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There exist various methods for transferring knowledge between neural

networks, such as parameter transfer, feature sharing, and knowledge distillation.

However, these methods are typically applied when transferring knowledge

between networks of equal size or from larger networks to smaller ones.

Currently, there is a lack of methods for transferring knowledge from shallower

networks to deeper ones, which is crucial in real-world scenarios such as system

upgrades where network size increases for better performance. End-to-end

training is the commonly used method for network training. However, in this

training strategy, the deeper network cannot inherit the knowledge from the

existing shallower network. As a result, not only is the flexibility of the network

limited but there is also a significant waste of computing power and time.

Therefore, it is imperative to develop new methods that enable the transfer of

knowledge from shallower to deeper networks. To address the aforementioned

issue, we propose an depth incremental learning strategy (DILS). It starts from a

shallower net and deepens the net gradually by inserting new layers each time

until reaching requested performance. We also derive an analytical method and a

network approximation method for training new added parameters to guarantee

the new deeper net can inherit the knowledge learned by the old shallower net.

It enables knowledge transfer from smaller to larger networks and provides good

initialization of layers in the larger network to stabilize the performance of large

models and accelerate their training process. Its reasonability can be guaranteed

by information projection theory and is verified by a series of synthetic and

real-data experiments.

KEYWORDS

training strategy, network prior, depth incremental learning, local supervision,

knowledge transfer

1 Introduction

Modern deep learning models typically have complex network structures and a

large number of parameters, requiring significant computing resources and time for

training. Therefore, researchers have begun exploring methods for transferring knowledge

from pretrained models to new models in order to speed up the training process

and improve their performance. However, current knowledge transfer methods are

typically based on networks of the same size (Yang et al., 2023), such as weight

sharing, feature transfer, or knowledge transfer from deeper to shallower networks

(Huang et al., 2022; Shi et al., 2023), such as knowledge distillation, and network

pruning. There is a lack of knowledge transfer strategies from shallower to deeper

networks. With the development of large models and frequent updates, network

sizes have become increasingly larger. Research on knowledge transfer methods

from small to large models is necessary. However, several reasons prevent the
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realization of such knowledge transfer. One reason for the

limitation of knowledge transfer from smaller to larger networks

is the inability to initialize redundant layers and parameters in the

larger network. Traditional end-to-end training wastes a significant

amount of time and computing power, restricts network flexibility,

and hinders the inheritance of prior knowledge. We aim to propose

a training strategy that enables knowledge transfer from smaller to

larger networks and provides good initialization of layers in the

larger network to stabilize the performance of large models and

accelerate their training process.

To solve this issue, we consider an incremental learning

strategy. The idea is motivated by the data regression via

continuous numerical approximation, e.g., polynomial regression.

As shown in Figure 1, by adding the degree of the polynomial, it can

increase the regression accuracy for a given set of data. Similarly,

as the net deepens, its ability may be enhanced gradually, e.g.,

more accurate object detection. Similarly, by adding new layers to

the network, it can achieve better scalability while inheriting the

original performance.

We name this strategy the depth incremental learning strategy

(DILS). The main idea is illustrated in Figure 2. For a given

shallower net (e.g., 4-layer), a set of new layers are inserted (colored

orange, yellow, and green, respectively), whose connections with

the original layers are trained based on the original network. Then,

a new deeper net (7-layer) is obtained, which realizes a flexible

ability increment. By repeatedly performing such operations, the

net depth increases gradually and achieves knowledge transfer from

a small network to a large network.

There are three benefits of the proposed DILS. First, it realizes

a continuous learning sequence. The new deeper net is generated

based on the shallower net, which has been already well-trained.

Thus, it inherits the learned knowledge from the shallower net.

Consequently, it gives the new net a good “initialization” for

further training. Second, it saves plenty of computing resources

by deepening the network gradually to find the best fitting depth

of the network. It starts from a shallow net, which is easier to

train. The subsequent training for the inserted layers each time is

also very easy and time-saving because the new layers are well-

initialized based on the original net. Furthermore, it is very flexible

for both learning procedure and actual implementation. In other

words, the training procedure can stop at any depth to meet

the required accuracy. Imagining the following scenario, at the

beginning, we want to deploy a network on a light device of lower

computing power and do not demand very high task accuracy.

Then, a shallow net is enough and suitable. But later, we update

the device with higher computing power and become caring more

about the accuracy. We can just deepen the previous network to

increase the performance within very short training time.

The reasonability and effectiveness of DILS can be explained

in both biological systems and computational models studies,

and it is well-admitted that an efficient training procedure

should make a good balance between stability and plasticity

(Ditzler et al., 2015). The mechanisms of neurosynaptic plasticity

regulate the stability–plasticity balance in multiple brain areas

(Douglas et al., 1995). On the basis of shallow network

prior, local stability supervision ensures the performance of

the network, while global plasticity supervision enhances the

network’s efficiency.

It can also be interpreted as an information projection

procedure (Zhu and Mumford, 1997; Zhu et al., 2010; Si and Zhu,

2011). From the statistical aspect, the goal of a deep net is to learn

a distribution p to approximate the distribution q of a given task.

DILS tries to find a sequence of models pi, which can gradually

approach q, as shown in Equation (1):

p1 → p2 → · · · → pk to q, (1)

in terms of minimizing the Kullback-Lebler divergence KL(q ‖ p).

For each step, the incremented net is pursued by the following

optimization problem, as shown in Equation (2):

p∗i = argminKL(pi ‖ pi−1). (2)

To sum up, the main contributions of this study are as follows:

• We propose a depth incremental learning strategy (DILS),

which enables knowledge transfer from smaller to larger

networks and provides good initialization of layers in the

larger network to stabilize the performance of large models

and accelerate their training process.

• The methods for optimizing the new added parameters along

with the new layers are proposed, which guarantees the new

deeper net inherits the knowledge learned by the original

shallower net.

• DILS enhances the efficiency and flexibility of deep network

training, which is verified by a series of synthetic and real-

data experiments.

2 Related studies

In this section, knowledge transfer methods between networks

are initially introduced, followed by a discussion of the more widely

researched knowledge transfer method from large networks to

small networks, known as network compression.

2.1 Knowledge transfer between networks

The common methods for knowledge transfer between

networks include fine-tuning, feature extraction, model distillation,

and pruning. Fine-tuning (Yosinski et al., 2014) is a knowledge

transfer method that involves using a pretrained model as the

initial parameters and continuing training on a new task. During

the fine-tuning process, the learning rate is usually decreased to

avoid disrupting the weights of the pretrained model, and data

augmentation is applied to the new dataset to prevent overfitting.

Fine-tuning has become one of the most common knowledge

transfer methods in computer vision. Feature extraction (Chatfield

et al., 2014) is a knowledge transfer method that involves using a

pretrainedmodel to extract features, and then passing these features

to a newmodel for classification. Typically, the convolutional layers

of a pretrained model are used as the feature extractor, and the

features are then passed to fully connected layers for classification.

This method is usually more stable than fine-tuning and requires

fewer computing resources. Model distillation (Hinton et al., 2015)
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FIGURE 1

Regression ability gets better along with polynomial degree getting higher. Similarly, performance increases along with network getting deeper.

is a knowledge transfer method that involves using a larger model

(usually called the “teacher model”) to “teach” a smaller model

(usually called the “student model”). During the training process,

the student model attempts to replicate the predictions of the

teacher model in order to transfer its knowledge. This method

can reduce the size of the model, thereby improving its efficiency

(Lan et al., 2022; Hu et al., 2023). Model pruning (Han et al.,

2015) is a technique of compressing the model’s size by removing

unimportant neurons or connections. One can use pruning on

a pretrained model, followed by fine-tuning or feature extraction

to transfer knowledge, whereas fine-tuning and feature extraction

are mostly based on networks of the same size, and knowledge

distillation and pruning involve transferring knowledge from large

to small networks, our method achieves knowledge transfer from

small to large networks.

2.2 Neural architecture searching methods

Neural architecture searching (NAS) aims at designing an

appropriate neural architecture that achieves the best possible

performance. NAS implemented by reinforcement learning (RL)

methods has reached state-of-the-art accuracy results on image

classification tasks. This demonstrates that automated neural
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FIGURE 2

Depth incremental learning model. The original shallow net is well-trained. Then, we insert the orange, yellow, and green layers to the original net. In

the Stage I training process, the mapping relations of the original net are invariant to realize stability-based supervision. Then, the new deeper net

inherits information of the original shallower net. At the same time, with the number of layers increasing, the solution domain of the mapping

relations is expanded, so that the stage II plasticily-based superbision is complished.

architecture design is feasible (Baker et al., 2016; Jaafra et al., 2019).

However, NAS consumes a large amount of computing resources,

which is catastrophic for reproduction (Zela et al., 2020) and further

research (Pham et al., 2018; Bashivan et al., 2019; Zheng et al.,

2019). Even more unfortunately, it is extremely task-specific and

lacks of plasticity. For even a small change to the original task,

the learned architecture may exhibit poor performance, and it has

to search a new neural architecture to solve the slightly altered

task. In comparison, DILS is very plastic by gradually incrementally

inheriting and learning a series of networks of different depths that

can deal with this situation flexibly. More importantly, DILS can

realize knowledge inheritance from small structure networks to

large ones.

2.3 Network compression methods

Network compression methods are developed to speed up

computing and save storage space. Among them, low-rank

decomposition-based approaches (Oseledets, 2011; Kim et al.,

2015; Zhao et al., 2016) conduct decomposition on convolutional

filters that are viewed as matrices or tensors. Pruning-based

approaches (Wen et al., 2016; Li et al., 2020) compress the network

by deleting relatively unimportant weights on different levels,

including the filter, channel, and layer levels. Knowledge distillation

based approaches (Choi et al., 2022; He et al., 2022) extract

knowledge from the teacher network and derive a more compact

student network.

Although the network compression method can realize a more

lightweighted architecture. However, the compression procedure

is also time-consuming and sometimes difficult to calculate. In

comparison, DILS starts by training a shallow network, which saves

plenty of computing resources. Furthermore, it is very flexible

to grow to an appropriate depth to meet the required accuracy.

Network compression facilitates the transfer of knowledge from

larger networks to smaller networks. Conversely, DILS serves as

a complementary technique by enabling knowledge transfer from

smaller networks to larger networks.

3 Proposed method

3.1 Depth incremental learning strategy

Suppose for a target task y = f (x), we already have an L-layer

deep nets for approximating the function f ,

HL(x) : = h{d0 ,··· ,dL ,σ }(x) = Ea · EhL(x), (3)

Ehk(x) = σ (Wk ∗ Ehk−1(x)), k = 1, 2, · · · , L, (4)

in which, L ∈ N is the depth of the network, dk and Ehk(x) are the

width and the feature map of the kth hidden layer, respectively.

Ea is the weight of the output layer. σ (·) is activation function,

e.g., Sigmoid, ReLU. “∗” here represents the operation between

features and input feature maps, which can be fully-connect,

convolution, etc.
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We aim to achieve knowledge transfer from a small network to

a large network.

HL+l(x) : = h{d0 ,··· ,di1 ,··· ,dik ,··· ,dil ,··· ,dL ,σ }
(x)

of depth L+ l based on h{d0 ,··· ,dL ,σ }, satisfying Equation (5)

‖ HL+l(x)− f (x) ‖<‖ HL(x)− f (x) ‖ . (5)

Here, ‖ · ‖ measures the approximation error of network H to the

target function f .

For realizing such goal, we provide a two-stage

learning strategy:

Stage I: Insert new l layers (as shown in Figure 3) and

initialize the new parameters W′ = {W
′−
ik
,W

′+
ik
}l
k=1

based

on the old shallower network HL by solving the following

optimization problem as shown in Equation (6)

min
W′

‖ H′
L+l(x)−HL(x) ‖ . (6)

For one specific new layer (e.g., the ikth), supposing it is inserted

between the (mk − 1)th and the mkth layer of the old network, the

original parameters Wmk
(the connection between the (mk − 1)th

and the mkth layer) are replaced by W
′−
ik

and W
′+
ik
, which are the

new connections of the ikth layer with the (mk − 1)th and themkth

layer, respectively.

Stage II: Fine-tune the initialized network H′
L+l

by a small set

of training data and comparatively less epochs.

The two-stage strategy makes the new network inherit the

learned knowledge of old network so that realizes the continuity

of incremental learning and make it much easier to train the

deeper network.

For better guaranteeing the property of local stability so that

further enhancing the training efficiency, we divide the problem (6)

into l sub-problems as shown in Equation (7),

min
W

′−
ik

,W
′+
ik

‖ ( Eh′ik+1(x)− Ehmk
(x))|Ehmk−1(x)

‖, k = 1 . . . l. (7)

In the above optimization problem, we only consider the local

network around the ikth layer of the new network. The goal is to

reproduce the mapping relationship from the (mk − 1)th layer to

themkth layer of the old network, i.e., narrowing the differences of
Eh′ik+1(x) in the new network and Ehmk

(x) in the old network based

on the same input Ehmk−1(x).

Ideally, if we have an operator ◦ representing the mapping

relationship, as shown in Equation (8) and Equation (9),

Eh′ik+1(x) = (W
′−
ik
,W

′+
ik
) ◦ Ehmk−1(x), (8)

Ehmk
(x) = Wmk

◦ Ehmk−1(x), (9)

and there exists a unique inverse operation of ◦, then we can easily

reach the analytical solution of (W
′−
ik
,W

′+
ik
) as shown in Equation

(10)

(W
′−
ik
,W

′+
ik
) = Ehmk

(x) ◦ inv(Ehmk−1(x)), (10)

where inv(·) represents the inverse operation. However, for

networks with various operators and activation functions, the

perfect situation is hard to realize. In the following, we will discuss

how to provide a proper solution. In the following subsection,

we will discuss two kinds of local network structures and provide

proper solutions correspondingly.

3.2 Optimization for stage I

3.2.1 Fully-connected network
For a fully-connected network function, the relationship in

Equation (4) can be written as Equation (11),

Ehk(x) = σ (Wk
Ehk−1(x)), k = 1, 2, · · · , L. (11)

For simplicity, Ehk−1(x) is replaced by X in the following part of

this subsection. The solution of new inserted parameters can be

obtained by solving Equation (12),

min
W

′−
ik

,W
′+
ik

‖ Wmk
X −W

′+
ik

σ (W
′−
ik
X) ‖2 . (12)

in which, σ (·) is ReLU function,

ReLU(x) =

{

0 x < 0

x x ≥ 0.

It is a piecewise function and is irreversible. Therefore, if σ (·) in

the optimization problem (12) is ReLU, it is unrealistic to derive

an closed form solution. For providing an analytical solution most

possibly, we can utilize its property of sparsity.

Considering W
′+
ik

σ (W
′−
ik
X) in (12), we notice that σ (W

′−
ik
X) is

sparse. Equation (12) can be regarded as a sparse coding problem as

shown in Equation (13),

S =

T
∑

t=1

ztat = Bz, (13)

in which, S is the signal to be recovered, B = [Eb1, Eb2, ..., Ebt] are a

group of basis vectors, and z = [z1, z2, ..., zM] are corresponding

coefficients. For the optimization (12), Wmk
X, W

′+
ik

and σ (W
′−
ik
X)

can correspond to S, B and z in Equation (13), respectively. By

setting 6W = σ (W
′−
ik
X), we have following optimization problem

as shown in Equation (14),

(W
′+∗
ik

,6∗
w) = argmin ‖ Wmk

X −W
′+
ik

6w ‖2 +η ‖ 6w ‖1

s.t. 6w ≥ 0,
(14)

in which, η is a hyperparameter. This optimization problem can be

solved by alternately calculatingW
′+
ik

and 6w via an KSVDmethod

(Bertin et al., 2007; Farouk and Khalil, 2012) with non-negative

matrix factorization.

W
′−∗
ik

then can be obtained by solving the following problem,

as shown in Equation (15),

W
′−∗
ik

= argmin ‖ M ⊙ (6∗
W − (W

′−
ik
X)) ‖2 . (15)
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FIGURE 3

Illustration of stage I. Assume that the original net is with two layers. We add a new layer to the net to boost its expressive capability. To ensure that

the newly added layer has good initialization, local stability supervision is employed to make the e�ect of the inserted net equal to the original net.

where⊙ is Hadamard product, andM is a index vector satisfying
{

Mj = 0 if (6∗
W)j = 0

Mj = 1 if (6∗
W)j > 0.

The verification experiments of this part are shown in Section 4.2.

3.2.2 Convolution network
As the convolution operation makes tons of local computation

and can be regarded as an severely sparse situation of fully-

connection, it is too redundant to adopt the upmentioned

algorithm. So, we use the chain derivative rule based on back

propagation for solving the problem of convolution network.

To maintain generality, we adopt a functional representation

for the multilayer neural network. In the functional representation,

we view the neural network as a collection of mapping functions,

with each function corresponding to a layer in the network.

Assuming that we have a multi-layer neural network with L + 1

layers. Each layer is represented by hi, where i ranges from 0 to L.

We can define a functional EhL as follows. Suppose that the original

shallower net is trained and expressed as Equation (16), which is a

variant of Equation (3):

EhL(x) = hL ◦ hL−1 ◦ · · · ◦ h0(x), (16)

where ◦ represents the composition operator for functions and
EhL(x) denotes the output of the Lth layer. Each module or

component is denoted as h. x is the input of the network, and the

dimension of x is adjusted according to the batch size of the dataset.

The matter is how to expand the original shallower net to

the new deeper net. We note the structural similarity between the

shallower and the new deeper nets. To make better use of the

trained network, a new depth incremental learning model against

the traditional end-to-end training model is proposed. The method

splits any component hi in EhL(x) as shown in Equation (17),

hi(z) = fi ◦ gi(z), (17)

where z is the output of the functional before the i-th layer, which

is represented as shown in Equation (18)

z = hi−1 ◦ · · · ◦ h0(x), (18)

TABLE 1 Sparse coding with dictionary learning experiment results on

the fully connected network.

Training strategy Iterations Training loss Test loss

End-to-end

4,000 2.96e-2 3.10e-2

7,000 1.22e-2 1.29e-2

12,000 6.85e-5 1.28e-4

DILS

4,000 9.13e-4 1.16e-3

7,000 9.88e-5 1.11e-3

12,000 3.55e-5 8.76e-5

We adopt end-to-end and DILS training for 4,000, 7,000, 12,000 iterations, respectively, and

report the training loss and test loss.

Then the optimization problem in Equation (6) is reformulated

as follows:

min ‖ hi(z)− fi ◦ gi(z) ‖2 . (19)

According to Equation (19), the loss function is defined in

Equation (20).

Loss = MSE(hi(z)− fi ◦ gi(z)). (20)

The parameters of fi and gi are updated according to the

loss function to approximate the optimization objective

in Equation (19):

4 Experiment

We conductmore experiments on CNNs for their extensive use,

in terms of convergence, effectiveness, and exploration.

4.1 Experiment setup

We evaluate our proposed DILS on object classification

tasks with the following configurations. (1) ResNet-20,

ResNet-32, and ResNet-44 (He et al., 2016) on CIFAR-10
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FIGURE 4

Feature convergence graph of training process of VGGnet13-16 on CIFAR-10. (A) The data points of each category are scattered due to random

initialization. (B) After training VGGNet-13 for 20 epochs, the distribution of the features of the network shows a tendency to converge. (C) The Stage

I local supervision ensures network stability, so that the figure is similar to the trained VGGNet-13 shown in (B). (D) After the stage II global

supervision, which guaranteeing the network plasticity, the category distribution is more concentrated. The intra-class feature distance shrinks and

the inter-class feature distance increases, which leads to better classification results.

(Krizhevsky and Hinton, 2009) are used to test the convergence

and the accuracy improvement of the approach. (2) VGGNets

(Simonyan and Zisserman, 2014) on CIFAR-10 and CIFAR-100

are used to test the accuracy and efficiency improvements of

the approach. (3) ResNet-18 and ResNet-34 (He et al., 2016) on

ImageNet (Deng et al., 2009) are used to visualize the training

process of end-to-end and depth incremental learning strategies.

In the following experiments, ResNet20-32 is used to represent

that ResNet-20 is extended to ResNet-32 by inserting layers, similar

to VGGNet16-19. All the experiments are implemented with

PyTorch (Paszke et al., 2019) on an NVIDIA GeForce RTX 3090

Ti GPU and two Intel(R) Xeon(R) Gold 6240 CPUs @ 2.60 GHz.

4.2 Experiment on fully connected network

To verify the effectiveness of sparse coding with dictionary

learning in dealing with Stage I local stability-based supervision,

the fitting experiment of function y = x51+x32+x23+x24+x25+x6+

x7 + x8 + x9 + x10 is conducted. In total, 3,000 points are sampled

uniformly from value −1 to 1 for the training set, and 200 points

are sampled uniformly from value −1 to 1 for the test set. A four-

layer fully connected neural network activated by ReLU is used to

fit the function.

The results are shown in Table 1. DILS on fully connected

network performs better than end-to-end training model for the

robustness of Stage I local stability supervision. The reason is

that sparse coding is another manifestation of depth incremental

learning model, so the loss is closed to depth incremental learning

model. However, sparse encoding does not provide the same

excellent stability supervision as depth incremental learning model,

so the results are slightly inferior.

4.3 Convergence validation of DILS

To demonstrate the convergence of DILS, we devised the

following two experiments to test the convergence of the training

process and results. The training process convergence experiment

is performed on VGGnet13-16, while the experimental results

TABLE 2 Convergence validation of DILS.

Strategy ResNet20 ResNet32 ResNet44

BL acc. (%) 91.25 92.49 92.83

Ours acc. (%) 91.29 92.53 92.8

“BL” denotes the baseline network. The results of ResNet20-32-44 by DILS converges similarly

as the commonly trained ResNet20, ResNet32, and ResNet44.

convergence experiment is performed on ResNet20-32-44. Both

experiments are performed on CIFAR-10.

Figure 4 depicts the feature convergence process of DILS, using

200 samples on VGGNet13-16 with CIFAR-10. First, a randomly

initialized network is shown in Figure 4A. Then we train 20

epochs on the VGGNet-13, which is shown in Figure 4B. After

that, localized supervision is applied to the new growth layer,

which can guarantee the stability of the network, as shown in

Figure 4C. Finally, global supervision is imposed on the entire

network, exploiting the plasticity of the network to achieve better

classification results. The finally result is shown in Figure 4D.

4.3.1 Experiment results
To validate that the experimental results do not diverge with the

increase of the inserted layers, the ResNet20-32-44 experiments on

CIFAR-10 are established. The experimental results are shown in

Table 2. By using DILS, the network depth increases from ResNet-

20 to ResNet-32, further increasing to ResNet-44. The network

accuracy steadily improves as the network depth increases. Due to

the Stage I local stability supervision, the network shows no sudden

drop in accuracy and benefits from the Stage II global plasticity

supervision, and the result is improved to some extent.

4.4 Comparison of end-to-end learning
strategy and DILS

4.4.1 Training process
Fully connected networks with function fitting: To compare

the differences between the two learning strategies on training
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FIGURE 5

Comparison of end-to-end learning strategy and DILS. (A) Shows end-to-end learning strategy, where the loss falls in a stepwise manner. (B) Shows

DILS, where the loss drops continuously and converges faster.

TABLE 3 Accuracy comparison of the two training strategies on

CIFAR-100.

Network Epoch Accuracy

VGGNet-16

30 59.22%

70 63.24%

100 64.55%

VGGNet13-16

(ours)

10 + 10 + 10 60.40%

30 + 10 + 30 65.90%

60 + 30 + 10 67.63%

“60 + 30 + 10” denotes that the shallow prior network is trained for 60 epochs, and Stage

I local supervision is trained for 30 epochs, and Stage II global supervision is trained for

10 epochs. The following tables use the same notation. The results show that within the

same total training epochs, VGGNet13-16 by our DILS achieves better accuracy than baseline

VGGNet-16.

process, we fit y = x51+x32+x23+x24+x25+x6+x7+x8+x9+x10 with

a four-layer fully connected network. Three-thousand points are

sampled uniformly from value−100 to 100 for the training set. The

training characteristics of the two learning strategies can be seen

from the loss descent curve. In Figure 5A, the loss curve descends

in steps for taking different learning rates 0.005 and 0.0005, while in

Figure 5B, the curve drops continuously and converges faster with

fixed learning rate 0.005. In the end-to-end learning strategy, the

network converges after 12,000 iterations. However, in the depth

incremental learning strategy, the same network converges after

3,000 iterations.

4.4.2 Experiment results
In order to prove the effectiveness of depth incremental

learning strategy, two kinds of experiments based on VGGNet13-

16 and ResNet20-32 network are established. In the VGGNet13-16

experiment, the number of epochs in end to end trainingmodel and

depth incremental learning model are equal. In the ResNet20-32

experiment, the calculation amounts of both models are equal.

TABLE 4 Accuracy comparison of the two training strategies on CIFAR-10.

Network Epoch Accuracy

VGGNet-16

30 87.58%

70 89.83%

100 90.05%

VGGNet13-16

(ours)

10 + 10 + 10 87.92%

30 + 10 + 30 90.10%

60 + 30 + 10 91.23%

The results show that within the same total training epochs, VGGNet13-16 by our DILS

achieves better accuracy than baseline VGGNet-16.

TABLE 5 The comparison of the number of parameters of the two

learning strategy.

Networks Epoch
Params↓

(×103 MB)

Accuracy↑

(%)

VGGNet-16 100 135.12 64.55

VGGNet13-16

(ours)

VGGNet-13 60 81.07 –

Stage I 10 12.82 –

Stage II 30 34.27 –

Total 100 128.16

(6.96↓)

67.63(3.08↑)

We conduct the experiment of VGGNet-16 and VGGNet13-16 by DILS on CIFAR-100. The

results show that within the same total training epochs, VGGNet13-16 by DILS achieves

3.08% better accuracy while 6.96 M less parameters. They are the value of 135.12–128.16 and

67.63–64.55, respectively and represent the decreasing value of the parameters quantity and

the rising value of the accuracy.

VGGnet with CIFAR-10 and CIFAR-100: To prove the

effectiveness of DILS, an experiment based on VGGNet13-16 is

established. The number of epochs in the end-to-end training

model and depth incremental learning model are equal. The

experimental accuracy and number of parameters quantity are

compared. Two training models are trained in 30, 70, and 100
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FIGURE 6

Experimental results on ResNet with ImageNet dataset. (A) Train accuracy, test accuracy, and total MSE loss. (B) The MSE loss for four positions in

local stability supervision.

FIGURE 7

Rule of DILS on ResNet20-32. The six subfigures represent di�erent epochs taken for the stage I local stability-based supervision, 2, 4, 6, 8, 10, and 12

epochs, respectively. For every subfigure, chart abscissa represents the number of epochs used for training the original shallow net and di�erent

curves correspond to di�erent stage I global supervision epochs.

epochs on CIFAR-10 and CIFAR-100, respectively. The end-to-

end training model is trained directly on VGGNet-16, and the

depth incremental learning model is divided into three steps. The

first step is training the original shallow VGGNet-13. The second

step is Stage I local stability-based supervision. The third step is

Stage II global plasticity-based supervision. The total epochs of the

three steps are equal to the epochs of end-to-end training. The

experiments are shown in Tables 3, 4. Table 5 shows parameters

comparison of two learning strategies on VGGNet on CIFAR-100.

The experiment shows that the training parameters decrease by

6.96x103 MB and the accuracy increases by 3.08%.

ResNet with ImageNet:To further observe the training process

of DILS, experiments are conducted on the ResNet18-34 network

with the ImageNet dataset. The pretrained ResNet18 network

is used. Original shallow network, and in the first stage, local

stability supervision is conducted for five epochs using MSE as the

loss function, with a learning rate of 0.005. In the second stage,

global plasticity supervision is conducted for 30 epochs with a

learning rate of 1e-5. In fact, 10 epochs are sufficient to ensure the

convergence of the DILS network. To facilitate comparison with the

naive end-to-end network, we set the total number of epochs to 35.

The learning rate of the plain end-to-end network is initially set to

0.1 and multiplied by 0.1 every 30 epochs. The experimental results

are shown in the Figure 6. The experimental results demonstrate

that the network trained using the DILS strategy can achieve faster

convergence due to its ability to inherit prior knowledge from the

existing network. Additionally, an interesting observation is that

the MSE loss of the front layers in the network is relatively small,

while the MSE loss increases as it gets closer to the back layers,

as shown in Figure 6B. This may be because the deeper layers of

the network contain richer semantic information, which is more

important for the representation of the classification network.
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It is worth mentioning that the training model we proposed

uses a single learning rate at each step, while the end-to-end

training model uses multiple variable learning rates to obtain the

best experimental results. The proposed model effectively alleviates

the problem of learning rate adjustment in DNN training and

obtains better experimental results.

4.5 Exploration of the rule on the DILS

To obtain better experimental results, we try to explore the

general rule of DILS. A series of experiments are carried out

in ResNet20-32. In Figure 7, different subfigures show different

epochs in which Stage I is trained. For example, in the first subfigure

of Figure 7, the I local supervision epochs of all curves are fixed

to 2, and the rest of the subfigures are fixed to 4, 6, 8, 10, and

12 epochs in order. The chart abscissa represents the number of

epochs training the original shallow net. Different color curves

correspond to different epochs of Stage II. For example, “f5” in

the legend indicates five epochs of the II global supervision. The

optimal training number of the original shallow network is fixed

at 80, regardless of how many epochs the local and the global

supervisions are trained.

The reason for this phenomenon is that too few iterations

cannot guarantee net stability, and too many iterations limit

the plasticity of the net. Experiments show that the most

plausible prior network exists. This reflects the scientificity of the

proposed strategy.

4.6 The reasonability of the stage I

The proposed method makes use of the priors of the shallow

network and it is extended to the deep network by fitting

the original one layer with multiple layers. To validate its

reasonability, an experiment is performed by randomly initializing

the parameters of any layer in the well-trained VGGNet-16

on CIFAR-10, as shown in Table 6. Then, by extracting the

output before and after the random initialized layer, DILS is

applied to this layer. In the experiment, one layer and two

layers are used to fit the original layer, respectively. As the

number of training epochs increases, the accuracy improves.

In addition, the results of “two-layer” are better than those of

“one-layer”.

4.7 The exploration of the training mode in
stage I

To explore the best training mode to train the inserted layer

in the Stage I local supervision, four experiments are conducted

on VGGNet16-17 with complete training and incomplete training

prior nets. Two training modes are compared. One is the

end-to-end training mode, which means taking the input of

the network as input and taking the output of the network

as output. The other uses the input and output before and

after the inserted-layers as the input and output of the

TABLE 6 The results of using one or two layers to fit one layer.

Training strategy One-layer acc. Two-layer acc.

Baseline 90.05% 90.05%

R/N 10% 10%

5 epoch 81.55% 82.27%

10 epoch 81.97% 88.93%

15 epoch 82.96% 89.28%

20 epoch 83.26% 89.18%

“R/N” denotes random initialization. In the “one-layer” column, we fit one layer in the original

network with one layer. In the “two-layer” column, we fit one layer in the original net with

two layers. As the number of training epochs grows, the gradually converging results validate

the reasonability of Stage I.

TABLE 7 Comparison of two training modes in stage I on CIFAR 10.

Training stage VGGNet-16 Stage I Stage II

Depth incremental learning mode in stage. I

Incomplete acc.(%) 86.69 86.62 87.87

Complete acc.(%) 90.68 90.41 91.56

End-to-end training mode in stage. I

Incomplete acc.(%) 86.69 87.58 88.41

Complete acc.(%) 90.68 90.02 91.15

local supervision. Experiments are performed with CIFAR-10.

According to Table 7, with a complete VGGNet-16 trained for

80 epochs, the depth incremental learning mode achieves better

experimental results, while with the incomplete VGGNet-16

trained for 10 epochs, the end-to-end training mode achieves better

experimental results.

The reason is summarized as follows. In a well-trained

original shallow net, the feasible region of the solution

is better, so that DILS can find the approximate optimal

solution in a smaller feasible region with a finite number of

epochs. However, with the incomplete training mode, the

original shallow network does not provide a good feasible

region, so the end-to-end training mode benefits from a large

feasible region.

5 Conclusion

This study proposes a depth incremental learning

strategy (DILS), which explores the importance of knowledge

transfer in the field of neural networks, with a specific

focus on transferring knowledge from small networks to

large networks. In the procedure, the new inserted layers

are derived by the existing network, so that they can best

inherit previously learned knowledge. It not only enhances

the training efficiency, more importantly, it provides a

more flexible way to obtain a series of networks with

various complexities and corresponding accuracies. It

makes the network have better extensibility and have the

potential to be utilized for more complex network design in

the future.
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