(µ̂6̂) (28)

where µ̂ =
M
∑

m=1
hm(t

∗)µ̄c(t
∗), 6̂ =

M
∑

m=1
hc(t
∗)µ̄T

m(t
∗) +

6̄m − µ̂µ̂T , the central distribution of u∗ is obtained according

to the probability distribution in p(u∗|t∗), and uf is the final

fusion strategy.

5 Experimental setup of the force
control based on the GMM/GMR
algorithm

A schematic diagram of the experiment is shown in Figure 2.

In this experiment, the robot squeezes the skin vertically along

the Z direction at a speed of 2 mm/s. When the robot reaches

the reference force fr along the Z direction, i.e., point Qa in the

figure, the robot stops moving in the Z direction, enters force

control mode to move horizontally along the X direction at a

speed of 2 mm/s for 5 s until reaching point Qb, the robot then

leaves the human skin vertically. The second trajectory is in the

opposite direction, starting from Qb to Qa. The force sensor is

an ME-FKD40, and the force signal is collected by a backoff

module and transmitted to the robot controller, the control system

works at a frequency of 50Hz, and the robot force control only

tested while moving from point Qa to Qb or from point Qb

to Qa.

The force control based on the GMM/GMR algorithm

experimental process is shown in Figure 3. Multiple sets of

impedance data parameters are used to obtain the robot contact

states and displacements in the Z-direction to get experience

data. When different impedance strategies are implemented, the

difference between the force on the end of the robot and the

reference force et , the rate of change of the error ėt and the

offset displacement 1xt of the robot are collected, which can

be used for fitting the BP and LSTM neural network model.

The least squares algorithm is used to fit parameters in the

skin mechanics model. The DQN strategy is obtained through

offline training, and the compensation strategy based on the

skin mechanics model is obtained through online calculation.

If the force error obtained by the force control based on the

GMM/GMR algorithm is greater than the expected threshold

FIGURE 2

Schematic diagram of the robot tracking process along the skin.

FIGURE 3

Experimental flowchart.

±0.2N, the obtained data can be added to the database. Then,

the BP neural network can be updated again, and experiments

can be iterated until the error between the force in the Z-

direction and the reference force is within the set range, namely,

±0.2 N.
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FIGURE 4

Tracking results comparison of impedance control and the force

control based on the GMM/GMR algorithm (volunteer A, Qa to Qb).

FIGURE 5

DQN training process under the BP neural network (volunteer A).

6 Robot-skin contact experiment
results and analysis

To ensure the volunteers’ safety, when the robot applies force

on the skin surface, a gentle force application strategy is adopted,

and the reference force of the robot is set to 5N, i.e., fr = 5N.

In the impedance control strategy, the parameters are manually

adjusted tomd = 10, bd = 6, and kd = 700 according to experience.

When the robot moves along the skin from point Qa to Qb, the

tracking force obtained by impedance control is illustrated by

the blue line in Figure 4. It can be seen from the force signal

that the robot maintains contact with volunteer A, meanwhile,

the force exhibits certain fluctuations. The comparison between

impedance control and the force control based on the GMM/GMR

algorithm fusing different compensation strategies is shown in

FIGURE 6

DQN training process under the LSTM neural network (volunteer A).

FIGURE 7

The experimental results of three di�erent strategies (volunteer A,

Qa to Qb).

Figure 4. The force control based on the GMM/GMR algorithm

is significantly smoother than impedance control, and the control

effect is significantly improved.

Due to the small amount of input and output data, in the

environmental dynamics model constructed by the BP neural

network, the range of action a is [0:0.01:0.2] with a total of 20

actions. When the force error is negative, a chooses the opposite

direction, which can reduce invalid searches. The output is the state

at the next moment. The middle node of the neural network is set

to 30, and the number of layers of the neural network is set to 2.

In the LSTM neural network, the intermediate nodes of the neural

network are set to 20. For the input data s of the DQN, the Q-values,

which are 1-dimensional data, are the output. Due to the parameter

dimensions and the small amount of data, the deep neural network

is much smaller than the image dimension; therefore, the number

of layers of the neural network is set to 2, and the number of nodes
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FIGURE 8

Robot o�set displacement of di�erent strategies (volunteer A, Qa to

Qb).

FIGURE 9

Tracking results comparison of impedance control and the robot

force control based on the GMM/GMR algorithm (volunteer B, Qa to

Qb).

in each layer is set to 30. The step size of the DQN is set to T =

200, G = 200, kr = 10 in Equation 3, ε is 0.1 in Equation 11, and

the total number of iterations N is 200. The iterative process of the

DQN algorithm under the environmental dynamics model of the

BP neural network is shown in Figure 5. As the number of iteration

data increases, the algorithm converges after ∼50 iterations. The

iterative process of the DQN algorithm under the environmental

dynamics model of the LSTM neural network is shown in Figure 6.

As the number of iteration data increases, the algorithm converges

after ∼40 iterations. In the online strategy based on the skin

mechanics model, the force data of different skins are chosen to fit

the parameters of the skin mechanics model, namely, ks = 0.015

and β = 2.5 in Equation 24. In the GMM/GMR algorithm, M is

equal to 2, and the length of the trajectory Nm = 20.

FIGURE 10

DQN training process under the BP neural network (volunteer B).

FIGURE 11

DQN training process under the BP neural network (volunteer B).

Figure 7 shows the results of three different force control

strategies that are run separately. All three algorithms achieve

good results, but they exhibit relatively large fluctuations. Figure 8

depicts the offset displacement strategies of three different strategies

under the robot force control based on the GMM/GMR algorithm.

The DQN with the BP neural network dynamics model and

the LSTM dynamics model are relatively conservative, while the

algorithm based on the skin mechanics model is relatively radical.

To verify the versatility of the proposed algorithm, the arms

of different volunteers are tracked with the robot force control

based on the GMM/GMR algorithm. The parameters are consistent

with the first experiment. The comparison results of the impedance

control process and robot force control based on the GMM/GMR

algorithm are shown in Figure 9. Similar to the effect of volunteer

A, the obtained force signal also fluctuates to a certain extent

with impedance control. The robot force control based on the

GMM/GMR algorithm’s force signal is significantly smoother than
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FIGURE 12

Robot o�set displacement of di�erent strategies (volunteer B, Qa to

Qb).

FIGURE 13

Tracking results comparison of impedance control and the force

control based on the GMM/GMR algorithm (volunteer A, Qb to Qa).

that of the impedance control strategy, the error against the

reference force is stable within a certain range, and the control

effect is significantly improved. The return values of reinforcement

learning with the BP neural network and the LSTM neural network

dynamics model are shown in Figures 10, 11. Both gradually

converge after ∼50 iterations. The robot offset displacement of

different strategies can be computed online as shown in Figure 12.

The experiment of robot trajectory Qb to Qa is shown in Figures 13,

14, although the contact force signal obtained with impedance

control under different external conditions has good contact effect,

the force signal of force control strategy fusion algorithm is

relatively smoother.

The intelligent algorithm for comparison is a model-based

reinforcement learning algorithm, which is constructed by

FIGURE 14

Tracking results comparison of impedance control and the force

control based on the GMM/GMR algorithm (volunteer B, Qb to Qa).

combining a neural network and a cross-entropy method for

control parameter search. The obtained force is shown as the black

line in Figures 4, 9, 13, 14. Compared with the impedance control

algorithm in the four groups of experiments, the model-based

reinforcement learning algorithm has better results. However, the

force signal of the model-based reinforcement learning algorithm

exceeds the threshold in some trajectories, such as in the second

half of the force tracking on volunteer B in Figure 9, and the robot

force control based on the GMM/GMR algorithm is more stable

and has better versatility.

The error comparison between the impedance control, model-

based reinforcement learning algorithm and robot force control

based on the GMM/GMR algorithm is shown in Table 2. The

error of force tracking with the robot force control based on

the GMM/GMR algorithm includes the maximum absolute value

|e|max, the mean absolute error |ē| and the standard deviation of

error σe. In the robot force control experiment of the trajectory

from Qa to Qb on different volunteers, the mean absolute errors |ē|

of the robot force control based on the GMM/GMR algorithm were

significantly reduced by 87.5 and 80%, respectively, compared with

that of the impedance control strategy. In the robot force control

experiment of the trajectory from Qb to Qa on different volunteers,

the mean absolute errors |ē| of the robot force control based

on the GMM/GMR algorithm were reduced by 85.7 and 45.7%,

respectively. And all three types of errors had been significantly

reduced, too. Compared with model-based reinforcement learning,

the mean absolute errors |ē| of the robot force control based on

the GMM/GMR algorithm were reduced by 35.7, 65.7, 74.4, and

60%, respectively.

The reason why the robot force control based on the

GMM/GMR algorithm is better than the traditional impedance

control is that the impedance control adjustment range is small.

Although impedance control can ensure that the robot and skin

remain in contact facing volunteers A and B, a fixed impedance

parameter cannot ensure the accuracy of the robot-skin contact
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TABLE 2 Error comparison of force control algorithms between impedance control, model-based reinforcement learning algorithm and the force

control based on the GMM/GMR algorithm.

Algorithm |e|max/N |ē|/N σe/N

Impedance control (volunteer A, Qa to Qb) 1.1 0.49 0.46

Model-based reinforcement learning algorithm (volunteer A, Qa to Qb) 0.31 0.095 0.1

Robot force control based on the GMM/GMR algorithm (volunteer A, Qa to Qb) 0.21 0.061 0.074

Impedance control (volunteer A, Qb to Qa) 0.95 0.38 0.45

Model-based reinforcement learning algorithm (volunteer A, Qb to Qa) 0.58 0.13 0.16

Robot force control based on the GMM\GMR algorithm (volunteer A, Qb to Qa) 0.26 0.054 0.068

Impedance control (volunteer B, Qa to Qb) 1.6 0.33 0.39

Model-based reinforcement learning algorithm (volunteer B, Qa to Qb) 0.54 0.25 0.18

Robot force control based on the GMM/GMR algorithm (volunteer B, Qa to Qb) 0.37 0.064 0.087

Impedance control (volunteer B, Qb to Qa) 0.44 0.14 0.17

Model-based reinforcement learning algorithm (volunteer B, Qb to Qa) 0.51 0.19 0.15

Robot force control based on the GMM/GMR algorithm (volunteer B, Qb to Qa) 0.25 0.076 0.087

process. The accuracy of the model-based reinforcement learning

strategy depends on whether the model conforms to reality. When

the robot contact state exceeds the range of the model, there will be

an error between the offline reinforcement learning strategy and the

actual demand. However, when the robot force control based on the

GMM/GMR algorithm faces unknown skin environments, the skin

mechanics model can propose compensation strategies online and

modify the robot state in real time, at the same time, the DQN with

the BP and LSTM neural network models can provide the historical

experience of offline learning. When the GMM/GMR algorithm

integrates the two, the robot can obtain the advantages of both. The

fusion strategy for volunteers A and B is relatively stable and has

relatively good versatility.

7 Conclusions and future work

A robot force controller based on the GMM/GMR algorithm

is proposed that combines different compensation strategies and

is applied to robot-skin contact scenarios. The initial robot

force control strategy is established by impedance control,

the reinforcement learning algorithm and traditional control

strategy are fused to compensate for the impedance control.

Two environmental dynamics models of reinforcement learning

are constructed to simulate the contact process between the

robot and the skin, and accelerate the offline convergence of

the reinforcement learning algorithm. The GMM/GMR algorithm

fuses online and offline compensation strategies to improve the

robustness and versatility of the algorithm and to adapt to different

skin environments.

The experimental results show that the robot force control

based on the GMM/GMR algorithm has good versatility and

accuracy. Under 100 offline iterations, the reinforcement learning

algorithm can select effective control parameters. The force can

quickly converge to the reference force, and its error is stable within

the range of ±0.2N. The method has also achieved good results

with different volunteers. Furthermore, for the force obtained

by using the reinforcement learning algorithm, the maximum

absolute value, the mean absolute error and the standard deviation

of error are lower than those of the method of impedance

control and the model-based reinforcement learning algorithm, the

mean absolute errors of the force signal in the four groups are

significantly reduced, further illustrating the strong stability of the

proposed algorithm.

In the current work, we use constant force control, which is

suitable for some scenarios of robot-skin contact, such as auxiliary

treatment and robot local massage. In future research, we will study

variable force to make the use range of the force controller wider.
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