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Visual tracking is a crucial task in computer vision that has been applied in 
diverse fields. Recently, transformer architecture has been widely applied 
in visual tracking and has become a mainstream framework instead of the 
Siamese structure. Although transformer-based trackers have demonstrated 
remarkable accuracy in general circumstances, their performance in occluded 
scenes remains unsatisfactory. This is primarily due to their inability to recognize 
incomplete target appearance information when the target is occluded. To 
address this issue, we propose a novel transformer tracking approach referred 
to as TATT, which integrates a target-aware transformer network and a hard 
occlusion instance generation module. The target-aware transformer network 
utilizes an encoder-decoder structure to facilitate interaction between template 
and search features, extracting target information in the template feature 
to enhance the unoccluded parts of the target in the search features. It can 
directly predict the boundary between the target region and the background 
to generate tracking results. The hard occlusion instance generation module 
employs multiple image similarity calculation methods to select an image pitch 
in video sequences that is most similar to the target and generate an occlusion 
instance mimicking real scenes without adding an extra network. Experiments 
on five benchmarks, including LaSOT, TrackingNet, Got10k, OTB100, and 
UAV123, demonstrate that our tracker achieves promising performance while 
running at approximately 41 fps on GPU. Specifically, our tracker achieves the 
highest AUC scores of 65.5 and 61.2% in partial and full occlusion evaluations 
on LaSOT, respectively.
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1 Introduction

Visual tracking is a fundamental task in computer vision and is applied in many fields such 
as virtual reality, intelligent transportation systems, and unmanned aerial vehicles (Abbass 
et al., 2021; Marvasti-Zadeh et al., 2021). Given the tracking target in the first frame, the 
tracking task aims to estimate the bounding box of the target in the rest of the video sequence 
(Li P. et al., 2018). The difficulty of tracking tasks comes from the rapid appearance change of 
the target and the complexity of the tracking scene, such as occlusion, illumination angle, and 
background distraction (Jiao et al., 2021).

In the past few years, most advanced trackers have followed the structure of the Siamese 
network, which extracts template and search features through parallel backbones and learns 
the relation between them to get the final tracking results (Javed et  al., 2022). Recently, 
transformers (Vaswani, 2017) have drawn a lot of attention in computer vision (Han et al., 
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2022; Khan et al., 2022). Some trackers apply transformers in their 
architecture, which has greatly improved the feature utilization and 
learning ability of the network. These algorithms have demonstrated 
top-of-the-line performance on most datasets.

However, their performance is still unsatisfactory in occlusion 
scenes. Especially when the occlusion object is similar to the target, 
the tracker is easily influenced and may cause the bounding box to 
shift toward the occlusion object, ultimately leading to tracking failure. 
This kind of circumstance is referred to as a hard occlusion. Most 
trackers are designed for general circumstances. They assume that the 
search images contain sufficient appearance information about the 
target and directly predict the center position and scale of the target. 
The lack of occlusion samples during the training process makes it 
difficult for the tracker to learn how to handle occluded targets and 
recognize the incomplete target appearance feature. Therefore, when 
the target is occluded, the tracking accuracy of the tracker will 
significantly decrease, leading to bounding box drift or even 
tracking failure.

To solve the mentioned problem, we  propose target-aware 
transformer tracking with hard occlusion instance generation (TATT), 
which comprises a target-aware transformer network and a hard 
occlusion instance generation module. The proposed target-aware 
transformer network employs an encoder-decoder structure. The 
encoder makes global interaction between the template feature and 
search feature, while the decoder exploits reliable target information 
in the template and generates multiple spatial attention maps to 
enhance the unoccluded parts of the target in the search features. It 
directly predicts the boundary between the target region and the 
background to produce a bounding box, minimizing the impact of 
occlusion. The hard occlusion instance generation module selects an 
image patch similar to the target from several adjacent frames and 
randomly masks the target area in the search image to generate 
occlusion training samples. It has a fast computation speed without 
increasing offline training complexity and can offer hard occlusion 
samples that are close to natural scenes. This method helps the 
network learn to recognize incomplete target appearance information 
and improve its ability to distinguish the target.

Figure 1 illustrates that our tracker performs better in occlusion 
scenes compared with TransT and STARK. When an occluding object 
covers part of the tracked target in the first row of images, our tracker 
is capable of recognizing the unoccluded portion of the target and 
predicting its position and scale. In particular, in the scenario of a 
similar occluding object, as shown in the second and third rows of the 
results, TATT demonstrates a strong recognition ability toward the 
target, still being able to lock onto it. On the other hand, the other two 
algorithms fail to fully cope with occlusion scenarios, resulting in the 
tracking box shifting toward similar interfering objects in the 
background, ultimately leading to tracking failure. Our tracker 
achieves outstanding evaluation results on five benchmarks, including 
LaSOT (Fan et al., 2019), TrackingNet (Müller et al., 2018), Got10k 
(Huang et al., 2019), OTB100 (Wu et al., 2013), and UAV123 (Mueller 
et al., 2016).

2 Related work

In recent years, Siamese-based trackers have become the 
mainstream algorithm in visual tracking (Li P. et al., 2018). These 

trackers adopt a parallel network structure to simultaneously process 
template images and search images and predict the bounding box of 
the target by computing the correlation between the two features. 
SiamFC (Bertinetto et al., 2016) is the pioneer of this series of works. 
It extracts template and search features through two streams of 
backbone sharing the same parameters. Then, it computes cross-
correlation between the template and search feature at multiple 
scales and directly predicts the target position through the highest 
correlation score. SiamRPN (Li B. et al., 2018) applies the RPN from 
detection to tracking task, which enables it to perform accurate 
bounding box regression. SiamRPN++ (Li et al., 2019) proposes a 
data augment method to address the center bias problem during the 
training process so that it can employ a deeper backbone such as 
ResNet50. It improves the performance of Siamese-based trackers to 
a new level. SiamBan (Chen et al., 2022), SiamCar (Guo et al., 2020), 
SiamFC++ (Xu et  al., 2020), and Ocean apply the anchor-free 
bounding box regression method instead of RPN to obtain more 
accurate tracking results. SiamMask (Hu et  al., 2023) and D3S 
(Lukezic et al., 2020) integrate object detection and segmentation 
with Siamese-based architecture, which achieves high accuracy and 
robustness. SiamAttn (Yu et al., 2020) incorporates self-attention 
and cross-attention mechanisms, which leads to better 
object recognition.

Transformer is a self-attention-based network structure that was 
initially proposed in natural language and widely used in computer 
vision (Ye et  al., 2019; Carion et  al., 2020; Touvron et  al., 2021). 
Recently, several trackers that interact with the transformer 
architecture have shown exceptional accuracy and robustness in most 
common datasets. TransT (Chen et al., 2021), TrTr (Zhao et al., 2021), 
and CSWinTT (Song et al., 2022) adopt a transformer cross-attention 
module to replace the traditional cross-correlation method. This 
approach can effectively enhance the interaction between template 
and search features. ToMP (Mayer et al., 2022) constructs a target 
model with a transformer network and applies it in a correlation filter-
based tracker. MixFormer  (Cui et al., 2022) and SwinTrack (Lin et al., 
2022) propose a backbone network based on transformer, which 
interacts between the template feature and search feature in the 
process of feature extraction. CMAT (Wang et al., 2023) designs a 
feature extraction backbone consisting of depthwise convolution, 
pointwise convolution, and transformer self-attention, which can 
extract local information and learn global dependency at the same 
time. STARK (Yan et al., 2021) employs a transformer structure to 
capture spatial and temporal relation between features from 
continuous frames.

Occlusion is a difficult challenge for visual tracking, and some 
work attempts to solve this problem. Part-based robust tracking (Yao 
et al., 2016) and Robust object tracking (He et al., 2016) divide search 
images into several subregions and utilize the response scores of these 
subregions and their spatial relationship to locate the target. This 
sparse pitch strategy might find the corresponding local feature when 
the target is partially occluded, but it also brings a large computational 
burden and unsatisfied accuracy of bounding box regression. Learning 
regression and verification networks (Zhang et al., 2021) and Reliable 
re-detection (Wang N. et  al., 2018) incorporated a detection 
component to verify if tracking results include the target object, and 
use it to determine the next search range. It should be noted that this 
is an auxiliary method and does not necessarily improve the 
recognition ability of the network of occluded targets. KYS (Bhat et al., 
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2020) encodes the object information in the background, propagates 
and updates these encoded vectors in the continuous sequence, and 
combines them with the target appearance model to locate the target. 
SINT++ (Wang X. et al., 2018) notices the imbalance in the number 
of occluded samples within the training dataset and employs 
reinforcement learning to generate occluded images to enhance the 
diversity of the training samples. However, this approach requires a 
high computational cost, which can increase the training time 
significantly when dealing with large amounts of training data. 
SiamON (Fan et  al., 2021) designs multiple masks manually to 
generate occlusion samples. This method results in limited occlusion 
information that does not correspond to real-world scenarios.

3 Methods

3.1 The overview of the target-aware 
transformer network

We present an innovative network architecture designed for 
occlusion problems. The structure of the target-aware transformer 
network is shown in Figure 2. The framework consists of three main 
components: two branches of feature extraction backbones with 
shared parameters, a transformer-based feature augment network, and 
a prediction head.

3.1.1 Backbone
We employ RestNet50 as the feature extraction network with its 

fully connected layer removed. To preserve the depth of the backbone 
while considering computation efficiency, we adjust the dilation and 
channel number of the last convolution block, resulting in a final 
stride of 16 and an output feature channel of 1,024. A 1 × 1 
convolutional layer is added at the end of the backbone to reduce the 
number of feature channels to 256. The input of the backbone is a 
template image Pz H Wz z∈ × ×3  and a search image Px H Wx x∈ × ×3 . The 
template image is cropped from the initial frame based on the given 
bounding box, and the search image is cropped from the current 
frame based on the last tracking result. After feature extraction, the 

template feature 
Fz

C H Wz z

∈
× ×

 16 16
 and search feature 

Fx
C H Wx x

∈
× ×

 16 16
 

are flattened in spatial dimension following the requirement of 
transformer and then concatenated as one vector to serve as the input 
for target-aware transformer module.

3.1.2 Target-aware transformer module
The purpose of the target-aware transformer module is to exploit 

the reliable appearance information of the target in the template to 
enhance the search feature. Even if the target is occluded, it can 
highlight the remaining parts of the target, thereby helping the 
subsequent head network to make correct predictions. As shown in 

FIGURE 1

Comparison of the tracking results among ours and TransT, STARK. Our results show better performance in occlusion.
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Figure  2, the target-aware transformer module is a feature fusion 
network based on the encoder–decoder network. The input is the 
concatenated feature extracted from the backbone and fed into the 
encoder directly. The encoder facilitates the global interaction between 
search and template features, utilizing shared target information for 
feature enhancement. The encoder can be formulated as:

 F MultiHead Concat F Fe z x= ( )( ),  (1)

where Fe is the output of the encoder; Fz, Fx is the template and 
search feature extracted from the backbone; Concat is the 
concatenation operation; and MultiHead is multi-head attention. The 
multi-head attention can be formulated as:

 MultiHead Q K V Concat Attention Attention Wh O
, , , ,( ) = …( )1  (2)

 

Attention Q K V soft
QW KW

d
VW

i
Q

i
K T

k
i
V

, ,( ) =
( ) ( )














( )max

  

(3)

where h is the number of attention heads; Wi
Q, Wi

K, Wi
V, and WO 

are projection matrices; and Q, K, and V are the feature sequences 
query, key, and value that are generated from the concatenation feature 
mentioned above.

Then, the output feature of the encoder is further separated into 
template feature Fz’ and search feature Fx’, and only template feature 
Fz’ is utilized as one of the decoder inputs. This is because search 

features cannot reliably provide target information when the target is 
occluded and may even bring interference. We  employ multiple 
template tokens Tt as another input for the decoder. The decoder 
prompts each token to independently learn the distinctive relationship 
of the target from template features, which can help the network infer 
the target location from unoccluded parts in the search image. The 
decoder can be formulated as:

 
F MultiHead T T T Fd t t tn z= …( )( )1 2, , , ,

'

 
(4)

where Fd is the output of the decoder; n is the number of target 
tokens and we adopted 4 in this algorithm; and MultiHead is multi-
head attention. The query in this multi-head attention is generated 
from template tokens Tt, while the key and value are generated from 
template feature Fz’.

The output of the decoder Fd is dot-multiplied with the search 
feature Fx’ to obtain multiple weight maps, which represent the 
importance of features in spatial dimension. These multiple weight 
maps are element-wise multiplied with the search feature Fx’ to 
selectively enhance the features of interest. This calculation process 
can be formulated as:

 
F F F Fd x x= ( )⊗

' '
 

(5)

where F is the enhanced feature.
At last, the enhanced features F are compressed in channel 

dimension through a 1 × 1 convolution layer to generate the final 
output of the target-aware transformer module.

FIGURE 2

The framework of target-aware transformer network. It consists of three key components, two branches of backbone, a target-aware transformer 
module, and a boundary prediction head.
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The specific structure of the encoder and decoder network is 
shown in Figure 3. The encoder comprises 6 encoder layers that share 
the same network structure. The encoder layer contains a multi-head 
attention component, a feed-forward network (FFN), and two residual 
components. The input feature Fc is added to sine-cosine position 
encoding to embed position information. The encoder learns the 
correlation between each element of the input feature. The decoder 
consists of six decoder layers with the same structure, which contains 
two multi-head attention components, a feed-forward network, and 
three residual components. The decoder first performs self-attention 
on template token input and then establishes the information 
interaction between it and the template feature Fz’.

3.1.3 Boundary prediction head
TransT (Chen et al., 2021) employs two branches of three-layer 

perceptions to predict the center point and corresponding size of the 
bounding box, which will cause the Dirac distribution fitting problem 
(Li et al., 2020). To address this, STARK (Wang et al., 2023) proposes 
a head network to predict the top-left and bottom-right corners of the 
target bounding box. Nevertheless, these two points are typically 
located outside the target and lack strong target appearance features, 
and the prediction results can be  easily affected by occlusion or 
distractor covering either corner point. Therefore, we propose a novel 
prediction head to generate accurate bounding boxes for the occluded 
target. It consists of four independent branches that directly predict 
the four boundaries of the bounding box instead of being limited to 
specific points. Each branch of the prediction head is composed of 5 
sets of 1 × 1 convolutional layer, BN layer, ReLU activation function, 
and an extra 1 × 1 convolutional layer. The output features of the 
target-aware transformer module are fed into the head network to 
generate the boundary probability maps St, Sb, Sl, Sr, where the feature’s 
spatial scale remains unchanged and the channel dimension is 
compressed to 1. Then, the probability maps are aggregated with the 

spatial position Pc, Pr in horizontal and vertical directions, respectively, 
to obtain the four boundaries of the predicting bounding box yt, yb, xl, 
xr. The aggregation process of probability maps and spatial position is 
formulated as:

 
y P x y S x yt

y

H

x

W
c t= ( ) ⋅ ( )

= =
∑ ∑
0 0
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(6)
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(9)

3.2 Hard occlusion instance generation 
module

We design a hard occlusion instance generation module to address 
the issue of lacking occlusion training samples. We select regions in 
the background with similar appearance information to the target as 
the occlusion. It can help the network learn to recognize incomplete 
target appearance information and enhance the distinguishing 
capability of the target at the same time. The structure of the proposed 
module is shown in Figure 4. Firstly, the target area Rt H Wt t∈ × ×3  is 
cropped from the search image P H W∈ × ×3  based on the ground 
truth, while the reference area Rr

H H W Ht t∈ × +( )× +( )3  is generated 
by masking the target region in the search image and then padding 
based on the target size. We generate extra reference area from several 
frames within the same video sequence to avoid the issue that the 
current frames contain no similar region to the target. A sliding 
window approach is utilized within the reference area to generate 
H W× sub-reference regions Rs H Wt t∈ × ×3  of the same size as the 
target area. Subsequently, the similarity mapMd H W∈ ×  is obtained 
by calculating the Hamming distance between the DHash of the target 
area and each subregion. It can be formulated as:

 
M D H R H Rd i j d t d r i j, ,,( ) ( )= ( ) ( )( ) (10)

where D is the Hamming distance, and Hd is DHash which 
generates a binary numerical representation of an image by comparing 
the pixel values of adjacent pixels.

Another similarity map Mc H W∈ ×  is obtained by calculating 
the correlation coefficient between the color histogram of the target 
area and each subregion, which can be formulated as:

 
M C H R H Rc i j c t c r i j, ,,( ) ( )= ( ) ( )( ) (11)

FIGURE 3

The structure of the encoder and decoder network, including N 
encoder layers and N decoder layers, respectively.
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where C is the correlation coefficient, and Hc is the color  
histogram.

These two maps are then element added to generate the final 
similarity map M H W∈ × . The calculation process of the similarity 
map M can be formulated as:

 M w M w Md c= +1 2  (12)

where w1 and w2 are weight parameters, we adopt w1 = 0.33 and 
w2 = 0.67.

Based on the experimental results provided by DeVries and 
Taylor (2017), the shape of occlusions is not a significant factor when 
the generation location is random. Therefore, the occlusion 
Ro H Wt t∈ × ×3 is cropped from the reference area using the coordinate 
of the highest similarity score position as the center and the size of 
the target area. To prevent excessive occlusion of the target region, 
which may result in insufficient target information for the network, 
or occlusion that is too small to effectively occlude the target, 
we establish a candidate area around the target region by setting the 
intersection over union IOU m n∈[ ],  (m, n are threshold parameters, 
we  set m  = 0.125, n  = 0.600) of the occlusion area and the target 
region. A point is randomly chosen as the center coordinate of the 
occlusion in the candidate area, limiting the occluded area of the 
target region to a suitable range. Specifically, the hard occlusion 
instance generation module does not operate on every training 
sample, but rather based on a certain probability p, we adopt p = 0.01.

4 Experiments

4.1 Implementation details

4.1.1 Offline training
We chose COCO (Lin et al., 2014), LaSOT, TrackingNet, and 

Got10k to form the training dataset. A pair of images are selected 
at random intervals from the same video sequence as the input of 
the network. These pairs undergo image enhancement including 
brightness jitter and horizontal flip, before being cropped to sizes 
of 128 × 128 and 320 × 320 for the template and search images, 
respectively. The target jitter is carried out in search images to 
avoid center bias. The parameters of ResNet50 have been pretrained 
on ImageNet, while the remaining parameters of the network are 
initialized through Xavier Uniform. We utilized AdamW as the 
optimizer to train the network, with a learning rate of 1e − 5 for 
the backbone and 1e − 4 for the other parts, and a weight decay of 
1e − 4. There are 700 epochs during the entire training process, 
each consisting of 50,000 iterations. The learning rate would 
decrease by a factor of 10 once the epoch exceeded 400. The loss 
function is a linear combination of l1 loss and GIoU  loss, it is 
written as follows:

 L L LGIoU= +α β1  (13)

where α ,β  are hyperparameters, we set α=5, β=2.

FIGURE 4

The structure of the hard instance generation module.
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4.1.2 Inference process
During the online tracking process, the template is cropped from 

the first frame of each video sequence, and its feature remains fixed 
throughout subsequent frames. The search image is cropped in the 
current frame based on the tracking result from the previous frame. 
The predicted bounding box output by the network does not undergo 
spatial modulation, such as the Hanning window penalty, which 
avoids the hyperparameters adjustment. We  add a validation 
mechanism for the tracking results to prevent the bounding box from 
drifting to the obvious wrong area when the target disappears or the 
tracker fails. This is achieved by computing the correlation between 
the feature within the predicted region and the template feature. If the 
correlation falls below the set threshold, the search area will 
be expanded in the next frame.

4.2 Evaluation results on several datasets

In this section, we evaluate the performance of our tracker on five 
datasets, including LaSOT, TrackingNet, Got10k, OTB100, and 
UAV123 and compare it with several state-of-the-art algorithms, 
including TransT, STARK, CSWinTT, MixFormer, ToMP, KeepTrack 
(Mayer et  al., 2021), TrDiMP (Wang et  al., 2021), SiamBan, 
SiamRPN++, ATOM (Danelljan et al., 2019), TrTr, SiamFC++, KYS, 
SBT (Xie et al., 2022), Ocean (Zhang et al., 2020), DiMP (Bhat et al., 
2019), and SiamAttn. The results demonstrate the effectiveness of 
our approach.

4.2.1 LaSOT
LaSOT is a large-scale dataset that provides long-term tracking 

sequences. It consists of 1,400 video sequences, out of which 1,120 are 
used for training and 280 for testing. The average length of the video 
sequences exceeds 2,500 frames. The success plots and norm precision 
are shown in Figure  5. Our tracker demonstrates excellent 
performance with a success rate of 67.8% and a norm precision rate of 
77.3%. Our tracker ranks first in both success rate and precision rate 
compared with trackers that also adopt CNN + Transformer 

architecture. The success rate is only 0.1% lower than Mxformer-1 k, 
a tracker with a transformer backbone that leads to high training costs 
and slow real-time tracking speeds. Our tracker outperforms the 
STARK-S50 by 2% in success rate and 2.1% in precession rate. The 
success plots and precession plots with partial occlusion and full 
occlusion are shown in Figures 6, 7. Our tracker takes first place in 
both occlusion circumstances, with a gain of 2.1 and 2.7% in AUC 
compared with STARK-S50. This indicates that our proposed 
algorithm provides significant promotion in addressing 
occlusion issues.

4.2.2 TrackingNet
TrackingNet is a large-scale tracking dataset that offers over 

30,000 video sequences sourced from YouTube, featuring a diverse 
range of real-world scenarios and object categories. The testing part 
comprises 511 videos, and the tracker’s performance is evaluated by 
uploading the tracking results to the server for online assessment. 
Table  1 presents the evaluation scores AUC, precision, and norm 
precision. Our tracker achieves an AUC of 82.2% and a norm precision 
of 86.9%, which exceeded that of STARK-S50 at 1.9% and 1.8%, 
respectively. Our tracker takes first place both in AUC and norm 
precision among trackers that also employ the 
CNN + Transformer structure.

4.2.3 Got10k
Got10k is a large-scale tracking dataset that consists of over 10,000 

video sequences, encompassing 560 object classes and 87 motion 
patterns. The tracking results should be uploaded to the online server 
for evaluation. It is required that the tested tracker can only be trained 
on the Got10k training set, and we have adhered to this requirement. 
As reported in Table 1, our tracker outperforms the baseline tracker 
STARK-S50 with AO increased by 1.9% and SR0.5 increased by 2.1%.

4.2.4 VOT2018
VOT2018 is a commonly used short-term dataset for evaluating 

tracking performance, consisting of a total of 60 video sequences. 
VOT introduces a restart mechanism that allows trackers to 

FIGURE 5

Success and norm precision plots on LaSOT.
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be  re-initialized after tracking failures, thereby improving the 
utilization of video sequences. The evaluation of VOT2018 includes 
accuracy, robust, and EAO. As shown in Table 1, our tracker achieves 
a 0.612 accuracy score, 0.169 robust score, and 0.459 EAO, which is a 
satisfactory result among recent algorithms.

4.2.5 OTB100
OTB100 consists of 100 video sequences, representing 11 

challenging tracking scenarios. The evaluation results are shown in 
Table 2, and our tracker achieves an AUC of 70.1% surpassing the 
baseline tracker STARK-S50 1.8%.

4.2.6 UAV123
The UAV23 contains 123 videos captured by drones at low 

altitudes, characterized by frequent changes in view angle and small 
target sizes. The evaluation results are shown in Table  2, and our 
method achieves a competitive AUC score compared with state-of-
the-art transformer-based trackers.

4.2.7 NFS
NFS includes 100 video sequences with fast moving targets. 

We evaluate our tracker on the 30 FPS version of NFS. As shown in 
Table  2, our tracker obtains an AUC score of 66.1%, which 
outperforms STARK-S50 by 1.8%.

4.3 Ablation study

The ablation experiment is conducted on the LaSOT dataset to 
analyze the impact of different components in the proposed network 
on tracking performance. The network of STARK-S50 is considered a 
baseline model with the same ResNet50 backbone. As shown in 
Table 3, the baseline algorithm achieves an AUC score of 65.8% and a 
Pnrom score of 75.2. After utilizing the target-aware transformer module 
(TATM), the AUC score improves to 66.6% and the Pnrom score 
increases to 76.4%. Furthermore, with the application of boundary 
prediction head (BPH), both UAC and Pnrom scores are further 

FIGURE 6

Success and norm precision plots with partial occlusion on LaSOT.

FIGURE 7

Success and norm precision plots with full occlusion on LaSOT.
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enhanced by 0.5% and 0.2%, respectively. The employment of a hard 
occlusion instance generation module (HOIM) during the training 
process results in the highest performance of the tracker, with an AUC 
score of 67.8% and a Pnrom score of 77.3%. The ablation experiments 
demonstrate that the proposed target-aware augment module and 
boundary prediction head, as well as the hard occlusion sample 
generation module can enhance tracking performance and their 
collaboration brings positive effects.

We also conduct experiments on three structures of the feature 
fusion module to validate the reasonability of our version. The first 
one is the proposed target-aware augment module, whose decoder Dt 
only takes template features and multiple target queries as input. The 
second one is from STARK-S50, whose decoder Dc takes a query and 
a feature concatenated from the template and search feature as input. 
The last one contains both decoders Dt & Dc, and the embedding 

features are concatenated along channel dimension and then pass 
through a 1 × 1 convolution layer. Figure 8 illustrates the AUC scores 
of three version modules with varying target query numbers. The 
tracker with both decoders Dt&Dc outperforms the one with only Dc 
at each target query number, and our version with only Dt exhibits the 
best overall performance. This indicates that the target information 
embedded within the template feature is more reliable than that of the 
search feature, even when the target undergoes appearance 
deformation during the tracking process. Notably, our target-aware 
augment module achieves the highest AUC score when the target 
query number is four.

5 Conclusion

In this article, we propose target-aware transformer tracking with 
hard occlusion instance generation to address the issue of tracking 
failure in occlusion scenes due to the network’s inability to recognize 
incomplete target appearance information. We propose a target-aware 
transformer network and a hard occlusion instance generation 
module. The hard occlusion instance generation module selects an 
image patch similar to the target from images within the same video 
sequence as occlusion and then randomly overlays around the target 
area in the search image to generate occlusion training samples. This 

TABLE 1 Experiment results on TrackingNet, Got10k, and VOT2018.

Method
TrackingNet Got10k VOT2018

AUC (%) PNorm (%) P (%) AO (%) SR0.5 (%) SR0.75 (%) Accuracy Robust EAO

MixFormer 82.6 87.7 81.2 71.2 79.9 65.8 - - -

CSWinTT 81.9 86.7 79.5 69.4 78.9 65.4 - - -

ToMP50 81.2 86.2 78.6 - - - - - -

TransT 81.4 86.7 80.3 67.1 76.8 60.9 - -- -

STARK-S50 80.3 85.1 80.0 67.2 76.1 61.2 - - -

SwinTrack 82.5 87.0 80.4 69.4 78.0 64.3 - - -

TrDiMP 81.2 85.4 78.4 67.1 77.7 58.3 0.601 0.141 0.462

TrTr 69.3 77.2 - - - - 0.612 0.234 0.424

KYS 74.0 80.0 68.8 63.6 75.1 51.5 0.609 0.143 0.462

SiamFC++ 75.4 80.0 70.5 59.5 69.5 47.9 0.587 0.183 0.426

SiamRPN++ 73.3 80.0 69.4 51.7 61.6 32.5 0.600 0.234 0.414

ATOM 64.8 77.1 70.3 - - - 0.590 0.204 0.401

Ocean - - - 59.2 69.5 - 0.598 0.169 0.467

SiamBan - - - - - - 0.597 0.178 0.452

SiamAttn 75.2 81.7 - - - - 0.630 0.160 0.470

SBT - - - 69.9 80.4 63.6 - - -

Ours 82.2 86.9 80.4 69.1 78.2 64.1 0.612 0.169 0.458

TABLE 2 Experiment results on OTB100, UAV123, and NFS in terms of AUC.

SiamRPN++ ATOM KeepTrack TrDiMP TransT KYS STARK-S50 ToMP50 SBT DiMP Ours

OTB100 69.6 66.7 70.9 71.1 69.4 69.5 68.3 70.1 70.9 62.0 70.1

UAV123 61.3 64.2 69.7 67.5 69.1 65.0 69.1 69.0 - 65.3 69.3

NFS - 59.0 66.4 66.2 65.7 63.5 64.3 66.9 - 62.0 66.1

TABLE 3 Ablation experimental results on LaSOT.

HOIG TATM BPH AUC Pnorm

1 65.8 75.2

2 √ 66.6 76.4

3 √ √ 67.1 76.6

4 √ √ √ 67.8 77.3
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method can help the network learn to recognize incomplete target 
appearance information and enhance the distinguishing capability of 
the target without adding an extra network. The target-aware 
transformer network is built on transformer architecture, which can 
facilitate global interaction between template and search features and 
utilizes template features to generate embedding vectors to selectively 
enhance search features. The intersection between the target and 
background can be directly predicted by the head network, which 
enables the full utilization of unobstructed target information to 
generate tracking boxes. The proposed tracker is evaluated on five 
commonly used tracking benchmarks: LaSOT, TrackingNet, Got10k, 
OTB100, and UAV123 against several state-of-the-art trackers. Our 
trackers show outstanding performance, especially in the occlusion 
category. The ablation experiments show the positive effect of the 
proposed network and occlusion instance generation module. 
Tracking in the full occlusion scenes remains a challenge. The tracking 
box may be drawn toward the background, causing the target to go 
beyond the search range and resulting in tracking failure. In future 
work, a detection mechanism can be incorporated into the tracking 
algorithm to verify the tracking results. When the tracking target is 
deemed lost, it can be  recaptured using the detection results and 
spatial location information.
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