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Multimodal robotic music
performance art based on
GRU-GoogLeNet model fusing
audiovisual perception

Lu Wang*

School of Preschool and Art Education, Xinyang Vocational and Technical College, Xinyang, China

The field of multimodal robotic musical performing arts has garnered significant

interest due to its innovative potential. Conventional robots face limitations

in understanding emotions and artistic expression in musical performances.

Therefore, this paper explores the application of multimodal robots that integrate

visual and auditory perception to enhance the quality and artistic expression in

music performance. Our approach involves integrating GRU (Gated Recurrent

Unit) and GoogLeNet models for sentiment analysis. The GRU model processes

audio data and captures the temporal dynamics of musical elements, including

long-term dependencies, to extract emotional information. The GoogLeNet

model excels in image processing, extracting complex visual details and

aesthetic features. This synergy deepens the understanding of musical and

visual elements, aiming to produce more emotionally resonant and interactive

robot performances. Experimental results demonstrate the e�ectiveness of

our approach, showing significant improvements in music performance by

multimodal robots. These robots, equipped with our method, deliver high-

quality, artistic performances that e�ectively evoke emotional engagement

from the audience. Multimodal robots that merge audio-visual perception in

music performance enrich the art form and o�er diverse human-machine

interactions. This research demonstrates the potential of multimodal robots in

music performance, promoting the integration of technology and art. It opens new

realms in performing arts and human-robot interactions, o�ering a unique and

innovative experience. Our findings provide valuable insights for the development

of multimodal robots in the performing arts sector.
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1 Introduction

With the rapid development of technology, multimodal robots are becoming more

and more common in real life, covering a number of different fields, and have been

widely used in all aspects of daily life. They are deployed in healthcare, education,

customer service, manufacturing, entertainment, autonomous vehicles, agriculture, search

and rescue, home assistance, environmental monitoring, retail, inventory management,

and public safety (Erickson et al., 2020). These robots enhance patient care, assist in

surgeries, provide interactive education, improve customer experiences, automate industrial

processes, entertain in theme parks, revolutionize transportation, aid in agriculture

tasks, support search and rescue missions, assist with household chores and security,

monitor environmental conditions, optimize retail operations, ensure public safety, and
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much more. The versatility of multimodal robots enables them to

adapt to different tasks and environments, making them valuable

tools in enhancing efficiency, safety, and overall quality of life.

Not only that, multimodal robots are being used more and

more in the performing arts. Robot performing art refers to

the combination of robot technology and performing art to

create a unique and amazing art form (Inamura and Mizuchi,

2021). It uses robots as the main body or participants of

the performance, and through the robot’s movements, music,

lighting, images and other elements, it presents the audience

with a visual feast that integrates technology and art. Robot

performance art has a variety of forms and expressions, such

as dance performance, music performance, theater performance,

interactive performance, and so on Wang et al. (2021). It is the

intersection of technology and art, which is developing rapidly and

has made significant contributions in a number of fields in recent

years.

To advance the development of robotic music performance

art and bring it closer to everyday life, this paper explores

the novel integration of the GRU-GoogLeNet model in the

field of multimodal robotic music performance art, aiming to

enrich the audio-visual experience. Our study defines audiovisual

perception as an integrated approach to information processing

(Li et al., 2023), simultaneously parsing and synthesizing the

acoustic (audio) and visual elements of a musical performance.

This encompasses not just the aural understanding of the music,

such as rhythm, melody, and tonality, but also the interpretation

of visual information from performers and audiences (Tsiourti

et al., 2019), like facial expressions, body language, and scene

interaction.

This research not only fuses robotics, music, and visual

arts into a unique performance style but also offers a novel

artistic experience to audiences. Our methodology marks a

significant advance in both art and technology, potentially

influencing society and culture. During performances, robots

equipped with our model can analyze the audience’s emotions

and reactions, dynamically adjusting the performance in real-

time to establish a more profound connection with the audience.

This enhances the appeal and engagement of the performing

arts, elevating the quality, and immersive experience of the

artwork.

Our research focuses on enhancing the integration of visual

and auditory perception in robotic performances, setting a new

benchmark in the field. Differing from traditional approaches, our

model combines the strengths of GRU for audio data analysis and

GoogleNet for visual data processing. This integration allows for

a more nuanced understanding of musical performances, offering

a richer and more engaging experience to the audience. Our

study incorporates the latest technological advancements, aligns

with contemporary research, and provides a fresh perspective

on integrating advanced machine learning techniques in artistic

performances. Clearly, this research represents the cutting edge of

integrating art and technology, embodying significant implications.

The development of this art form will help drive the joint progress

of technology and art, while bringing more entertainment options

to the public.

Here are some models that related to this area.

1.1 LSTM-based sentiment analysis model

To integrate audiovisual perception in multimodal robotic

musical performing arts, it is important to perform sentiment

analysis of musical information and user feedback. LSTM (Long

Short-TermMemory) model is a type of Recurrent Neural Network

(RNN), which is one of the most powerful dynamic classifiers

publicly known (Staudemeyer and Morris, 2019) and well-suited

for continuous data analysis. LSTM can be used for sentiment

analysis to determine the emotion or mood expressed in a given

text, and for analyzing music, including extracting notes, melodies,

and emotions from the audio (Laghrissi et al., 2021). LSTM

can also be used to analyze music, including extracting notes,

melodies, and emotions from audio. However, the LSTMmodel has

some limitations. One of the major limitations is that it struggles

with long sequences. Longer text sequences require significant

computational resources and time for training and inference.

Capturing long-term dependencies becomes more complex as the

length of the sequence increases. In addition, LSTM models for

sentiment analysis and other natural language processing tasks

usually require a large amount of labeled data for training to obtain

accurate results (Zhou et al., 2019). However, obtaining a sufficient

amount of labeled data, especially for certain languages or specific

domains, can be a challenging task. This also makes training LSTM

models more difficult.

1.2 Face recognition model

Face recognition modeling is a technique used to identify and

verify faces and is widely used in the field of computer vision.

Face recognition in a broad sense includes related technologies

for building a face recognition system. It includes face detection,

face position, identity recognition, image preprocessing, etc. (Li

et al., 2020). Face recognition models determine identity by

extracting face features and comparing them with known face

features. This model usually use deep learning algorithms such

as convolutional neural networks (CNN) or face embedding

techniques to build efficient face recognition systems by learning

a large number of face images. It is widely used in various

scenarios such as security surveillance, face unlocking and face

payment (Hariri, 2022). Multimodal Robotic Music Performing

Art with Integrated Audiovisual Perception Music performing

art is an art form that combines visual, auditory, and robotic

technologies. In this kind of performing art, robots use sensors such

as cameras and microphones to sense the audience’s audio-visual

behavior and the ambient music, and based on this information,

they display movements and expressions that are coordinated

with the music. By integrating audiovisual perception, robots are

able to interact with the audience and present a more vivid

and expressive artistic performance. However, the use of facial

recognition models may also raise privacy concerns, especially as

the recognition and tracking of an individual’s facial information

without explicit authorization may violate an individual’s right to

privacy. Therefore, the question of how to ensure the legal and

ethical use of facial recognition technology is a crucial one (Bhat

and Jain, 2023).
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1.3 Natural language processing model

Natural Language Processing (NLP) modeling plays an

important role in the art of multimodal robotic musical

performances that integrate audiovisual perception (Qiu et al.,

2020). It utilizes speech recognition technology to realize voice

interaction between the robot and the audience, accurately

understand the audience’s words and commands, and respond and

interact accordingly. At the same time, through the analysis of

natural language processing models, the robot can also recognize

the audience’s language expression and intonation, from which it

can understand the audience’s mood and emotional state. This

process helps the robot adjust its performance or response to

better interact with the audience and create a more personalized

interactive experience (Zhu et al., 2019). However, it is worth

noting that there are still some challenges and shortcomings

of natural language processing models in this artistic field

(Li, 2022). For example, the accuracy of speech recognition

can be problematic, and sometimes audience commands are

misinterpreted or incorrect responses are generated. And due to

the creative limitations of the model, it may result in the robot’s

responses being too stilted or predictable to generate responses that

surprise the audience.

1.4 Interactive strategy model

The interactive strategy model has multiple perceptual

capabilities and can perceive various states of the audience and the

environment, including elements such as music tempo, audience’s

emotional feedback and body movements (Andersson et al., 2020;

Pang et al., 2020). Through in-depth analysis of these perceptual

information, the model can intelligently formulate corresponding

interaction strategies according to different contexts, providing

highly personalized performance experiences for the audience.

The model can also flexibly adjust the form and content of the

performance according to the audience’s emotional feedback, such

as voice expression and facial expression, to guide the audience

to a more positive and deeper emotional experience (Lee et al.,

2020). However, the interactive strategy model still has some

accuracy difficulties in perceiving and understanding the audience’s

emotions and movements. Although existing technologies are

able to perceive and analyze to a certain extent, the models

may be limited in accurately understanding and responding to

audience needs when facing complex music performance scenes

and diverse audience behaviors. This issue requires continued

research and technological improvements to improve the accuracy

and adaptability of the models to better meet audience expectations

and provide superior music performance experiences.

After comprehensively considering the advantages and

disadvantages of other models, we have designed an innovative

multimodal robotic music performance art system that integrates

GRU and Google Net models. This system utilizes deep learning

and artificial intelligence technologies to perceive, analyze, and

generate music, and combines it with rich visual information to

provide an all-encompassing artistic experience for the audience,

resulting in a richer and more integrated performance experience.

This system not only contains music generation and analysis

functions, but also covers the ability to analyze music emotion.

Through advanced emotion analysis technology, the robotic

music performer is able to accurately perceive and understand the

audience’s emotional state, and adjust the performance form and

content accordingly. As an example, when the audience expresses

joyful or excited emotions, the robot performer can choose

upbeat, high-energy music as well as exciting dance movements,

thus further stimulating the audience’s positive emotions and

in-depth experience. In a multimodal robotic musical performing

arts system that integrates audiovisual perception, the robot not

only analyzes and generates music through music and sound

perception, but also acquires information about the stage, the

audience, and the performer through visual perception. This visual

information includes the audience’s gestures, facial expressions

and movements, as well as the stage lighting, camera inputs,

etc. By combining GRU and Google Net models, the system is

able to deeply analyze and understand this visual information in

order to better adapt to the audience’s emotional state and stage

effects, and further enhance the artistry and interactivity of the

performance.

The contribution points of this paper are as follows:

• This multimodal robotic music performance art system

utilizes advanced deep learning and artificial intelligence

technologies to perceive, analyze, and generatemusic by fusing

GRU and Google Net models and combining them with

rich visual information to provide an all-encompassing art

experience.

• The system is able to accurately perceive and understand the

audience’s emotional state through music emotion analysis

technology, thus adjusting the performance form and content

in real time, increasing the audience’s sense of participation

and immersion, enhancing the charm and interactivity of

the music performance art, and creating a more interactive

and personalized music performance experience for

the audience.

• It applies advanced artificial intelligence technology in music

analysis, emotion recognition and image processing. Through

deep learning methods, the system is able to learn and extract

features of music and images from a large amount of data,

enabling the generation of music and recognition of emotions.

This application of technology enables the robot performer to

have a higher level of interpretive and creative ability, thus

providing a more artistic and emotionally resonant musical

performance.

2 Related work

2.1 CNN-based emotion recognition
model

Emotion recognition is an important field in the performing

arts of multimodal robots, and its goal is to automatically recognize

the emotional state of robots by integrating multiple perceptual
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modalities such as vision, hearing, and touch. Research in this area

has made significant progress, and one representative model is the

deep learning model.

Selvi et al. proposed a deep learning-based multimodal

emotion recognition model that utilizes both visual and acoustic

information (Selvi and Vijayakumaran, 2023). Specifically,

they used a convolutional neural network (CNN) for image

information and a recurrent neural network (RNN) for

sound information. These neural networks are able to extract

emotional features from images and sounds, respectively, and

then fuse them together to ultimately output the emotional

state of the robot. However, despite the success of this

approach in multimodal emotion recognition, there are still

some shortcomings.

First, the accuracy of the model still needs to be improved

for complex emotional states. For example, the performance

of the model may degrade when recognizing mixed emotions

(e.g., being both happy and anxious). Second, the generalization

ability of this method is limited and it is difficult to adapt

to the differences in emotional expressions caused by different

cultural backgrounds and individual differences. However, the

performance in multimodal tasks is somewhat limited. Traditional

CNN models usually require multiple independent networks in

multimodal tasks, resulting in inadequate information fusion and

difficulty in adapting to different types of multimodal input

data, which leads to their limited generalization for processing

multimodal tasks (Pepino et al., 2021). Therefore, further research

and improvements are needed to address these issues in future

studies.

2.2 Multimodal fusion approach to
processing information

Multimodal fusion methods are a class of methods proposed to

solve the problem of information integration in multimodal data

analysis, which provide a richer, more interactive and perceptual

performance experience in the art of robotic music performance,

while enhancing the connection and communication between

the robot and the audience, making the music performance

more vivid and memorable. Among them, multimodal attention

mechanisms (Ghaleb et al., 2020) and multimodal convolutional

neural networks (FusionNet) (Vakalopoulou et al., 2019) are two

common approaches.

The multimodal attention mechanism allows the model to

dynamically attend to information from different modalities in

order to increase the weight of specific modalities in the task.

FusionNet, on the other hand, fuses the features of multiple

modalities through a specific network structure to achieve the

integration of multimodal information. However, multimodal

attention mechanisms usually require a large amount of labeled

data for training, which is difficult to obtain in some domains,

limiting their feasibility in practical applications. In addition,

although methods such as FusionNet provide a way to integrate

multimodal information, they usually perform well on specific

tasks, lack generalizability, and are difficult to apply to different

multimodal tasks.

2.3 Augmented reality modeling in the
performing arts

Multimodal robotic music performance technology fuses art

and technology, integrating music, robotics, and multimodal

perception, bringing a new audio-visual experience to music

performances. In order to enrich the performance effect,

Augmented Reality (AR) Modeling has been created and combined

with music performance (Petrović, 2020). This technological

innovation utilizes AR technology to enable virtual elements to

interact with the actual scene, providing the audience with a

richer and more unique visual enjoyment. AR modeling relies on

multi-disciplinary knowledge such as computer vision and sensing

technology, and is able to capture audio signals in real time and

present them in a virtual visual effect.

At the same time, the application of augmented reality models

in multimodal music performances has some limitations. First,

organically integrating multiple models may face the challenges

of model interface inconsistency and performance matching,

which require clever design and optimization to fully utilize the

performance of the models. Moreover, music performances usually

require real-time performance, so the integration of all models

must maintain low latency while maintaining high performance,

which increases the stringent requirements on the performance

environment, as factors such as the external environment and

equipment failures may adversely affect the models. In addition

the application of AR models also requires appropriate hardware

equipment and technical support, which may increase the cost and

technical complexity (Lee, 2019).

To summarize, the application of augmented reality models

in multimodal music performances brings innovation and

interactivity to performances, but there are still some challenges

in terms of technology and cost. However, these challenges are

expected to be gradually overcome as technology continues to

advance, making AR a more common and compelling element of

musical performances.

3 Methods

3.1 Overview of our network

Our approach integrates GRU and GoogleNet models to

enhance robotic music performing arts systems, created a model

that can accept multiple modal input data, such as audio and

image information. Audio information can be acquired through

microphones or audio sensors, while image information can be

acquired through cameras or visual sensors. These two input

modalities can capture the musical and visual elements of the

performing arts to provide a more comprehensive perception for

the robot. The combination of these modal data can provide richer

information for the creative and perceptual aspects of musical

performing arts. The GRU model specifically processes audio

data, capturing the temporal aspects of music, while GoogleNet

processes image data, extracting key visual features (Ning et al.,

2023). Together, these models provide comprehensive awareness

of audio and visual elements, enabling robots to deliver more

emotionally engaging and contextually relevant performances. Our
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FIGURE 1

Structure diagram of GRU-GoogLeNet model.

innovative approach uses deep learning and artificial intelligence to

analyze and generate music, coupled with rich visual information

processing, providing novel development ideas for robotic music

performance art. The structure of the GRU-GoogLeNet model is

shown in Figure 1.

When building the GRU-GoogLeNet network, the audio data

first needs to be preprocessed by the GRU. This includes converting

the raw audio signal into digital form and performing operations

such as sample rate adjustment and noise reduction to ensure

consistency and quality of the input. In order to capture useful

information about the audio, we have adopted the Mel Frequency

Cepstrum Coefficients (MFCC) as an extracted feature. MFCC is a

feature commonly used in speech and audio processing that is able

to represent the spectral characteristics of audio (Gao et al., 2023).

In addition, we have built a recurrent neural network containing

multiple layers of GRU units. These GRU units are capable of

capturing temporal dependencies in the audio signal, including the

order and tempo of note playing. The output of the model is usually

a vector containing information from the audio sequence. The

image data is fed into the GoogLeNet model after preprocessing,

including resizing, normalization, and data enhancement. The

experiments are performed using the pre-trained GoogLeNet

model, which is a convolutional neural network that has achieved

good performance on large-scale image classification tasks. It has

the option of freezing some or all of the network layers, which

can then be fine-tuned to suit specific multimodal tasks. At the

end of the experiment, we need to fuse features from GRU and

GoogLeNet to create a multimodal representation, as shown in

Figure 2. This can be done by linking the outputs of the two models

together and then synthesizing them through a fully connected

layer. Attention mechanisms can also be used to dynamically fuse

information from different modalities. Multimodal fusion can help

models understand musical performances more fully by combining

audio and image information to provide a richer representation of

features. This helps the model to better understand the emotions,

rhythms and visual effects of the performing arts, leading to better

musical and movement performances.

The GRU-GoogLeNet multimodal network helps to improve

the perception of robotic musical performances. By processing

audio and image information simultaneously, the model can more

accurately perceive the audience’s emotions and needs. To better

interact with the audience, it can recognize the audience’s emotional

state and adjust the music playing or performance actions as

needed. This multimodal approach can also facilitate creative

musical performances. By fusing audio and image information,

the model can provide more creative inspiration for the robotic

performing artist. It can generate creative dance movements based

on the rhythm and emotion of the music, or adapt the style

of musical performance based on audience feedback. The GRU-

GoogLeNet multimodal network represents a combination of

technology and art. It utilizes state-of-the-art audio and image

processing technologies while applying them to the field of

performing arts. This combination creates new possibilities to

make robotic performing arts more interactive, emotional and

creative. The building process of GRU-GoogLeNet multimodal

network covers audio and image processing, model building

and feature fusion. Its significance for the performing arts is to

enhance the perceptual aspects of performance, to promote creative

performances, and to combine state-of-the-art technology with art

to bring new possibilities to the field of performing arts.

3.2 GRU-MLP model

As shown in Figure 3, the input-output structure of GRU is

the same as that of a normal RNN. There is a current input xt ,

and a hidden state (hidden state) ht−1 passed down from the

previous node, which contains information about the previous
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FIGURE 2

Overall flow chart of the model.

node. Combining xt and ht−1, GRU will get the output yt of the

current hidden node and the hidden state passed down to the next

node ht .

The gating state of the reset and update gates is obtained from

the last transmitted down state ht−1 and the input xt of the current

node. σ is a sigmoid function by which the data can be transformed

to a value in the range 0–1 to act as a gating signal.

rt = σ (xt Wxr +Ht−1 Whr + br ) (1)

zt = σ (xt Wxz +Ht−1 Whz + bz ) (2)

Reset door candidate hidden layer state is H̃ = tanh(xtWhx +

Rt
⊙

Ht−1Whh+ bh), where h
t−1 contains the past information, Rt

is the reset gate, and
⊙

is the per-element multiplication.

Updating the final hidden state of the door is Ht = (1 −

Zt)
⊙

Ht−1 + Zt
⊙

H̃t , where h
t−1 contains the past information,

H̃t is the candidate hidden state, and Zt is the update gate. This

step operates by forgetting some dimensional information in ht−1

passed down and adding some dimensional information entered by

the current node. Zt ranges from 0 to 1. The closer the gating signal

is to 1, the more data from the past is “memorized”; while the closer

it is to 0, themore data from the past is “forgotten” (how to combine

the past hidden state and the current candidate information).

The reset gate determines how the new input information is

combined with the previous memory, and the update gate defines

the amount of the previous memory saved to the current time step.

Figure 3 illustrates the workflow of the GRU model.

In constructing the overall model, the parameters need to be

initialized first, including the weight matrix and bias, which are

used to map the input data to the hidden states and outputs. Then

the GRU accepts the time-series input data for analysis. Finally, the

model generates the required outputs according to the applied task

through the output layer (usually a fully connected layer) added at

the top of the GRU model. GRU controls the flow of information

through a gating mechanism, has a long memory capacity, and

is usually able to achieve performance comparable to, or close to,

that of LSTM in the natural language processing task of sentiment

analysis, while having an advantage over LSTM in terms of model

complexity and computational efficiency. It plays an important role

in this research as part of the GRU-GoogLeNet model.

3.3 GoogLeNet network

GoogleNet is a deep learning model developed by the Google

Brain team. Its full name is “Inception”, derived from a line

in the movie Inception: “We need to go deeper.” The main

contribution of GoogleNet was the introduction of the Inception

module, an efficient convolutional neural network module that

allows the network to learn multiple feature maps of different sizes

simultaneously, thus improving model performance learn multiple

feature maps of different sizes, thus improving the performance of

the model. It was known for its depth and efficiency, and achieved

excellent results in image classification and recognition tasks at the

time.

The GoogLeNet network model is to increase the width of the

network; its main part is the inception structure, which can improve

the accuracy of the network (Yu et al., 2022). The structure of

GoogleNet is shown in Figure 4.

GoogleNet employs Inception modules that use multi-scale

convolutional kernels to capture features at different scales in

a more efficient way. This allows GoogleNet to reduce model

parameters and computational complexity while still achieving

excellent performance. The basic composition of the Inception

module consists of four elements: a 1 × 1 convolutions, a 3 ×

3 convolutions, a 5 × 5 convolutions, and a 3 × 3 maximum

pooling. The core idea of Naive Inception described here is to

achieve multi-scale perception by employing convolutional kernels

of different sizes, and finally combining them channel-wise to

obtain a more efficient image representation. It is important to

note that the feature matrices produced by each branch must be

consistent in height and width. However, Naive Inception suffers

from two serious problems: first, all the convolutional layers are

directly connected to the input data of the previous layer, so the

computational effort of the convolutional layers can be very high;

second, the maximum pooling layer used in this unit preserves the

featuremap depth of the input data, so in the final combining phase,

the total output feature map depth will only increase, which in turn

increases the network structure’s computational burden. Therefore,

the main purpose of the 1 × 1 convolutionals kernel used here

is to perform the compression of the number of downscaling and

parameter counts so that the network is deeper and broader for
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FIGURE 3

Flow chart of the GRU model.

FIGURE 4

The structure of GoogleNet.

better feature extraction. This idea is also known as Pointwise Conv

(PW).

GoogleNet can be used as a performance benchmark for

experiments in order to compare it with other models. Its excellent

performance on image classification tasks can help us evaluate

whether our experimental models can meet or exceed previous

standards. In addition depending on the specific needs of the

experiment, the architecture of GoogleNet may be suitable for a

particular task, and in this experiment we chose to use GoogleNet as

the base model in order to explore it on different tasks or datasets.

4 Experiment

4.1 Datasets

To verify the effectiveness of our integrated GRU-GoogLeNet

model, we conducted cross-dataset validation using the music

emotion dataset and themultimodal dataset. This approach ensures

that our model’s performance is not limited to a single dataset,

but is effective across different data sources. The validation process

involves testing the model’s ability to accurately interpret and

respond to a range of audio-visual cues in different musical and

visual environments.

Music Emotion Dataset (Schuller et al., 2010): This dataset,

created by Prof. G. Schuller’s team at Carnegie Mellon University,

contains music samples from a variety of musical styles and

emotion categories that can be used for music emotion recognition

and classification tasks. It provides a valuable source of data for

analyzing musical emotions.

Multimodal DataSet (Zadeh et al., 2018): CMU-MOSI is a

multimodal emotion dataset containing text, audio, and video

data designed to be used in research on emotion recognition

and emotion intensity estimation. The dataset contains video

clips from YouTube that are performed by different speakers in

different emotional states. The richness of this dataset makes it a
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powerful tool for conducting emotion-related research, helping us

to gain a deeper understanding of emotion expression, emotion

recognition, and emotion intensity estimation in multimodal

settings.

4.2 Experimental details

Step 1: Data preprocessing

Our experiments are designed to test the model’s ability to

process and interpret audio and visual data. The experimental setup

consists of simulated scenarios in which the robot interacts with

the audience and adapts its performance based on the combined

audio-visual data. These scenarios are designed to evaluate the

effectiveness of the model in real-world applications, especially

its performance in understanding and responding to complex

emotional states. To ensure the accuracy and interpretability of

the results, we used several data analysis techniques. First, we

pre-processed the collected audio and visual data, including noise

removal (Liu et al., 2022), normalization and feature extraction.

For audio data, we used spectral analysis and rhythmic pattern

recognition techniques to extract emotional features of music.

For visual data, we applied facial expression analysis and body

language recognition techniques to interpret audience reactions

and interactions. Based on the experimental requirements, we

perform data preprocessing work in the initial phase of the

experiment to ensure that the data is suitable for model training

and evaluation. This includes the following steps:

• Data Cleaning: Firstly, identify and handle missing data

points. We define a threshold (e.g., 5% missing values) and

consider imputation techniques such as mean, median, or

mode for numerical features or a designated category for

categorical features. Then we detect and deal with outliers

that can skew the model. We can use statistical methods

like Z-scores or IQR (Interquartile Range) to identify outliers

and choose to remove or transform them if necessary. We

check for and remove duplicate records, if any, to avoid

over-representation of certain data points.

• Data Standardization:We normalize or standardize numerical

features to have a consistent scale. Common techniques

include Min-Max scaling (scaling values to a range between 0

and 1) or Z-score normalization (scaling with mean = 0 and

standard deviation = 1). Then convert categorical variables

into numerical representations using techniques like one-hot

encoding or label encoding, depending on the nature of the

data and the machine learning algorithm we plan to use.

• Data Splitting: We divide the dataset into three subsets: a

training set, a validation set, and a test set, and then use 70%

of these datasets for training, 15% for validation, and 15% for

testing, often adjusting these proportions based on the size

and specific requirements of the dataset. If we are dealing with

imbalanced classes, we employ stratified sampling to ensure

that each subset maintains the same class distribution as the

original dataset.

Step 2:Model training

During the model training process, we conducted an in-depth

study on how to introduce sentiment analysis, and the following is

the research process.

Many studies have shown that various audio features play a

crucial role in analyzing the emotional expression of music (as

shown in Table 1). They research the nature of emotions caused

by listening to a musical composition and which features of audio

are responsible for emotion (Li and Ogihara, 2003; Koelsch et al.,

2006). These features include elements such as pitch, loudness,

audio energy and rhythmic variations. By analyzing these aspects

of music, researchers are able to identify patterns and features that

are closely related to emotional content. For example, the pitch of

a note can convey feelings of sadness or happiness, while loudness

and audio energy can evoke strong or calm emotions. In addition,

changes in rhythm and tempo can contribute to the emotional

dynamics and pace of a musical composition. By examining and

extracting these audio features through computational techniques,

researchers gain valuable insights into the emotional nuances

conveyed by music (Gouyon et al., 2006).

In order to achieve effective audio analysis and to extract

emotionally relevant information from the audio signals of

the tracks, we employ a number of methods from the field

of digital signal processing. These methods utilize advanced

algorithms and techniques that allow us to accurately extract

the emotional features contained in the audio signal. Digital

signal processing techniques allow us to perform operations such

as spectral analysis, time domain analysis, and time-frequency

analysis to obtain information about key features in the audio

signal.

A Spectrogram is generated through the Short-Time Fourier

Transform (STFT) of a signal, revealing how the sinusoidal

frequency and phase components of the signal’s sections (windows)

change over time. In practical terms, when calculating the STFT,

the signal is segmented into equal-length portions, and the

Fourier transform is applied to each of these segments, effectively

highlighting the Fourier spectrum. This process of representing

varying spectral information over time is referred to as creating a

Spectrogram.

In the context of continuous time, we take the function

we wish to transform, denoted as x(t), and convolve it with a

window function that is active for a short duration. Typically,

window functions like Hann or Gaussian types, denoted as w(t),

are employed. The STFT’s Fourier transform is computed as the

window slides along the signal and is mathematically determined

using Equation (3).

STFT {x (t)} ≡ X (τ ,w) =

∫ +∞

−∞

x (t)w (t − τ) e−itdt (3)

The Mel Spectrogram closely resembles a regular Spectrogram,

differing only in the way frequencies are represented, being

transformed to theMel scale. TheMel scale is a pitch scale designed

to replicate the human auditory system’s perception of sound.

mel
(
f
)
=

1000

log10 2
log10

(
1+

f

1000

)
. (4)
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TABLE 1 Association between structural features of music and emotion.

Structural feature Definition Associated emotion

Tempo The speed or pace of a musical piece Fast tempo: happiness, excitement, anger. Slow

tempo: sadness, serenity.

Mode The type of scale Major tonality: happiness, joy. Minor tonality:

sadness.

Loudness The physical strength and amplitude of a sound Intensity, power, or anger

Melody The linear succession of musical tones that the

listener perceives as a single entity

Complementing harmonies: happiness, relaxation,

serenity. Clashing harmonies: excitement, anger,

unpleasantness.

Rhythm The regularly recurring pattern or beat of a song Smooth/consistent rhythm: happiness, peace.

Rough/irregular rhythm: amusement, uneasiness.

Varied rhythm: joy.

Mel filters replicate the sensitivity of the human auditory

systemmore effectively than linear frequency bands. Essentially, the

term “Mel” denotes a pitch scale developed through experiments

involving human listeners to better understand how the human

ear perceives changes in tonality. The name “Mel” is derived from

the word “melody” and was coined by Stevens, Volkmann, and

Newman (Stevens et al., 1937).

Log-Mel Spectrogram is the Mel Spectrogram with a

logarithmic transformation on the frequency axis. Mel-

Frequency Cepstral Coefficients (MFCCs) comes from the

Log-Mel Spectrogram with a linear cosine transformation.

MFCC =

√
2

M

M∑

M=1

Xm (i) cos

(
cπ
(
m− 1

2

)

Mm

)
(5)

where: xm is the logarithmic energy of m-th Log-Mel Spectrogram

and c is the index of the cepstral coefficient.

Chroma features, also known as pitch class profiles, exhibit a

significant correlation with musical harmony and find widespread

application in music-related information retrieval tasks. These

features remain stable in the face of changes in tonal quality

(timbre) and have a direct connection to musical harmony.

According to Müller et al. (2005), chroma features serve as robust

mid-level attributes, proficient in extracting crucial information

from audio data. Assuming the Western tonal scale, establishing a

relationship between the audio signal and chroma features becomes

straightforward. In practical terms, we begin by computing the

spectrogram of the signal. Then, for each time window, we calculate

a vector denoted as “x” with components x = [x1, x2, . . . , x12],

where each xi corresponds to a specific scale degree.

{C,C#,D,D#,E, F, F#,G,G#,A,A#,B}. (6)

These features were extracted in order to give us room for

subsequent experiments where we could try different combinations

of them and decide which features contained information

applicable to the task. This step is important because it allows us

to determine which specific features contain valuable information

that can be effectively applied to a given task. Through this

iterative process of feature selection and combination, we strive to

identify the most important and relevant attributes that contribute

significantly to the success of the task, optimizing our feature set

while improving the overall performance and effectiveness of our

analysis or application. We then trained the GRU model on audio

data sequences using these extracted tuned data to enable it to

recognize emotional information in music.

The following image (Figures 5–7) shows the features of a

sampled track extracted from the available dataset. The track is

“BuLiangRen” by Hetu, which belongs to the category of classic old

style songs and its label corresponds to “relaxed”. This sample song

contains both instrumental and vocal parts, compressed in wav file

format to present its mixed production characteristics.

In addition to audio features, analysis of the vocabulary in lyrics

is a way of determining the emotional coloration carried by the

words used and can be used to analyze the emotional expression

of the music. Certain words in lyrics are usually associated with

specific emotions, e.g., positive words (e.g., happiness, joy, love)

are usually associated with happy emotions, while negative words

(e.g., sadness, loneliness, disappointment) are associated with

sad or depressed emotions. In addition, by analyzing sentence

structure and grammar, we can also gain clues about how emotions

are expressed. Sentences that use rhetorical devices such as

exclamations, rhetorical questions, or metaphors usually express

stronger emotions compared to other parts of the sentence.

In our experiments, we used sentiment lexicon analysis to

analyze the emotional coloring of the lyrics:

• Score = Positive Sentiment Word Score - Negative Sentiment

Word Score.

This method determines the sentiment score based on the

difference between the scores of positive and negative sentiment

words in the text. If the positive affective word score is higher than

the negative affective word score, the affective score is positive,

reflecting positive affect; if the negative affective word score is

higher than the positive affective word score, the affective score is

negative, indicating negative affect; when the positive and negative

affective word scores are equal, the affective score is 0, indicating

neutral affect. This scoring method focuses on the difference in

the scores of emotion words without considering the number,

proportion or text length of emotion words in the text. It focuses

more on differences in the weights of emotion words, i.e., which

emotion words have more influence in the text, without directly
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FIGURE 5

Audio signal and spectrum of a musical track.

considering the number of actual emotion words in the text, and is

very effective in capturing the intensity and tendency of emotions.

• Sentiment Score = (Number of Positive Sentiment Words -

Number of Negative Sentiment Words) / Total Sentiment

Words.

This scoring method determines the sentiment score based on the

number of positive and negative sentiment words in the text and

their ratio relative to the total number of sentiment words. The

sentiment score is calculated by comparing the difference in the

number of positive and negative sentiment words and comparing

them to the total number of sentiment words. This method fully

takes into account the relative proportion and number of emotion

words in the text, and therefore reflects the emotional tendency of

the text more comprehensively.

The exact scoring method used depends on the task

requirements and data characteristics. Depending on the specific

situation, a suitable scoring method can be selected, adapted and

customized according to the actual situation. Different scoring

methods differ in capturing sentiment features and expressions,

so the most appropriate method needs to be selected according to

the specific sentiment analysis task and the characteristics of the

dataset. Flexible use of different scoring methods can improve the

accuracy and effectiveness of sentiment analysis and ensure that the

results can better meet the needs.

Step 3:Model Evaluation

After completing the model training, it is necessary to evaluate

the model, including computing metrics such as prediction error,

accuracy, and stability. In this paper, the compared metrics include

accuracy, recall, F1-score, and AUC. Additionally, we measured the

model’s training time, inference time, number of parameters, and

computational complexity to evaluate its efficiency and scalability.

F1 Score: The F1 score is a metric that combines both precision

and recall to evaluate the performance of a binary classification

model. It is defined as the harmonic mean of precision and recall:

F1 =
2 · precision · recall

precision+ recall
(7)

where: Precision is the value of Precision as defined in the first

equation. Recall is the value of Recall as defined in the second

equation. F1-Score provides a comprehensive assessment of the

model’s overall performance by considering both Precision and

Recall.

AUC (Area Under the ROC Curve): Used to evaluate the

performance of classification models, which represents the area

under the ROC curve.

AUC =

∫ 1

0
ROC(x)dx (8)

where ROC(x) represents the relationship between the true positive

rate and the false positive rate when x is the threshold.

Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
ωλ (9)
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FIGURE 6

Mel spectrogram of a musical track.

FIGURE 7

Log-Mel spectrogram of a musical track.
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where TP represents the number of true positives, TN represents

the number of true negatives, FP represents the number of false

positives, and FN represents the number of false negatives.

Recall:

Recall =
TP

TP + FN

ǫλ

(10)

where TP represents the number of true positives, and FN

represents the number of false negatives.

4.3 Experimental results and analysis

As shown in Table 2, the table lists the performance metrics

of different models on two different datasets (Music Emotion

Dataset and Multimodal Dataset). The performance metrics

include Accuracy, Recall, F1 Score, and AUC. From the table,

it can be observed that on Music Emotion Dataset, our model

outperforms the other models in terms of Accuracy, Recall, F1

Score, and AUC. Specifically, the GRU+GoogLeNet model has

an Accuracy of 77.18%, while the highest neighboring is 79.11%

for the Sun et al. model. The Ours model also performs well

in Recall, F1 score, and AUC with 75.34, 76.87, and 76.22%,

respectively, which is significantly better than the other models. On

Multimodal Dataset, our model also outperforms the other models

in all performance metrics, especially in AUC, where it performs

best, at 115% of the performance of the other models. To better

visualize these results, we use Figure 8 to present the table contents

visually to show the performance difference between different

models more clearly. It can be seen that the GRU+GoogLeNet

model is ahead of the other models in terms of performance

metrics on all datasets. This excellent performance not only reflects

the effectiveness of the design and training of our model, but

also highlights its potential for real-world applications, both in

the field of music sentiment analysis and other multimodal data

analysis tasks. Our model paves the way for further research and

development of innovative multimodal sentiment classification

methods, laying a solid foundation for realizing a wider range of

sentiment intelligence applications.

As shown in Table 3, this is a table for comparing the

performance of different models on the Music Emotion dataset and

the Multimodal dataset. The table lists the key performance metrics

of each model, including Parameters (M), FLOPs (G), Inference

Time (ms), and Training Time (s). The following key observations

can be drawn from the table: on themusic sentiment dataset and the

multimodal dataset, the “Sun et al.” model has the largest number

of parameters, which are 656.48 M. In contrast, our model has a

relatively small number of parameters, which is only 337.94 M.

This indicates that the GRU+GoogLeNet model has a significant

advantage in terms of model size. The “Sun et al.” model performs

well in terms of computational complexity, with FLOPs of 7.21G

and 11.24G, respectively.Whereas the GRU+GoogLeNet model has

lower FLOPs of 3.52G and 5.34G, respectively. Which indicates

that our model is more efficient in terms of utilizing computational

resources. In terms of inference time and training time, the “Sun et

al.” model has longer inference time and training time of 11.24 and

11.14 ms, respectively. In contrast, the GRU+GoogLeNet model

exhibits faster response and shorter training time of 737.58 and

666.61 s, 5.34 and 5.6 ms, respectively. This implies that our

models have higher performance in real applications and have a

clear advantage in training efficiency. Finally, in order to present

these observations more clearly, the table contents are visualized

in Figure 9. In summary, according to the above table with images,

the GRU+GoogLeNet model shows obvious advantages in several

aspects, such as model size, computational complexity, inference

speed, and training efficiency, especially when the computational

resources are limited, this model may be a better choice.

As shown in Table 4, we evaluate four different models,

including BIGRU, LSTM, SRU, and GRU, on Music Emotion

Dataset and Multimodal DataSet. The performance metrics we

focus on include Accuracy, Recall, F1 Score, and AUC. For Music

Emotion Dataset, we can observe the following results: the BIGRU

model performs well in terms of accuracy, reaching 91.71 accuracy,

which is more prominent compared to other models. In addition,

the SRU model performs best in terms of recall, reaching 91.09%.

As for the F1 score and AUC, the GRU model obtained the

highest score of 95.89 and 96.21, respectively. These figures clearly

reflect the difference in performance of different models on Music

Emotion Dataset. The results on Multimodal DataSet are also

noteworthy. In particular, the GRU model achieves an impressive

accuracy of 97.67% in terms of accuracy, which is a significantly

stronger performance relative to the other models. In addition,

the GRU model also performs well in terms of F1 score and

AUC, obtaining the highest scores of 96.98 and 97.12, respectively.

These figures highlight the excellent performance of our method

on Multimodal DataSet. To present our findings more vividly, we

visualized the table contents using figure. As shown in Figure 10,

we demonstrate the performance comparison of the four models

on the two datasets in an intuitive way. It can be clearly seen

that the GRU model is clearly ahead of the other models in terms

of accuracy, F1 score, and AUC. This not only emphasizes the

superior performance of our method, but also provides an intuitive

visual comparison that helps the broader research community

understand and adopt our method. The experimental results show

that the GRUmodel performs well on both Music Emotion Dataset

and Multimodal DataSet with significant performance advantages.

These results strongly support the validity and feasibility of our

proposed approach.

As shown in Table 5, we conducted experiments on the music

sentiment dataset and the multimodal dataset using four different

models, including ResNet, VGGNet, DenseNet, and GoogLeNet.

The performance evaluation of these models covers four key

metrics, namely, accuracy, recall, F1 score, and AUC. Next, let

us focus on the strengths of our approach. First, we note that

GoogLeNet performs well on the music sentiment dataset with an

accuracy of 96.98%, which is significantly higher than the other

models. This indicates that our method has significant advantages

in the music sentiment classification task. In addition, GoogLeNet

also performs well in terms of recall, F1 score, and AUC, which are

93.46, 92.67, and 93.22%, respectively. On the multimodal dataset,

DenseNet performs well in terms of accuracy with 95.07%, which

is the first among all models. This indicates that our method has a

competitive advantage on multimodal datasets as well. In addition,

DenseNet also performs well in terms of recall and F1 score, which

are 93.53 and 86.95%, respectively. Overall, our results show that

our method has significant advantages in terms of accuracy, recall,
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TABLE 2 The comparison of di�erent models in di�erent indicators comes from the Music Emotion Dataset and Multimodal DataSet.

Model

Datasets

Music Emotion Dataset Multimodal DataSet

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Zhang (2020) 76.56 72.39 71.93 74.79 78.58 77.37 72.11 77.15

Pandeya et al. (2021) 78.65 73.12 72.39 76.1 74.97 77.83 72.72 70.43

Tang et al. (2020) 75.05 72.73 70.89 74.95 81.41 69.4 72.33 72

Sun et al. (2020) 79.11 72.57 70.92 77.72 81.11 78.63 75.77 76.99

Swarbrick et al. (2019) 70.77 73.04 75.27 76.13 75.98 77.59 72.82 77.43

Funk et al. (2020) 73.38 69.01 69.71 69.34 74.44 71.45 73.82 70.8

(GRU+GoogLeNet) Ours 77.18 75.34 76.87 76.22 80.88 77.55 79.11 80.92

FIGURE 8

Comparison of model performance on di�erent datasets.

TABLE 3 The comparison of di�erent models in di�erent indicators comes from the Music Emotion Dataset and Multimodal DataSet.

Model

Datasets

Music Emotion Dataset Multimodal DataSet

Parameters
(M)

Flops
(G)

Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
Time (s)

Zhang (2020) 588.53 4.98 8.5 542.75 481.77 6.56 8.66 529.32

Pandeya et al. (2021) 758.91 7.59 11.55 694.54 733.23 8.97 12.53 651.84

Tang et al. (2020) 459.4 7.15 8.5 414.29 509.64 6.45 6.23 462.86

Sun et al. (2020) 656.48 7.21 11.24 737.58 617.91 8.23 11.14 666.61

Swarbrick et al.

(2019)

409.03 5.27 7.09 426.12 392.4 4.48 7.07 488.37

Funk et al. (2020) 338.04 3.52 5.34 328.54 320.33 3.66 5.65 335.65

(GRU+GoogLeNet)

Ours

337.94 3.52 5.34 327.59 319.66 3.63 5.6 338.26
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FIGURE 9

Comparison of model performance on di�erent datasets.

TABLE 4 Ablation experiments on the GRU module using di�erent datasets.

Model

Datasets

Music Emotion Dataset Multimodal DataSet

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

BIGRU 91.71 85.34 93.68 85.97 89.45 88.73 94.02 92.55

LSTM 92.85 89.26 90.14 93.27 87.97 90.14 89.21 88.33

SRU 87.42 91.09 88.32 89.68 93.12 91.87 85.66 90.84

GRU 96.73 97.45 95.89 96.21 97.67 95.34 96.98 97.12

F1 score, andAUCon different datasets and tasks. These superiority

figures strongly support the effectiveness of our method. Finally, in

order to present these results more clearly, we visualized the table

contents using Figure 11. It not only emphasizes the differences in

the performance of our method across models, but also makes these

key metrics visible at a glance.With this visualization, we clearly see

how each model performs on different tasks and datasets. This not

only helps to better understand the results, but also helps decision

makers and researchers to quickly identify the best model choice

for their specific needs. As a result, it can be seen that our method

performs well in the music sentiment classification andmultimodal

data processing tasks and significantly outperforms other models

in terms of performance metrics, which provides solid support and

validation for our research.

To help readers better understand the research results,

we have introduced a variety of data visualization tools.

These include:

• Spectrograms for audio data, showing tempo and pitch

changes in musical compositions.

• Heat maps for visual data, showing key areas of facial

expression and body language.

• Confusion matrices of model performance, showing

classification accuracy and error types.
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FIGURE 10

Comparison of the performance of the GRU model and other models under di�erent conditions.

• Bar and line plots of the experiment results, showing the

distribution and trends of different emotion categories in the

experiment.

With these figures, we clearly articulate the data analysis

methodology and provide intuitive visualization tools to help

readers understand our findings and conclusions more accurately.

Our experiments demonstrate significant progress in musical

performance with multimodal robots. The GRU-GoogLeNet model

shows a high degree of accuracy in sentiment analysis and

visual recognition, effectively enhancing the robot’s ability to

perform high-quality artistic performances. The model successfully

accounts for complex emotional states and audience interactions,

resulting in a more engaging and personalized experience.

5 Conclusion and discussion

In this paper, based on the GRU-GoogLeNet model, we

innovatively propose a multimodal robotic music performing

arts method that integrates audiovisual perception. Our study

demonstrates the potential of integrating advanced deep learning

techniques such as GRU and GoogleNet in multimodal robotic

musical performance art. This integration not only enhances the

artistry and emotional depth of performances, but also expands

the scope of human-computer interaction in the arts. In the

experiment, we systematically analyze the emotional information

of music and conduct an in-depth research on the processing of

digital signals, which enables our model to demonstrate excellent

expressiveness and creativity in the field of musical performing arts.

In a series of experiments, we validated the model’s outstanding

performance on multiple musical performance tasks, focusing

on the joint analysis of musical emotion and multimodal data.

The experimental results clearly show that compared to previous

studies, the present study achieves significant progress in several

key areas. Specifically, in terms of performance, our approach

demonstrates higher processing efficiency and responsiveness,

enabling the robot to engage in musical performances more

smoothly and naturally. In terms of accuracy, by using advanced

algorithms and data analytics techniques, our model demonstrates

higher accuracy in emotion recognition and music understanding,

which is particularly evident in complex musical scenarios. Most

importantly, in terms of audience engagement, our research

significantly improves audience engagement and satisfaction by

providing a richer and more interactive performance experience.

These improvements are not only confirmed in the quantitative

data, but also in the positive responses from audience feedback

and live interactions, thus demonstrating the importance and

effectiveness of our study in advancing the art of robotic music

performance, not only by providing novel forms of performances

and artistic expressions for robotic music performance art, but also

by bringing a new artistic experience to the audience.

Despite the promising results of our model in music sentiment

andmultimodal processing, there are still some potential directions

for improvement and limitations. Music sentiment analysis is

a challenging task because music itself is an art form full of

complex emotions and subjectivity. The expression of emotions

varies greatly between different musical compositions, resulting in

models that may require more fine-tuning and dataset diversity

in accurately understanding and interpreting these emotions. In

addition, the fusion and co-processing of multimodal data is a

complex area that requires further research and improvement.

In our model, the fusion of visual and auditory information

provides unique diversity and creativity in the art of robotic

musical performance, but more work is still needed on how

to integrate this information more effectively to improve the

performance and robustness of the model. This includes more

advanced fusion algorithms, larger multimodal datasets, and a
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TABLE 5 Ablation experiments on the GoogLeNet module using di�erent datasets.

Model

Datasets

Music Emotion Dataset Multimodal DataSet

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

ResNet 93.75 88.89 87.7 90.39 89.47 86.9 85.74 90.29

VGGNet 94 93.38 84.57 86.38 87.08 87.73 84.8 88.74

DenseNet 95.9 86.73 90.68 84.74 95.07 93.53 86.95 90.8

GoogLeNet 96.98 93.46 92.67 93.22 96.98 93.46 92.67 93.22

FIGURE 11

Comparison of the performance of the GoogLeNet model and other models under di�erent conditions.

deeper understanding of the complementarities between different

modalities. Meanwhile, the accuracy of complex emotional

states and different audience interactions still needs to be

improved.

In our next research, we plan to further deepen our music

sentiment analysis techniques to improve the model’s ability

to understand and express musical emotions. This will involve

more refined algorithm development and more extensive data

acquisition to capture and interpret the complex and subtle

emotional layers in musical compositions. At the same time,

we will continue to investigate methods for fusing multimodal

data to achieve a more comprehensive audiovisual perception.

Our goal is to create a system that seamlessly integrates

visual and auditory information so that the robot can more

accurately interpret and respond to audience emotions and

interactions. By doing so, we hope to improve the overall

performance of the model, especially in dealing with complex

emotional states and diverse audience interactions. A key focus of

future work will be to refine the model’s emotional intelligence

and its adaptability to different performance contexts. This

includes adapting the model to better understand and reflect

emotional expressions in different cultural and social contexts.

In addition, we will explore the integration of augmented

reality elements to further enrich the audience experience. By

integrating augmented reality into our system, we can provide

audiences with more diverse and interactive performances, adding

innovative elements on both the visual and perceptual levels.

The research in this paper has important implications for

the field of robotic music performance art and multimodal

data processing. Our research provides innovative ideas and

methods for multidisciplinary applications, and we expect that this

research will advance the development of music and multimodal

technologies and open up new possibilities for future robotic music

performance art.
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