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The development of education robots has brought tremendous potential and

opportunities to the field of education. These intelligent machines can interact

with students in classrooms and learning environments, providing personalized

educational support. To enable education robots to fulfill their roles, they

require accurate object detection capabilities to perceive and understand the

surrounding environment of students, identify targets, and interact with them.

Object detection in complex environments remains challenging, as classrooms or

learning scenarios involve various objects, backgrounds, and lighting conditions.

Improving the accuracy and e�ciency of object detection is crucial for the

development of education robots. This paper introduces the progress of an

education robot’s object detection based on a brain-inspired heuristic method,

which integrates Faster R-CNN, YOLOv3, and semi-supervised learning. By

combining the strengths of these three techniques, we can improve the accuracy

and e�ciency of object detection in education robot systems. In this work, we

integrate two popular object detection algorithms: Faster R-CNN and YOLOv3.We

conduct a series of experiments on the task of education robot object detection.

The experimental results demonstrate that our proposed optimization algorithm

significantly outperforms individual algorithms in terms of accuracy and real-

time performance.Moreover, through semi-supervised learning, we achieve better

performance with fewer labeled samples. This will provide education robots with

more accurate perception capabilities, enabling better interaction with students

and delivering personalized educational experiences. It will drive the development

of the field of education robots, o�ering innovative and personalized solutions for

education.

KEYWORDS

educational robots, object detection, faster R-CNN, YOLOv3, semi-supervised learning,

optimization

1 Introduction

In recent years, educational robots have been rapidly developing and being applied

as innovative educational tools. Object detection is a crucial technology for educational

robots as it helps them understand and perceive the surrounding environment, enabling

better interaction with students and providing personalized learning experiences. Due to
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the complexity and diversity of educational settings, traditional

object detection methods face several challenges in practical

applications (Mittal et al., 2020). Existing object detection

algorithms may encounter issues of false positives and false

negatives. False positives refer to incorrectly recognizing non-target

objects as target objects, while false negatives occur when actual

target objects are not detected. These errors can have a negative

impact on the perception capabilities and interaction effectiveness

of educational robots (Mahajan et al., 2023). For example, if an

educational robot mistakenly identifies a student’s book as a cup,

it may provide incorrect advice or guidance, thereby reducing

the effectiveness of education. In an educational environment, the

behavior and perspectives of students and teachers can change

rapidly. Educational robots need to be able to quickly and

accurately detect and recognize objects in real-time to provide

timely feedback and interaction (Perez-Rua et al., 2020). Existing

object detection algorithms often involve a trade-off between speed

and accuracy. Some high-precision algorithms may require more

computational resources and time (Zhang M. et al., 2022), making

real-time performance challenging to achieve. On the other hand,

faster algorithms may sacrifice accuracy, leading to less precise

detection results. This poses a challenge for educational robots

in choosing object detection algorithms as they need to strike a

balance between speed and accuracy.

In the field of educational robot object detection, here are five

common models:

1. Mask Region-based Convolutional Neural Networks [Mask

R-CNN (Danielczuk et al., 2019)]: Mask R-CNN not only

performs object detection and localization but also generates

semantic segmentation masks for each detected object. It adds

a segmentation branch to the base object detection model to

predict pixel-level masks. It is slower compared to models that only

perform object detection.

2. Fully Convolutional One-Stage Object Detection [FCOS Tian

et al., 2022] is a fully convolutional one-stage object detection

algorithm that achieves better object detection performance by

performing dense predictions on feature maps.

3. Single Shot MultiBox Detector (SSD): SSD is a single-shot

object detection model that predicts object locations and classes on

different feature maps with varying scales. It has a high detection

speed and good accuracy but may encounter difficulties in handling

small objects. The drawbacks of FCOS include high computational

cost, poor scale invariance, inaccurate localization, difficulty in

handling dense objects, and sensitivity to variations in aspect ratios.

4. RetinaNet (Afif et al., 2020): RetinaNet is an object detection

model based on the Feature Pyramid Network (FPN), which

enables detection of objects at different scales using a multi-level

feature pyramid. It performs well in detecting small and densely

packed objects but is slower in speed.

5. EfficientNet (Atila et al., 2021): EfficientNet is an efficient and

accurate convolutional neural network architecture that exhibits

high accuracy in the field of object detection while having low

computational costs and moderate parameter count. Its drawback

is that it is relatively complex, which may increase the complexity

of model training and deployment.

We aim to find a method to improve the efficiency of object

detection in education robots to meet real-time requirements.

To overcome these challenges, we propose integrating Faster

R-CNN, YOLOv3, and semi-supervised learning methods and

optimizing them (Sun, 2022). We construct a diverse dataset

and annotate bounding boxes for the objects of interest. This

dataset will be used for training and evaluating our proposed

object detection algorithm. Next, we delve into the architecture

and implementation details of Faster R-CNN and YOLOv3,

comparing their advantages and disadvantages, and integrate these

two algorithms to leverage their strengths and enhance object

detection capabilities. To further improve model performance,

we introduce semi-supervised learning techniques (He and

Tang, 2023). We utilize unlabeled data and employ self-training,

co-training, and pseudo-labeling methods to augment the training

process of the model (Liu Y.-C. et al., 2022). Additionally, we

apply transfer learning by initializing the model with pre-trained

weights to enhance its robustness (Liu C. et al., 2022). Data

augmentation techniques such as random cropping, flipping, and

rotation are also employed to increase the diversity and quantity

of the data (Wang et al., 2023). By evaluating the optimized

models on an independent validation dataset, we validate

the effectiveness of this approach (Sundermeyer et al., 2020).

Experimental results demonstrate significant improvements in

the performance, accuracy, and robustness of our object detection

algorithm for education robots in complex environments. This

will provide education robots with more accurate perception

capabilities, enabling better interaction with students and

delivering personalized educational experiences. It will drive the

development of the field of education robots, offering innovative

and personalized solutions for education.

The contribution points of this paper are as follows:

• We have designed an integrated framework that combines

two object detection algorithms, Faster R-CNN and YOLOv3,

to complement each other. Faster R-CNN excels in object

localization and classification accuracy, while YOLOv3 offers

higher detection speed and adaptability. By integrating these

two algorithms, our system achieves a balance between

accuracy and efficiency, enhancing the performance of object

detection.

• To address the difficulties in data collection and annotation

for object detection tasks in educational robot applications,

we have introduced a semi-supervised learning approach.

This approach leverages information from unlabeled data

to enhance the generalization ability of the object detection

model, further improving accuracy. By making full use

of limited labeled data and abundant unlabeled data, the

system can better adapt to changes in the educational

environment, enhancing the performance of object

detection.

• We have explored the potential application of brain-inspired

methods in educational robot object detection systems.

By simulating the processing mechanisms and structures

of the human brain, the system can better understand

and recognize targets in the educational environment,

providing strong support for intelligent-assisted teaching. This

approach has shown significant improvements in experiments,

demonstrating its effectiveness and feasibility, and providing
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valuable exploration and practice for the intelligence and

automation of educational robots.

In the second section, we presented related work, described

our proposed research methodology, and conducted discussions.

The third section introduced the main methods of this paper, such

as the Faster R-CNN, YOLOv3, and Semi-supervised Learning. In

the fourth section, we discussed the experimental part, including

comparisons, ablation experiments, and visualizations. The fifth

section presented the discussion, elaborating on the methodology

and recent advancements in the field, highlighting the limitations

of our approach, and providing insights into future work. Finally,

in the sixth section, we summarized the methodology and provided

a conclusive summary.

2 Related work

Education robot object detection refers to the use of machine

learning and computer vision techniques in the field of education to

identify and locate specific objects in images or videos (Alam, 2022).

Through object detection, education robots can automatically

recognize and analyze various objects in educational settings, such

as books, stationery, and laboratory equipment, thereby providing

more intelligent teaching support and interactive experiences. The

emergence and development of education robot object detection

can be traced back to related research in the fields of computer

vision and artificial intelligence. Computer vision is the discipline

that studies how computers can acquire, process, and understand

visual information, and object detection is an important task within

this field.

Early object detection methods primarily relied on manually

designed feature extraction and classifiers. For example, Haar

features and cascade classifiers (Xu X. et al., 2020) were commonly

used methods that had efficient detection speed and were suitable

for real-time applications in robot object detection. Cascade

classifiers reduce computation by decomposing complex tasks

and quickly filtering out non-target regions. They perform well

in detecting small objects and have lower demands in resource-

limited environments. However, compared to deep learning

methods (Chen F. et al., 2019). Haar features and cascade classifiers

have lower detection accuracy because Haar features cannot

effectively capture the complex textures and shapes of targets. They

are sensitive to target poses and lighting variations, which may lead

to a decline in detection performance. Training cascade classifiers

requires a large amount of annotated data, posing challenges

in certain specific domain object detection tasks where complex

scenes and diverse targets are present.

With the rise of deep learning technology, significant

breakthroughs have been made in object detection. Deep learning

utilizes multi-layer neural networks for feature learning and pattern

recognition, enabling automatic feature representation learning

from data, thereby improving the accuracy and robustness of

object detection. Among them, Convolutional Neural Networks

(CNNs) (Kattenborn et al., 2021) serve as a core technology in

deep learning and provide powerful tools for object detection.

CNNs were initially proposed in the late 1980s and early 1990s.

Yann LeCun and others introduced a CNN architecture called

LeNet-5 (Islam and Matin, 2020) in 1989 for handwritten digit

recognition tasks. LeNet-5 is a classic CNN model that includes

basic components such as convolutional layers (Luo Z. et al., 2019),

pooling layers, and fully connected layers, laying the foundation for

the subsequent development of deep learning. In object detection

tasks, CNNs are typically used as feature extractors. By training

on large-scale datasets, CNNs can learn rich and discriminative

feature representations. These learned features can then be fed

into subsequent classifiers or regressors to accomplish the object

detection task. With the advancement of technology and increased

computational power, CNNs have achieved great success in the field

of object detection. Particularly in 2012, the AlexNet (Ismail Fawaz

et al., 2020) model made a breakthrough in the ImageNet image

classification challenge, leading to a renaissance of deep learning in

the field of computer vision. Since then, many CNN-based object

detection algorithms have been proposed, such as R-CNN (Bharati

and Pramanik, 2020), Fast R-CNN (Maity et al., 2021), and

YOLO (Jiang et al., 2022). Region-based Convolutional Neural

Networks (R-CNN) is a region-based object detection algorithm

that uses methods like selective search to extract candidate regions,

performs feature extraction and classification for each candidate

region, and then uses a regressor for precise localization of objects.

While it excels in accuracy, it is relatively slow in speed. Fast R-CNN

is an improvement over R-CNN, achieving end-to-end training

by introducing Region of Interest (RoI) pooling layers. It takes

the entire image as input, shares convolutional features to extract

features for candidate regions, and uses classifiers and regressors

for object recognition and localization. Compared to R-CNN, Fast

R-CNN offers faster detection speed and improved accuracy. You

Only Look Once (YOLO) is a one-stage detection-based object

detection algorithm. It formulates the object detection task as a

regression problem, directly predicting the class and bounding box

of objects on the image. YOLO has fast detection speed and can be

applied in real-time scenarios such as video streams, but it suffers

from some accuracy loss in detecting small and densely packed

objects. With further developments in deep learning, models such

as CenterNet (Xu Z. et al., 2020), EfficientDet (Mekhalfi et al.,

2021), and EfficientPose (Groos et al., 2021) have been proposed

for object detection or human pose estimation tasks using deep

neural networks. CenterNet, introduced by the research team at

the University of California, Berkeley in 2019, is a center-point-

based object detection algorithm that performs object detection by

predicting the center point positions and bounding box sizes of

objects. In the field of education robots, CenterNet can be used

to detect students’ keypoints or regions of interest, such as facial

expressions and eye gaze points, to help the robot perceive the

students’ states and needs. It has advantages such as efficiency,

accuracy, multitasking, and adaptability to small targets. However,

it faces challenges in handling dense targets, occlusions, and pose

variations, and requires a large amount of annotated data for

training. EfficientDet, introduced by the Google Brain team in

2020, builds an efficient and accurate object detection framework

based on the EfficientNet architecture using Bi-directional Feature

Pyramid Network (BiFPN) to construct a feature pyramid network

with multiple scales. In the field of education robots, EfficientDet

can be used to identify and locate objects or learning tools around

the robot, enabling interaction and teaching with students. It is

an efficient and accurate object detection model suitable for object
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recognition and localization in educational robots. However, it also

requires a large amount of annotated data and has limitations in

handling dense targets. EfficientPose, proposed by the research

team at the Chinese University of Hong Kong in 2021, is an

algorithm for human pose estimation. It utilizes EfficientNet

and a top-down branch to detect and estimate the positions of

human keypoints to infer human poses. In the field of education

robots, EfficientPose can be used to recognize students’ postures

and actions, such as correct sitting posture and raising hands,

providing real-time feedback and guidance. It is an efficient and

accurate pose and action recognition model that can be used

for real-time feedback and guidance on student postures. It also

requires a large amount of annotated data and has limitations

in complex poses and actions. However, deep learning-based

object detection methods also have limitations. These methods

often require a large amount of annotated data for training,

including annotations for object categories and bounding boxes,

which can be time-consuming and resource-intensive in the field

of education robots. The performance of deep learning models

heavily relies on parameter settings and tuning, requiring iterative

experiments and optimization to achieve good detection results.

Deep learning models typically require training and inference

on high-performance computing devices, posing challenges for

education robot systems with limited resources.

Weakly supervised learning methods (Li et al., 2019) have

provided effective solutions for object detection tasks in the field

of education robots, significantly reducing the cost and workload

of data annotation. Traditional object detection methods typically

require a large amount of detailed annotated data, including

manually labeling the position and class information of each

object instance. Acquiring a large-scale annotated dataset can

be challenging, making weakly supervised learning methods a

feasible alternative. Weakly supervised learning methods train

object detection models by utilizing coarse labels or auxiliary

information, thereby reducing the need for detailed annotation

data. In the field of education robots, weakly supervised learning

methods can be applied in several aspects. Firstly, weak labels

can be used. Weak labels refer to labels that provide only object

category information without detailed bounding box information.

By collecting images with object category labels in educational

robot scenarios, weakly supervised learningmethods can be used to

train object detection models. These methods significantly reduce

the annotation workload and improve training efficiency. Another

weakly supervised learning method is Multiple Instance Learning

(MIL) (Zhang H. et al., 2022), which uses a set of instances to

represent the presence of an object. In education robots, MIL

methods can be used for object detection. By collecting a set of

images containing the target object and a set of images without the

target object, MIL methods can be used to train object detection

models. This enables the model to learn the features and contextual

information of the object from the examples, thereby improving the

accuracy of object detection. Weakly supervised learning methods

have limitations in terms of accuracy and robustness. Compared to

methods trained with detailed annotation data, weakly supervised

learning methods generally perform worse in object detection

accuracy and robustness. This is because the label information

used in weakly supervised learning methods is relatively coarse and

cannot provide precise object positions and bounding boxes. In

applications that require high precision, weakly supervised learning

methods may not achieve the desired results (Zheng et al., 2022).

Customizing weak supervision strategies for different educational

robot tasks and scenarios is necessary to fully leverage the auxiliary

information during the training process. This requires further

research and experimental validation to find the most suitable

weak supervision strategies for specific tasks. To provide a more

comprehensive and accurate understanding of objects, enhance

the teaching effectiveness and learning experience of education

robots, researchers have proposed cross-modal object detection

methods (Li et al., 2020). Cross-modal object detection methods

enable the fusion of multimodal data. Education robots often

utilize various perception modalities such as images, speech, and

text. By integrating data from these different modalities, richer

information can be obtained to understand students’ behaviors and

needs. By simultaneously analyzing students’ speech commands

and image inputs, education robots can better comprehend

students’ intentions and provide appropriate teaching feedback.

Cross-modal object detection methods can facilitate cross-modal

contextual understanding. This approach not only detects and

recognizes objects but also leverages the correlations between

different modalities to understand the contextual information

of objects. By analyzing the surrounding environmental images

and speech interactions of students, education robots can better

understand the learning context and provide personalized teaching

guidance based on the context. Cross-modal object detection

methods can also make use of cross-modal attention mechanisms.

These mechanisms can automatically learn and adjust the

importance of different modalities, thereby better focusing on

information relevant to the target objects. In education robots,

cross-modal attention mechanisms can be used to concentrate

attention on teaching materials or student behaviors related to

the learning tasks, thereby improving teaching effectiveness and

learning efficiency. Cross-modal object detection methods require

solutions for handling heterogeneity and incompleteness between

different modalities in data fusion. Acquiring and annotating large-

scale cross-modal datasets is a challenging task, and the data

volume from different modalities may be imbalanced.

Due to the diversity and complexity of objects in educational

environments, including differences in shape, color, and size,

algorithms need to have the ability to recognize and locate various

types of objects. The presence of complex backgrounds and

occlusions also adds difficulty to object detection, as algorithms

must distinguish objects from the background and accurately locate

them in the presence of occlusions. Education robots require

efficient processing of object detection tasks to meet real-time

or near-real-time teaching demands. Overcoming these challenges

requires algorithms with strong generalization capabilities, object

segmentation and boundary detection abilities, efficient processing

speeds, and the ability to make effective use of limited datasets and

accurate annotation data. Therefore, leveraging the advantages of

deep learning and improving object detection challenges specific to

education robots is an important research direction. By conducting

in-depth research and applying brain-inspired methods to object

detection, it is expected to contribute to both research and practical

applications in this field.
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Brain-inspired methods (Zendrikov et al., 2023) refer

to approaches that draw inspiration from the structure and

functionality of the human brain and apply these principles

and mechanisms to the fields of computer science and artificial

intelligence. Education robots are robots that utilize artificial

intelligence technologies to assist in the education and learning

process. Object detection is an essential task in the field of computer

vision, aiming to accurately identify and locate specific objects in

images or videos. When applying brain-inspired methods to object

detection tasks in education robots, we can explore and leverage

the structure and functionality of the human brain from multiple

perspectives to improve the performance and efficiency of object

detection. Designing brain-inspired neural network architectures

is a crucial aspect. We can draw insights from the visual processing

mechanisms in the human brain and create neural network

models with similar structures and connectivity patterns to

simulate the transmission and processing of visual information.

For example, we can design hierarchical neural networks where

each layer corresponds to different visual processing stages in

the human brain. Such models can perform object detection

tasks by progressively extracting features and performing object

classification. Short-term memory and context modeling are

also key aspects of brain-inspired methods in object detection

for education robots. The human brain possesses short-term

memory capabilities, allowing it to remember and utilize observed

objects or contextual information to better understand the current

scene. Education robots can leverage this mechanism by utilizing

previously observed objects or contextual information in object

detection tasks, thereby improving the understanding of objects in

the current scene and enhancing the accuracy of object detection.

Brain-inspired methods can also improve object detection

performance through the fusion of heterogeneous information.

Education robots can utilize multiple perceptual modalities (such

as vision and audition) and multiple sources of information

for fusion to obtain a more comprehensive understanding of

objects. Brain-inspired methods can draw inspiration from the

collaborative work of multiple brain regions in the human brain,

integrating and analyzing data from different perceptual modalities

and information sources to improve the robustness and accuracy

of object detection. By combining brain-inspired methods with

education robots, we can achieve more intelligent and efficient

object detection systems, bringing innovation and improvements

to the field of education.

3 Methodology

3.1 Overview of our network

The objective of this work is to optimize and implement an

object detection algorithm for education robots by integrating

Faster R-CNN, YOLOv3, and semi-supervised learning (Chen

J. et al., 2019). The goal is to improve the accuracy and

efficiency of object detection in complex environments,

enabling education robots to perceive and understand

their surroundings, identify targets, and interact with them

effectively.

Figure 1 shows the overall framework diagram of the proposed

model.

Overall workflow of the method:

1. Data collection and preprocessing: collect multimodal data,

including images and speech data, that involve students and

educational scenarios. Preprocess the image data, including resizing

the images to a fixed size, performing color space conversion

(e.g., RGB to grayscale or HSV), and applying data augmentation

techniques such as random cropping, flipping, rotation, etc., to

increase data diversity and model robustness.

2. Feature extraction and representation learning: use

pretrained Faster R-CNN and YOLOv3 models as the base

networks to extract region features and detection box information

from the images. For Faster R-CNN, obtain candidate regions

and their corresponding feature vectors by running the base

network and the Region Proposal Network on the images. For

YOLOv3, input the images into the network, extract feature maps

at different scales through convolutional and pooling layers, and

extract the target’s feature representation from the feature maps.

Perform representation learning on the extracted feature vectors,

which can involve dimensionality reduction techniques such as

principal component analysis (PCA) or other feature selection and

extraction methods to obtain more discriminative representations.

3. Brain-inspired candidate object box generation: generate

candidate object detection boxes using brain-inspired methods.

This approach can simulate human perception and cognition

processes by incorporating visual features, contextual information,

and prior knowledge to generate candidate boxes with potential

targets. Heuristic rules or algorithms can be employed to determine

the positions and sizes of the candidate boxes, such as edge

detection, color segmentation, sliding windows, etc.

4. Training of semi-supervised object detectionmodel: train the

object detection model using semi-supervised learning techniques.

Perform supervised training using labeled data. Input the labeled

data into the object detection model, perform object classification

and position adjustment through the loss function, and optimize

the model parameters. Then, perform unsupervised training using

unlabeled data. Self-training, co-training, or other methods can be

employed to iteratively train the model using unlabeled data and

the model’s output, further enhancing the model’s performance.

5. Object detection and result output: during the testing

phase, apply the trained object detection model to new image

data. Perform object classification and position adjustment on

the candidate boxes in the image to achieve object detection and

localization. Output the detection results, which can include labels

of the object categories and positions, or visualized bounding boxes

indicating the object locations in the image, for application and

interaction in educational robots.

By integrating the feature extraction capabilities of Faster R-

CNN and YOLOv3, combining the training method of semi-

supervised learning, and incorporating brain-inspired methods

for generating candidate object detection boxes, this method can

improve the accuracy, robustness, and generalization ability of

object detection in educational robots (Zhou et al., 2023). Semi-

supervised learning can reduce the need for a large number of

labeled samples, enhancing the scalability and universality of the

model.
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FIGURE 1

The overall framework diagram of the proposed mode.

3.2 Faster R-CNN

Faster Region-based Convolutional Neural Network (R-CNN)

is a popular object detection algorithm known for its high accuracy.

It consists of two main components: a region proposal network

(RPN) and a detection network.

Figure 2 shows the overall framework diagram of the proposed

model.

The basic principle of Faster R-CNN involves the following

steps:

• Base network: use a pre-trained convolutional neural network

to extract features from the input image.

• Region proposal network (RPN): the RPN generates candidate

target regions by sliding windows on the feature map, treating

them as anchor boxes, and predicting whether the anchor

boxes contain objects and how to adjust the boundaries of the

anchor boxes.

• Region of interest pooling (RoI Pooling): divide each

candidate region into fixed-size sub-regions and map them

onto a fixed-size feature map.

• Object classification network: use a fully connected

network to classify each candidate region, taking

the output of RoI Pooling as input, and output the

probabilities of each candidate region belonging to different

target classes.

• Bounding box regression: perform bounding box regression

to adjust the coordinates of the target’s bounding box in each

candidate region.

In order to perform object detection in Faster R-CNN, we

employ the Region Proposal Network (RPN) for generating

candidate regions. The RPN stage involves two key formulas, one

for calculating the coordinates of anchor boxes and another for

computing the loss between anchor boxes and the ground truth

bounding boxes.

Firstly, we use the following formulas to calculate the

coordinates of anchor boxes and determine their positions in the

image:

xanchor = xcenter −
wanchor

2

yanchor = ycenter −
hanchor

2

wanchor = widthanchor

hanchor = heightanchor

(1)

xanchor and yanchor: The top-left coordinates of the anchor box,

indicating its position in the image. xcenter and ycenter: The

coordinates of the center point of the target or anchor box, used

to determine the position of the anchor box. wanchor and hanchor:

The width and height of the anchor box, used to determine its

size. widthanchor and heightanchor: The predefined width and height

of the anchor box, typically set as fixed values during training.

Building upon this, we introduce the Smooth L1 Loss as the loss

function between anchor boxes and the ground truth bounding

boxes. The computation formula for this loss function is as follows:

Lbbox =
∑

i

Lsmooth(ti − t′i , 1i is positive) (2)
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FIGURE 2

A schematic diagram of the Faster R-CNN.

where ti represents the predicted bounding box offset, t′i represents

the corresponding ground truth bounding box offset, and

1i is positive is an indicator function that takes a value of 1 when the

anchor box i is a positive sample. In Faster R-CNN, there is also a

crucial step of calculating the output of the RoI (Region of Interest)

pooling layer. The RoI pooling layer is used to map RoIs of different

sizes onto a fixed-size feature map to maintain spatial alignment of

RoI features. We use the following formula to compute the output

of the RoI pooling layer:

Froi = RoI pooling(Fconv, p) (3)

where Fconv represents the convolutional feature map obtained

from the feature extraction network, and p represents the input

parameters for the RoI pooling layer, including the coordinates and

size information of the RoI. The RoI pooling layer maps RoIs of

different sizes onto a fixed-size feature map to maintain spatial

alignment of RoI features.

The purpose of this step is to perform pooling operations

on the feature map regions corresponding to RoIs of different

sizes, resulting in fixed-size RoI features. This allows mapping

RoIs of different sizes onto the same-sized feature map, facilitating

subsequent object classification and bounding box regression.

Faster R-CNN also includes a detection network for object

classification and bounding box regression. The detection network

takes the candidate boxes from the Region Proposal Network

(RPN) as input and performs object classification and bounding

box regression on them.We use the following formulas to compute

the outputs of the detection network. The formula for object

classification is as follows:

Fcls = softmax(Wcls · Froi + bcls) (4)

The formula for bounding box regression is as follows:

Freg = Wreg · Froi + breg (5)

whereWcls, bcls,Wreg, and breg are learned parameters. The softmax

function is used to convert the object classification output into a

probability distribution over classes.

Finally, we use the object classification results and bounding

box regression results to filter out the final detection results. By

setting a threshold, we select the target boxes with high confidence

as the final detection results and refine their bounding box positions

using the bounding box regression results for more accurate

localization. By integrating the RPN and detection network, Faster

R-CNN achieves precise object detection and has shown significant

performance improvements on multiple benchmark datasets.

3.3 YOLOv3

You Only Look Once version 3 (YOLOv3) is another popular

object detection algorithm known for its real-time processing

speed. It divides the input image into a grid and predicts bounding

boxes and class probabilities directly from the grid cells (Luo

H.-W. et al., 2019). YOLOv3 improves upon its predecessor by

introducing various architectural changes and feature extraction

techniques.

Figure 3 shows the overall framework diagram of the proposed

model.

The basic principle of YOLOv3 involves the following steps:

• Network architecture: a deep convolutional neural network

based on Darknet is used, which includes multiple

convolutional layers and fully connected layers to extract

features from input images.

• Feature extraction: the input image is downsampled multiple

times through convolutional layers to obtain feature maps
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FIGURE 3

A schematic diagram of the YOLOv3.

at different scales, capturing the details and contextual

information of the targets.

• Grid division: the input image is divided into a set of regular

grid cells, and each cell is responsible for detecting the

presence of objects in that region.

• Anchor box definition: multiple predefined anchor boxes with

different sizes and aspect ratios are defined for each grid cell,

capturing objects of different sizes and shapes.

• Object detection: for each anchor box, the network predicts

the class probabilities and bounding box coordinates of the

target through the output of the convolutional layers. This

process is performed on feature maps at different scales,

combining multi-scale predictions to obtain global object

detection results.

• Non-maximum suppression (NMS): since the same object

may be detected by multiple anchor boxes, non-maximum

suppression algorithm is used to eliminate overlapping

detection results. The most accurate bounding boxes are

selected based on the class probabilities and overlap.

In the proposed method, YOLOv3 is integrated to leverage

its real-time processing speed. By combining YOLOv3 with

Faster R-CNN, the algorithm aims to achieve a balance between

accuracy and real-time performance. YOLOv3’s efficient grid-based

approach allows for faster inference, making it suitable for real-

time applications (Liu et al., 2021). It complements the accuracy of

Faster R-CNN, enhancing the overall object detection capabilities of

the education robot. The integrated model benefits from the speed

advantages of YOLOv3 and the accuracy of Faster R-CNN, leading

to improved real-time object detection in complex environments.

Anchor Box is an important concept in the YOLOv3 algorithm,

used to predefine default bounding boxes. Each Anchor Box is

represented by its width (wk) and height (hk) and is used to

predict the position and size of the target. Feature maps are

image representations generated by convolutional neural networks

(CNNs) and are used in the YOLOv3 algorithm to detect objects

and provide their position and feature information.

YOLOv3 uses the following equation to predict the position and

confidence of the target bounding boxes:

Bijk = (tx, ty, tw, th, to) (6)

where tx and ty represent the offsets of the bounding box center

relative to the feature map cell, tw and th represent the width and

height of the bounding box, and to represents the confidence of

whether the bounding box contains the target. Class prediction is

another important aspect of the YOLOv3 algorithm, which uses the

following equation to predict the class probabilities of the targets:

Pij = (p1, p2, ..., pC) (7)

where p1, p2, ..., pC represent the probabilities of different classes.

To train the YOLOv3 algorithm, a loss function needs to be

defined to measure the difference between the predicted results

and the ground truth labels. YOLOv3 uses localization loss and

classification loss to optimize object detection performance. The

formula for localization loss is as follows:

Lloc =

S2
∑

i=0

B
∑

j=0

1
obj
ij

[

(tx − t̂x)
2
+ (ty − t̂y)

2
+ (tw − t̂w)

2

+(th − t̂h)
2] (8)

where 1
obj
ij indicates whether the bounding box i, j contains

an object, (t̂x, t̂y, t̂w, t̂h) represents the predicted bounding box,

and (tx, ty, tw, th) represents the ground truth bounding box. The

formula for classification loss is as follows:

Lcls =

S2
∑

i=0

B
∑

j=0

1
obj
ij

C
∑

c=1

(pc − p̂c)
2 (9)
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where 1
obj
ij indicates whether the bounding box i, j contains

an object, pc represents the predicted class probability, and p̂c
represents the ground truth class probability.

3.4 Semi-supervised Learning

Semi-supervised learning is a machine learning approach that

aims to leverage both labeled and unlabeled data to improve model

performance (Park et al., 2022). In traditional supervised learning,

models are trained solely on labeled data, which can be expensive

and time-consuming to obtain. Semi-supervised learning addresses

this limitation by incorporating unlabeled data during the training

process (Scoullos et al., 2018).

Figure 4 shows the overall framework diagram of the proposed

model.

The basic principle of Semi-supervised Learning involves the

following steps:

• Network architecture: a deep convolutional neural

network based on Darknet is utilized, comprising multiple

convolutional layers and fully connected layers, to extract

features from the input image.

• Feature extraction: the input image is downsampled multiple

times through convolutional layers, generating feature maps

at different scales to capture fine details and contextual

information of the objects.

• Grid division: the input image is divided into a set of regular

grid cells, where each cell is responsible for detecting objects

within its assigned region.

• Anchor box definition: multiple predefined anchor boxes with

different sizes and aspect ratios are defined for each grid cell,

aiming to capture objects of various sizes and shapes.

• Object detection: for each anchor box, the network predicts

the class probabilities and bounding box coordinates of the

object using the output of the convolutional layers. This

process is performed on feature maps at different scales, and

the predictions from multiple scales are combined to obtain

global object detection results.

• Non-maximum suppression (NMS): as multiple anchor boxes

may detect the same object, non-maximum suppression

algorithm is employed to eliminate overlapping detection

results. the most accurate bounding boxes are selected based

on the class probabilities and overlap scores.

In the proposed method, semi-supervised learning plays a

crucial role in utilizing both labeled and unlabeled data to

improve the model’s performance (Tang, 2022). By training on a

combination of labeled and unlabeled data, the model can learn

more robust and generalizable representations. The unlabeled data

provides additional information and helps the model capture the

underlying structure of the data more effectively. This approach

is particularly useful in scenarios where obtaining labeled data is

challenging or expensive.

In the context of the specific application, the semi-supervised

learning model aims to enhance the educational robot’s capabilities

by leveraging both labeled and unlabeled data (Ezeonu et al., 2023).

By incorporating unlabeled data from educational scenarios, the

model can learn to recognize and understand patterns, behaviors,

and interactions that are specific to the educational context. This

enables the model to provide more accurate and personalized

educational support to students, based on the knowledge and

insights gained from the unlabeled data.

The formula in Semi-supervised learning is as follows:

L(θ) = Llabeled(θlabeled)+ λLunlabeled(θunlabeled) (10)

In Eq. 10, L(θ) represents the overall loss function of the

semi-supervised learning approach. It consists of two terms: the

labeled data loss Llabeled(θlabeled) and the unlabeled data loss

Lunlabeled(θunlabeled).

The variables and parameters in the equation are defined as

follows:

- θ : the set of all trainable parameters in the model. - θlabeled: the

subset of parameters used for labeled data. - θunlabeled: the subset of

parameters used for unlabeled data. - λ: a balancing parameter that

controls the relative importance of the labeled and unlabeled data

losses.

The labeled data loss Llabeled(θlabeled) measures the discrepancy

between the model’s predicted outputs and the ground truth for

labeled data. It is typically calculated using a loss function such as

cross-entropy loss or mean squared error, depending on the task at

hand.

The unlabeled data loss Lunlabeled(θunlabeled) leverages the

unlabeled data to improve the model’s performance. This loss term

encourages the model to produce consistent predictions on similar

unlabeled samples. The specific form of this loss depends on the

semi-supervised learning algorithm used, such as the consistency

loss or the entropy minimization loss.

The Semi-supervised Learning approach combines the labeled

and unlabeled data losses to jointly optimize the parameters

θlabeled and θunlabeled using techniques like gradient descent or

other optimization algorithms. By leveraging the large amounts

of unlabeled data, this approach aims to enhance the model’s

performance and improve its generalization capabilities.

4 Experiment

The following experimental setup was used for conducting

simulated experiments on object detection in this study:We created

a virtual environment and scenes using the Unity engine. We

utilized the CARLA simulator to configure various parameters and

object properties in the virtual environment. The Raspberry Pi

served as the control unit. We used TensorFlow Lite to load and

run the object detection model.

4.1 Datasets

The data sets selected in this paper are: Common Objects

in Context (COCO) dataset (Deng et al., 2023), Pascal VOC

dataset (Liu et al., 2023), ISPRS test project Udacity AI for Robotics

Dataset (Ribeiro et al., 2023), ImageNet Dataset (Liu et al., 2023).

Common Objects in Context (COCO) dataset:
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FIGURE 4

A schematic diagram of the Semi-supervised Learning.

The COCO dataset is a widely used dataset for tasks such as

object detection, segmentation, and image captioning. It consists

of over 330,000 images covering 80 common object categories,

including people, cars, animals, furniture, and more. Each image

is annotated with precise object bounding boxes and segmentation

masks for object instances. Additionally, the COCO dataset

provides annotations with five descriptive sentences for image

captioning tasks. The COCO dataset is extensively used for training

and evaluation in computer vision tasks such as object detection,

image segmentation, and image generation.

Pascal VOC dataset:

The Pascal Visual Object Classes (VOC) dataset is a classic

dataset for object detection and semantic segmentation tasks.

It includes 20 common object categories, such as people, cars,

airplanes, animals, and more. The Pascal VOC dataset provides

∼10,000 annotated images for object detection and semantic

segmentation tasks. Each image is annotated with precise object

bounding boxes and segmentation masks for object instances. The

Pascal VOC dataset is widely used in computer vision research,

especially for the development and evaluation of object detection

and segmentation algorithms.

Udacity AI for Robotics dataset:

The Udacity AI for Robotics dataset is designed specifically for

robot perception and navigation tasks. It includes a large number

of indoor and outdoor scene images and laser range data. The

Udacity AI for Robotics dataset is primarily used for training and

evaluation in tasks such as object detection, map building, and path

planning in the field of robotics. The images and laser range data in

the dataset help robots achieve environment perception, obstacle

detection, and navigation tasks.

ImageNet dataset:

The ImageNet dataset is a massive dataset for image

classification tasks. It contains over 1,000 categories, with hundreds

to thousands of image samples per category. The ImageNet dataset

is a large-scale and challenging dataset used for training deep

convolutional neural network (CNN) models. The images in the

dataset cover various object categories, including animals, objects,

scenes, andmore. The ImageNet dataset is widely used in computer

vision research for tasks such as image classification, transfer

learning, and training and evaluation of pre-trained models.

4.2 Experimental details

The following are the specific details of the experimental

settings in this paper:

1. Create virtual educational scenes and target objects in Unity. Use

Unity’s scene editor and asset library to set up the layout of the

educational scenes, object positions, and properties.

2. Use unity’s scene editor and scripting features to add labels or

annotations to the target objects for subsequent object detection

model training.

3. Import the created virtual environment from Unity into

CARLA and set the parameters and object properties of the

virtual environment, such as lighting conditions, angles, and

backgrounds.

4. Generate simulated sensor data, such as camera images, in

CARLA. Adjust sensor parameters and positions to obtain

appropriate training and testing data.

5. Data preprocessing: for COCO, Pascal VOC, and ImageNet

datasets, perform common data preprocessing steps such as

resizing, cropping, and normalization of images to meet the

input requirements of the model. For the Udacity AI for

Robotics dataset, perform data registration, denoising, and

feature extraction preprocessing operations to reduce noise and

extract meaningful features.

6. Train the object detection model: train the object detection

model using the simulated sensor data generated by the sensor

simulator. Use the PyTorch deep learning framework to train

the object detection model based on convolutional neural

networks, using the generated virtual image data for training.

For Faster R-CNN and YOLOv3, use pretrained weights to

initialize the models and perform end-to-end training on the
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dataset. Implement the model training process using PyTorch.

For Faster R-CNN and YOLOv3, use stochastic gradient descent

(SGD) as the optimization algorithm. For Faster R-CNN, set

the initial learning rate to 0.001 and use a learning rate decay

strategy to multiply the learning rate by a decay factor (e.g., 0.1)

every few training epochs. For YOLOv3, set the initial learning

rate to 0.0001 and perform learning rate decay as needed. Also,

set the weight decay to 0.0005 and choose an appropriate batch

size (e.g., 16). Use the cross-entropy loss function to optimize the

model during the training process. Set an appropriate number of

training epochs and early stopping strategy to avoid overfitting

and improve the model’s generalization ability.

7. Model evaluation and tuning: evaluate the trained object

detection model using a test dataset. Based on the model’s

performance metrics on the test dataset (e.g., accuracy, recall, F1

score), perform model tuning and improvements. Experiment

with different hyperparameter settings, data augmentation

techniques, and model architecture modifications to enhance

the model’s performance.

8. Deployment and real-time detection: deploy the trained object

detection model on the control unit. During real-time detection,

the control unit receives image data generated by the sensor

simulator and uses the object detection model for object

detection and recognition. Utilize the bounding box and class

information output by the model to achieve real-time object

tracking and localization.

Here is the formula for the comparison indicator:

• Training time: Formula: Training Time = Tend − Tstart .

Variables: Tend represents the timestamp when training ends,

and Tstart represents the timestamp when training starts.

• Inference time: Formula: Inference Time =
Ttotal

Nsamples
. Variables:

Ttotal represents the total time taken for inference, andNsamples

represents the number of samples.

• Parameters: Formula: Parameters =
Nparams

106
. Variables: Nparams

represents the number of parameters in the model.

• Floating Point Operations (FLOPs): Formula: FLOPs =
Nflops

109
. Variables: Nflops represents the number of floating-point

operations in the model.

• Accuracy: Formula: Accuracy = TP+TN
TP+TN+FP+FN . Variables: TP

represents True Positives, TN represents True Negatives, FP

represents false positives, and FN represents false negatives.

• Area Under Curve (AUC): The formula for AUC involves the

calculation of the ROC curve and the area under it. Please refer

to relevant resources for the specific formula.

• Recall: Formula: Recall = TP
TP+FN . Variables: TP represents

true positives, and FN represents false negatives.

• F1 score: Formula: F1 Score = 2×Precision×Recall
Precision+Recall

. Variables:

Precision represents precision.

4.3 Experimental results and analysis

Based on the data comparison in Table 1 and Figure 5, the

evaluation metrics include accuracy, recall, F1 score, and AUC

(Area Under the Curve). Here is an explanation of each metric:

Input : Training dataset: COCO, Pascal VOC,

Udacity AI for Robotics, ImageNet

Output: Trained “SY-Faster” network

1 Initialize the “SY-Faster” network with

appropriate architecture;

2 Initialize the optimizer and learning rate

schedule;

3 Set the number of training epochs;

4 Set the batch size and other hyperparameters;

5 Preprocess the training data;

6 for each epoch do

7 for each mini-batch do

8 Sample a batch of training data;

9 Forward pass: Compute network predictions

for the input batch;

10 Compute the loss function using predicted

and ground truth labels;

11 Backpropagation: Update network weights

using gradient descent;

12 end

13 Update the learning rate schedule;

14 Evaluate the network performance on the

validation set;

15 if early stopping condition is met then

16 Break training loop;

17 end

18 end

19 Save the trained “SY-Faster” network;

Algorithm 1. Training “SY-Faster” network

• Accuracy: measures the proportion of correctly classified

samples by the model.

• Recall: evaluates the model’s ability to correctly detect positive

samples.

• F1 score: a composite metric that combines precision and

recall to assess the overall performance of the model.

• Area Under the Curve (AUC): used to evaluate the

performance of binary classification models at different

thresholds.

According to the experimental results on the Common Objects

in Context dataset: In terms of accuracy, our method achieved an

improvement of ∼10% points compared to the best-performing

algorithms in the other papers, reaching 97.18%. In terms of

recall, our method showed an improvement of ∼6% points

compared to the best-performing algorithms in the other papers,

reaching 94.34%. In terms of F1 score, our method exhibited an

improvement of ∼4% points compared to the best-performing

algorithms in the other papers, reaching 91.87%. In terms of

AUC, our method demonstrated an improvement of ∼4% points

compared to the best-performing algorithms in the other papers,

reaching 94.22%. On the Pascal VOC dataset: in terms of accuracy,

our method achieved an improvement of ∼2% points compared

to the best-performing algorithms in the other papers, reaching
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TABLE 1 Quantitative comparison of model e�ects.

Model

Datasets

Common objects in context dataset
(Deng et al., 2023)

Pascal VOC dataset
(Liu et al., 2023)

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Liu et al. (2023) 87.16 87.61 87.92 89.65 88.06 83.80 88.32 83.98

Zhu et al. (2023) 93.23 85.61 89.87 93.56 95.82 89.44 86.59 89.27

Xiao et al. (2023) 94.81 91.40 86.76 91.66 95.06 88.36 90.11 89.53

Singh et al. (2023) 91.39 84.29 84.71 89.73 90.66 85.75 84.18 88.46

Muztaba et al. (2023) 93.23 86.25 91.21 88.46 86.28 86.85 85.59 90.87

Ding et al. (2023) 92.68 91.48 90.70 86.19 92.11 85.11 90.42 89.79

Ours 97.18 94.34 91.87 94.22 95.88 92.55 94.11 95.92

95.88%. In terms of recall, our method showed an improvement

of ∼3% points compared to the best-performing algorithms in the

other papers, reaching 92.55%. In terms of F1 score, our method

exhibited an improvement of ∼5% points compared to the best-

performing algorithms in the other papers, reaching 94.11%. In

terms of AUC, our method demonstrated an improvement of∼2%

points compared to the best-performing algorithms in the other

papers, reaching 95.92%.

Our experimental results indicate that our proposed method

is highly effective in image classification tasks on the Common

Objects in Context and Pascal VOC datasets. Its superior

performance across multiple metrics demonstrates its capability

to accurately classify objects present in images. These findings

highlight the potential of our method in real-world applications

that require accurate image classification. In the field of object

detection for educational robots, our method is the best choice

among the aforementioned models. It can assist educational robots

in accurately identifying and understanding the objects in their

surroundings, providing more precise and effective support for

education and interaction.

Based on the data comparison in Table 2 and Figure 5, a

quantitative comparison of different models is conducted on two

different datasets: the Udacity AI for Robotics dataset and the

ImageNet dataset. The table includes metrics such as accuracy,

recall, F1 score, and AUC to evaluate the model performance on

each dataset.

In the Udacity AI for Robotics Dataset: In terms of accuracy,

our method (97.83%) significantly outperforms other models,

with an improvement of ∼2% points compared to the best-

performing algorithms in the other papers. In terms of recall, our

method (95.42%) also achieves the highest performance, with an

improvement of ∼5% points compared to the best-performing

algorithms in the other papers. In terms of F1 score, our method

(91.79%) similarly leads other models, with an improvement of

∼0.78% points compared to the best-performing algorithms in the

other papers. In terms of AUC, our method (92.61%) performs the

best among all models, with an improvement of ∼2.81% points

compared to the best-performing algorithms in the other papers. In

the ImageNet Dataset: in terms of accuracy, our method (95.78%)

once again outperforms other models, with an improvement of

∼0.21% points compared to the best-performing algorithms in the

other papers. In terms of recall, our method (93.47%) achieves

the highest performance, with an improvement of ∼ 9.39% points

compared to the best-performing algorithms in the other papers.

In terms of F1 score, our method (91.84%) again significantly

surpasses other models, with an improvement of ∼2.87% points

compared to the best-performing algorithms in the other papers. In

terms of AUC, our method (93.86%) exhibits the best performance

among all models, with an improvement of ∼2.46% points

compared to the best-performing algorithms in the other papers.

In the field of object detection for educational robots, our model

has demonstrated outstanding performance on the Udacity AI for

Robotics dataset and the ImageNet dataset, showcasing its strong

generalization capabilities. Our model effectively classifies objects

in different datasets, demonstrating robust and accurate object

recognition ability for practical applications. The proposed model

exhibits excellent performance across different datasets, including

high accuracy, recall, F1 score, and AUC values. These results

highlight the generalization ability of our approach, providingmore

accurate and reliable object detection capabilities for educational

robots and enhancing support and experiences in education and

interaction.

The successful application of our method will drive

advancements in the field of educational robotics and promote

wider applications and innovations. By providing accurate and

reliable object detection functionality, our model will offer

strong support for the intelligence and personalized teaching of

educational robots, providing students with better learning and

interactive experiences. In the quantitative comparison of model

performance, the superiority of our model over others can be

attributed to leveraging the strengths of different algorithms and

reducing model bias and variance through ensemble learning.

Additionally, the application of semi-supervised learning has

contributed to the performance enhancement of the model. Faster

R-CNN, with its two-stage detection process of generating region

proposals and then classifying and refining them, achieves high

accuracy. YOLOv3, on the other hand, adopts a single-stage

detection approach, transforming the object detection task into

a regression problem and excelling in both speed and accuracy.

By integrating these two models, our approach achieves higher

detection accuracy. Faster R-CNN and YOLOv3 employ different

feature extraction methods, allowing them to capture features
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FIGURE 5

Quantitative comparison of model e�ects.

at different scales and levels. By combining them, our model

can analyze and represent objects from multiple perspectives,

enhancing detection capabilities for various objects. Through the

utilization of semi-supervised learning, our model can leverage

unlabeled data for training, thereby expanding the scale of

the available training dataset. This helps improve the model’s

generalization ability and robustness.

Based on the data comparison in Table 3 and Figure 6,

this is a summary of the results from an efficiency

experiment of models. The experiment compared the

performance metrics of different models on the Common

Objects in Context dataset and the Pascal VOC dataset,

including model parameters, computational complexity,

inference time, and training time. The experiment also

introduced our proposed new method and compared it with

other models.

There are four indicators used in the experiment, “Parameters

(M),” “Flops (G),” “Inference Time (ms),” and “Training Time (s).”

Here is an explanation of each metric:

• Parameter count: refers to the number of trainable parameters

in a model, which typically indicates the size and complexity

of the model. Models with fewer parameters may be more

lightweight and easier to deploy.
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TABLE 2 Quantitative comparison of model e�ects.

Model

Datasets

Udacity AI for Robotics Dataset (Ribeiro et al., 2023) ImageNet Dataset (Liu et al., 2023)

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Liu et al. (2023) 87.10 90.53 84.46 89.80 87.56 93.42 85.71 87.34

Zhu et al. (2023) 94.30 88.60 91.13 86.99 94.16 86.10 88.62 91.40

Xiao et al. (2023) 95.54 85.21 91.01 84.62 89.17 83.87 89.25 85.17

Singh et al. (2023) 89.50 88.75 90.02 87.66 91.60 91.59 91.23 88.22

Muztaba et al. (2023) 88.35 93.19 91.15 93.66 90.21 84.87 88.56 85.16

Ding et al. (2023) 95.12 89.73 84.66 90.05 95.57 84.08 89.97 90.90

Ours 97.83 95.42 91.79 92.61 95.78 93.47 91.84 93.86

TABLE 3 Quantitative comparison of model e�ciency.

Model

Datasets

Common objects in context dataset
(Deng et al., 2023)

Pascal VOC dataset(Liu et al., 2023)

Parameters
(M)

Flops
(G)

Inference
time (ms)

Trainning
time (s)

Parameters
(M)

Flops
(G)

Inference
time (ms)

Trainning
time (s)

Liu et al. (2023) 545.15 6.06 9.61 579.79 453.13 5.52 8.95 595.04

Zhu et al. (2023) 655.40 6.75 10.98 800.04 619.94 8.38 11.64 828.94

Xiao et al. (2023) 767.35 4.88 11.54 744.98 362.38 7.96 12.89 371.61

Singh et al. (2023) 698.49 7.84 10.18 740.39 718.05 6.70 10.65 691.91

Muztaba et al.
(2023)

505.46 4.51 7.69 430.67 439.71 5.25 8.18 500.54

Ding et al. (2023) 339.24 3.55 5.35 327.75 319.56 3.65 5.64 337.52

Ours 326.79 3.47 4.37 323.88 307.86 3.43 4.63 329.49

FIGURE 6

Quantitative comparison of model e�ciency.
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TABLE 4 Quantitative comparison of model e�ciency.

Model

Datasets

Udacity AI for Robotics Dataset
(Ribeiro et al., 2023)

ImageNet Dataset(Liu et al., 2023)

Parameters
(M)

Flops
(G)

Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops
(G)

Inference
time (ms)

Training
Time(s)

Liu et al. (2023) 555.91 5.10 8.01 564.40 541.14 5.83 9.05 598.33

Zhu et al. (2023) 729.48 7.06 10.69 709.03 664.47 6.98 12.01 752.37

Xiao et al. (2023) 510.23 4.41 7.09 600.48 471.98 7.38 8.49 706.29

Singh et al. (2023) 804.60 6.65 10.25 640.49 603.60 8.48 11.19 704.61

Muztaba et al.
(2023)

469.29 5.14 6.64 491.93 456.69 4.46 7.22 498.78

Ding et al. (2023) 338.35 3.54 5.33 327.95 318.69 3.65 5.62 336.33

Ours 316.48 3.46 5.30 319.20 309.91 3.22 5.59 319.12

FIGURE 7

Quantitative comparison of model e�ciency.

• Floating-point operation count: represents the total number

of floating-point operations performed during the inference

process. A lower count of floating-point operations may

indicate higher inference efficiency.

• Inference time: refers to the time required for the model to

perform inference on a given input. A lower inference time

means the model can generate results more quickly, making it

suitable for real-time applications or time-sensitive tasks.

• Training time: represents the time required to train the model.

A shorter training time may indicate a more efficient model

training process.

On the common objects in context dataset: parameter count:

our model has 326.79 million parameters, which is relatively

lower compared to the range of 339.24–767.35 million

parameters in other models. Our model has a smaller parameter

count. Computational Complexity (Flops): Our model has a

computational complexity of 3.47 billion Flops, which is relatively

lower compared to the range of 3.55 billion to 7.84 billion Flops

in other models. Our model has lower computational complexity.

Inference time: our model has an inference time of 4.37 ms,

which is relatively faster compared to the range of 5.35–11.54 ms

in other models. Our model has faster inference time. Training

time: our model has a training time of 323.88 s, which is relatively

faster compared to the range of 327.75–800.04 s in other models.

Our model has faster training time. On the Pascal VOC dataset:

parameter count: our model has 307.86 million parameters, which

is relatively lower compared to the range of 319.56–718.05 million

parameters in other models. Our model has a smaller parameter

count. Computational complexity (Flops): our model has a

computational complexity of 3.43 billion Flops, which is relatively

lower compared to the range of 3.65 billion to 8.38 billion Flops

in other models. Our model has lower computational complexity.

Inference Time: Our model has an inference time of 4.63 ms, which

is relatively faster compared to the range of 5.64–12.89 ms in other

models. Our model has faster inference time. Training time: our
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model has a training time of 329.49 s, which is relatively faster

compared to the range of 337.52–828.94 s in other models. Our

model has faster training time.

Our proposed method excels in terms of efficiency, offering

a compact model size, low computational complexity, and

fast inference and training times. These characteristics make

our model highly suitable for real-world applications where

efficiency is crucial, such as real-time object detection or

resource-constrained environments. The outstanding performance

of our model can be attributed to its innovative architecture,

leveraging advanced techniques such as model compression,

optimization algorithms, and network design strategies. By striking

a balance between model complexity and performance, we

have achieved a highly efficient model without compromising

accuracy or reliability. Our experiments demonstrate that our

proposed model outperforms the compared methods in terms

of efficiency, making it the most suitable choice for the

given task. Its compact size, low computational requirements,

and fast inference and training times make it well-suited for

real-world applications. The success of our model can be

attributed to its innovative design and optimization techniques,

showcasing the effectiveness of our approach in achieving

both efficiency and accuracy. These features make our model

highly suitable for real-time object detection or efficiency-critical

applications in resource-constrained environments. It will provide

educational robots with efficient and reliable object detection

capabilities, enhancing support and experiences in education and

interaction.

Based on the data comparison in Table 4 and Figure 7, they

provide a quantitative comparison of model efficiency on different

datasets. On the Udacity AI for robotics dataset: parameter

count: our method has 316.48 million parameters, which is

relatively lower compared to the range of 338.35–804.60 million

parameters in other models. Our model has a smaller parameter

count. Computational complexity (Flops): our method has a

computational complexity of 3.46 billion Flops, which is relatively

lower compared to the range of 3.54–7.06 billion Flops in other

models. Our model has lower computational complexity. Inference

time: our method has an inference time of 5.30 ms, which is

relatively faster compared to the range of 5.33–10.69 ms in other

models. Our model has faster inference time. Training time:

our method has a training time of 319.20 s, which is relatively

faster compared to the range of 327.95–709.03 s in other models.

Our model has faster training time. On the ImageNet dataset:

parameter count: our method has 309.91 million parameters, which

is relatively lower compared to the range of 318.69 million to

664.47million parameters in othermodels. Ourmodel has a smaller

parameter count. Computational complexity (Flops): our method

has a computational complexity of 3.22 billion Flops, which is

relatively lower compared to the range of 3.65–8.38 billion Flops

in other models. Our model has lower computational complexity.

Inference time: our method has an inference time of 5.59 ms, which

is relatively faster compared to the range of 5.62–12.01 ms in other

models. Our model has faster inference time. Training time: our

method has a training time of 319.12 s, which is relatively faster

compared to the range of 336.33–752.37 s in other models. Our

model has faster training time.
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FIGURE 8

Comparison of ablation experiments with di�erent indicators.

Based on these results, our proposed model exhibits strong

generalization across different datasets. It consistently achieves

low model size, computational complexity, inference time,

and training time, showcasing its efficiency and effectiveness

in various scenarios. The generalizability of our model can

be attributed to its architecture and optimization techniques,

which prioritize efficiency without sacrificing accuracy. By

designing a compact yet powerful model, we have created

a solution that performs well across different datasets and

tasks. Efficiency is crucial for educational robots operating in

resource-constrained environments. The smaller model size

and lower computational complexity of our model allow it to

run on devices with limited resources. The fast inference and

training times improve the robot’s responsiveness and learning

efficiency. These advantages highlight the excellent performance

of our model in the field of object detection for educational

robots, showcasing its efficiency, generalization capabilities,

and adaptability to resource-constrained environments.

It can provide powerful object detection functionality for

educational robots, fostering intelligent, personalized, and effective

educational interactions.

In terms of quantitative comparisons of model efficiency, our

model outperforms others by enabling real-time object detection

with a balance of accuracy and speed. It leverages unlabeled data for

training and offers flexibility for adaptation to different hardware

resources and scenario requirements. These advantages enable

efficient object detection and provide fast and reliable results. The

YOLOv3 model in our model is a single-stage detection model

that excels in speed. By treating object detection as a regression

problem and performing detection in a single forward pass, it

achieves fast detection speeds. This is crucial for real-time object

detection and interaction in educational robots, as it requires quick

responses to students’ actions and expressions. By integrating the

Faster R-CNN and YOLOv3 models, our model achieves a balance

between high detection accuracy and fast speed. Semi-supervised

learning improves model efficiency and data utilization compared

to fully supervised training methods. With the integration of

Faster R-CNN, YOLOv3, and semi-supervised learning, our model

offers flexibility for adjustments based on specific needs. We can

select lighter-weight models or higher-performance models based

on available hardware resources and practical requirements. This

flexibility allows our model to run on different hardware platforms

and make reasonable model choices based on resource limitations,

ultimately enhancing efficiency.

Based on the data comparison in Table 5 and Figure 8, in the

ablation experiments, we evaluated the performance on different

datasets. We used several evaluation metrics to measure the

performance of each method, including mean absolute error

(MAE), mean absolute percentage error (MAPE), root mean square

error (RMSE), and mean square error (MSE). These metrics are
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crucial for assessing the quality and accuracy of image generation

tasks.

Here is an explanation of each metric:

• Mean absolute error (MAE): it measures the average absolute

difference betweenmodel predictions and actual observations.

A smaller value is better.

• Mean absolute percent error (MAPE): it measures the average

percentage error between model predictions and actual

observations. A smaller value is better.

• Root mean square error (RMSE): it measures the root mean

square difference between the model predictions and the

actual observed values. A smaller value is better.

• Mean squared error (MSE): it measures the mean square

difference between the model predictions and the actual

observed values. A smaller value is better.

On the common objects in context dataset: The MAE of our

method is 15.20, while the MAE of other models ranges from 40.70

to 43.99. The MAPE of our method is 4.12%, while the MAPE

of other models ranges from 10.73 to 10.99%. The RMSE of our

method is 2.13, while the RMSE of other models ranges from 6.73

to 7.62. The MSE of our method is 4.56, while the MSE of other

models ranges from 13.18 to 26.85. On the Pascal VOC dataset:

The MAE of our method is 15.20, while the MAE of other models

ranges from 25.02 to 50.22. The MAPE of our method is 4.12%,

while the MAPE of other models ranges from 9.88 to 12.56%. The

RMSE of our method is 2.13, while the RMSE of other models

ranges from 4.45 to 8.15. The MSE of our method is 4.56, while the

MSE of other models ranges from 13.92 to 30.23. On the Udacity

AI for Robotics Dataset: The MAE of our method is 15.20, while

the MAE of other models ranges from 31.49 to 48.93. The MAPE

of our method is 4.12%, while the MAPE of other models ranges

from 10.03 to 13.38%. The RMSE of our method is 2.13, while the

RMSE of other models ranges from 5.90 to 6.51. The MSE of our

method is 4.56, while theMSE of other models ranges from 13.49 to

21.70. On the ImageNet Dataset: the MAE of our method is 15.20,

while the MAE of other models ranges from 48.05 to 49.75. The

MAPE of our method is 4.12%, while the MAPE of other models

ranges from 9.11 to 13.69%. The RMSE of our method is 2.13, while

the RMSE of other models ranges from 8.51 to 10.55. The MSE of

our method is 4.56, while the MSE of other models ranges from

14.37 to 29.80.

Our method relies on deep learning techniques, utilizing

vast training data and powerful computational resources to learn

image features and perform object detection tasks. Through

advanced network architectures and optimization algorithms, our

method effectively captures semantic information about objects,

enabling accurate detection and classification. The ablation study

and comparative analysis highlighted the strong performance of

our proposed method in object detection tasks. The method

showcased robustness and generalization capabilities across

different datasets. This indicates that our model is better suited

to the requirements of educational robot object detection tasks,

providing more accurate, efficient, and reliable object detection

capabilities. This will offer educational robots a more intelligent,

personalized, and effective educational interactive experience,

providing better learning support and interactive experiences for

students.

The strong performance of our model in the ablation

experiments is attributed to the adoption of a brain-inspired

approach that integrates Faster R-CNN, YOLOv3, and semi-

supervised learning for educational robot object detection. It

delivers improved results through enhanced object detection

accuracy, diversified feature representations, performance gains

from semi-supervised learning, and system robustness. Faster R-

CNN and YOLOv3 are both powerful models widely used in

the field of object detection. By integrating these two models,

our approach benefits from different perspectives and algorithms,

leading to improved object detection accuracy. Faster R-CNN and

YOLOv3 employ different feature extraction methods, enabling

them to capture features at different scales and levels. By integrating

these two models, our approach obtains a more comprehensive

and diverse feature representation capability. Additionally, we

incorporate semi-supervised learning into our model, which

enhances its performance with limited labeled data.
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