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This study introduces an intelligent learning model for classification tasks, termed

the voting-based Double Pseudo-inverse Extreme Learning Machine (V-DPELM)

model. Because the traditional method is a�ected by the weight of input layer

and the bias of hidden layer, the number of hidden layer neurons is too large

and the model performance is unstable. The V-DPELM model proposed in

this paper can greatly alleviate the limitations of traditional models because

of its direct determination of weight structure and voting mechanism strategy.

Through extensive simulations on various real-world classification datasets, we

observe a marked improvement in classification accuracy when comparing

the V-DPELM algorithm to traditional V-ELM methods. Notably, when used

for machine recognition classification of breast tumors, the V-DPELM method

demonstrates superior classification accuracy, positioning it as a valuable tool in

machine-assisted breast tumor diagnosis models.

KEYWORDS
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1 Introduction

Extreme Learning Machine (ELM) (Huang et al., 2004) is a powerful machine learning

algorithm that has emerged as a popular alternative to traditional neural networks [such

as Back-Propagation (Haykin, 1998) algorithm (BP) and Levenberg Marquardt (Levenberg,

1944; Marquardt, 1963) algorithm] due to its speed, simplicity, and high performance. ELM

is a single-layer feedforward neural network that uses randomweight initialization and least-

squares optimization to learn from input data (Huang et al., 2006). The algorithm has shown

remarkable results in a wide range of applications, from image recognition (Tang et al., 2015)

and speech processing (Han et al., 2014) to financial forecasting (Fernández et al., 2019) and

anomaly detection (Huang et al., 2015).

One drawback of the ELM algorithm is that the learning parameters of the hidden

nodes are randomly assigned and remain unchanged during training, which may lead to

a significant impact on its predictive performance and algorithm stability (Gao and Jiang,

2012; Lu et al., 2014). ELM might misclassify certain samples, particularly those near the

classification boundaries. In an attempt to address this issue, Cao et al. (2012) proposed a

voting-based variant of ELM, referred to as V-ELM. The main idea behind V-ELM is to

perform multiple independent ELM trainings instead of a single training, and then make

the final decision based on majority voting. However, this approach does not fundamentally

resolve the problem of random determination of ELM’s various parameters.
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Zhang et al. (2014) have highlighted that the performance of

Extreme Learning Machine (ELM) is not always optimal when

the input weights and hidden layer biases are chosen entirely at

random. This randomness is also a significant factor contributing

to the redundancy of neurons in the hidden layer of the ELM

algorithm (Zhu et al., 2005). In response, scholars have proposed

the use of swarm intelligence optimization (Lahoz et al., 2013;

Figueiredo and Ludermir, 2014; Zhang et al., 2016), pruning

methods (Miche et al., 2009, 2011), and adaptive algorithms

(Pratama et al., 2016; Zhao et al., 2017) to optimize the ELM

algorithm and enhance its overall performance. However, in

practical applications, although these algorithms do succeed in

optimizing the number of hidden layer neurons, they introduce

a plethora of hyperparameters that typically require iterative

optimization, thereby increasing the computational complexity of

the algorithm and rendering it challenging to address real-time

problems with high time constraints. To tackle this issue, this

paper presents an improved algorithm known as Voting based

double Pseudo-inverse weights determination Extreme Learning

Machine (V-DPELM). The core concept of V-DPELM lies in the

stochastic determination of output weights, while input weights

are obtained through pseudoinverse calculations. Subsequently, the

pseudo-inverse method is employed again to determine optimal

output weights, ensuring that both input and output weights are

optimal. The obtained DPELM algorithm is subjected to multiple

independent trainings, and the final decision is made based on

majority voting.

In the 21st century, breast cancer is increasingly recognized

as a significant factor negatively impacting the overall quality of

life for women worldwide. According to statistics from the World

Health Organization (WHO), approximately 1.5 million women

suffer greatly from the torment of breast cancer, with approximately

500,000 losing their lives to this disease (Fahad Ullah, 2019).

The incidence and mortality rates of breast cancer exhibit a clear

and alarming upward trend each year. Research has demonstrated

the paramount importance of timely detection, diagnosis, and

initiation of treatment in achieving favorable therapeutic outcomes

for breast cancer (Lee et al., 2019; Aldhaeebi et al., 2020).

Ten crucial features, including symmetry and fractal dimension

of breast tumor lesions, play a vital role in determining the

nature of the tumor, whether benign or malignant (Wang et al.,

2016, 2019). Therefore, it is possible to extract relevant features

closely associated with tumor characteristics from acquired patient

samples. By employing the proposed V-DPELM algorithm for

parameter optimization and subsequent breast tumor classification,

the obtained classification and identification results can provide

valuable references, assisting physicians in making diagnostic

decisions and offering more accurate and rational assessments of

patients’ conditions.

2 V-DPELM algorithm design

In the section, we first review the basic concept of the traditional

ELM algorithm in Section 2.1. Then, we analyzed the DPELM

algorithm in Section 2.2. Finally, the new proposed V-DPELM

algorithm will be presented in Section 2.3.

FIGURE 1

ELM network structure.

2.1 Brief review of ELM

Extreme Learning Machine (ELM) is suitable for generalized

Single Hidden Layer Feedforward Networks (SLFN). The structure

of traditional ELM is similar to SLFN, consisting of three layers:

input layer, hidden layer, and output layer. The essence of ELM

is that it does not require tuning the hidden layer of SLFN. The

structure of ELM is shown in Figure 1.

In the context of N arbitrary training samples {(xi, ti)}
N
i=1,

where each sample xi = (xi1, xi2, ..., xin)
T ∈ R

n, ti =

(ti1, ti2, ..., tim)
T ∈ R

m, the resulting output of the ELM with L

hidden nodes can be expressed as follows:

ti =

L
∑

j=1

βjh(ωj, bj, xi), i = 1, 2, ...,N (1)

Here, ωj = (ωj1,ωj2, ...,ωjn) represents the weight vector of

the jth neuron in the input layer, and bj is the bias associated with

the jth neuron. h(.) indicates the activation function. Furthermore,

βj denotes the linked weights between the jth hidden neurons and

output neurons, βj = (βj1,βj2, ...,βjm).

For all N samples, the equivalent canonical form of linear

equation (1) can be expressed as:

Hβ = T, (2)

In Equation (2), T represents the desired output matrix for the

training samples, and

H =









h(ω1, b1, x1) . . . h(ωL, bL, x1)
...

. . .
...

h(ω1, b1, xN) . . . h(ωL, bL, xN)









is the randomized matrix mapping. It is worth noting that the

parameters (ωj, bj) of the hidden layer neurons are randomly

generated and remain fixed throughout the entire training process

of ELM.

The ELM algorithm can be summarized as three steps as

follow.
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• Step 1: Randomly generate parameters for the hidden layer

nodes.

• Step 2: Calculate the output matrix H of the hidden layer.

• Step 3: Calculate the output weight using β̃ = H†T, †

represents the pseudo-inverse of the matrix.

2.2 DPELM learning algorithm

Due to the random determination of input weights in

traditional ELM, it has resulted in low classification accuracy

and an issue of too many hidden layer nodes. Therefore, this

section introduces a new method for determining ELM’s weights,

referred to as the double pseudo-inverse weights determination

ELM (DPELM), aiming to enhance its classification accuracy and

achieve a more stable structure. DPELM is similar to the traditional

ELM network structure, which consists of input layer, hidden

layer and output layer. Upon a more comprehensive analysis of

the traditional ELM principle, Equation 1 can be reformulated as

follows:

T = βh(�X− B), (3)

where T = [t1, t2, ..., tN] ∈ R
m×N , X = [x1, x2, ..., xN] ∈ R

n×N ,

B = [b1, b2, ..., bN] ∈ R
L×N , β and � represent the output weight

matrix and the input weight matrix, respectively. Where

β =













β11 β12 . . . β1L

β21 β22 . . . β2L

...
...

. . .
...

βm1 βm2 . . . βmL













∈ R
m×L,

� =













ω11 ω12 . . . ω1n

ω21 ω22 . . . ω2n

...
...

. . .
...

ωL1 ωL2 . . . ωLn













∈ R
L×n.

Derivation process: Assuming the bias B and output weight

β are randomly generated within the interval [a1, a2], and the

activation function h(·) is strictly monotonous, the ideal � should

be equal to � = (h−1(β†T)+ B)X†.

Since B and β are randomly generated, multiplying both sides

of Equation 3 by β† results in:

β†T = β†βh(�X− B) = h(�X− B). (4)

By finding the inverse function of the activation function h(·),

we can obtain:

h−1(β†T) = �X− B,

The above equation can be rewritten as:

�X = h−1(β†T)+ B. (5)

Finally, multiplying equation 5 by X† simultaneously results in

�XX† = (h−1(3†Y)+ 8)X†,

namely,

� = (h−1(β†T)+ B)X†.

This concludes the proof.

Once the optimal � has been determined, the formula β̃ =

T(h(�X− B))† can be employed to compute the value of β̃ .

2.3 V-DPELM model training process

Based on theoretical principles, the specific training process for

V-DPELMmodel is outlined as follows:

• Step 1: Given a sample dataset ℵ = {(xi, ti)|xi ∈ R
n, ti ∈

R
m}Ni=1, where xi, ti, N represent the input vector, target

vector, and the total number of samples, respectively. This step

introduces essential parameters, including the hidden node

output function h(ω, b, x), the count of hidden nodes L, and

the number of independent training repetitions K.

• Step 2: Randomly initialize output weights β and hidden layer

biases B within the interval [a1, a2].

• Step 3: In the case where the training sample is determined,

the optimal input weights � are computed using the formula

� = (h−1(β†T)+ B)X†.

• Step 4: Subsequently, upon obtaining the optimal input

weights �, the optimal output weights β̃ are determined as

β̃ = T(h(�X− B))†.

• Step 5: Repeat steps 2 to 4 for a total of K times to get K

independent DPELMs model. Then, perform test tasks on

these DPELMs, and the final result is obtained by aggregating

the test results using a voting strategy.

The network structure of V-DPELM model is shown in Figure 2.

Algorithm 1 provides a specific introduction to the pseudo code of

the V-DPELMmethod.

3 Experimental results and analysis

This section randomly selects 12 datasets from the UCI

database to assess the classification performance of the improved

Extreme Learning Machine algorithm. All experiments in this

paper were conducted usingMatlab 2016(a) on a regular PCwith an

Intel(R) Core(TM) i5-12500H CPU running at 3.60GHz and 16GB

of memory.

3.1 Experimental description

The present text conducts a series of experiments to evaluate the

performance of the algorithm from various perspectives, including

the efficacy of its categorization, the precision of its predictions, the

requisite count of neurons within its hidden layers, and the stability

of its resultant outputs. The datasets utilized in this research were

sourced from the UCI (University of California, Irvine) repository,

encompassing both binary classification and multi-classification

datasets. It is important to note that the training and test data

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1322645
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lu et al. 10.3389/fnbot.2023.1322645

FIGURE 2

V-DPELM network structure.

Input: ℵ = {(xi, ti)|xi ∈ R
n, ti ∈ R

m}Ni=1, hidden active function

h(ω, b, x), hidden nodes L, independent training

repetitions K, zero valued vector SK ∈ R
m;

Output: TestingAccuracy;

1: Set k = 1;

2: while k ≤ K do

3: Randomly assign the learning parameters (βk
i , b

k
i ) of

the kth DPELM;

4: Calculate the input weight ωk;

5: Calculate the hidden layer output matrix Hk;

6: Calculate the output weight ˜
βk, β̃ = T(h(�X− B))†;

7: k = k+ 1;

8: end while

9: c = a+ b;

10: for all testing samplextest do

11: Set k = 1;

12: while k ≤ K do

13: using the kth trained basic DPELM with leaning

parameters (βk
i , b

k
i ,ω

k
i ) to predict the label of the

testing sample xtest;

14: Each generated prediction result is then

stored in SK;

15: k = k+ 1;

16: end while

17: The final class label of testing sample xtest is

ctest = argmaxj∈[1,··· ,m]

{

SK,xtest (j)
}

18: end for

Algorithm 1. V-DPELM.

within each dataset were randomly shuffled for each simulation

experiment, ensuring unbiased evaluations. Detailed specifications

of these 12 datasets are presented in Table 1.

TABLE 1 Specifications of classification datasets.

Datasets Attributes Classes Samples Testing
data

SL 35 19 215 92

Iris 4 3 100 50

Wine 13 3 100 78

Liver disorders

(LD)

6 2 240 105

Pima Indians

diabetes (PID)

8 2 537 231

Innosphere 34 2 220 95

Diabetes 8 2 576 191

Balance 4 3 400 225

Ecoli 7 8 100 236

Waveform 21 3 3000 2000

Live 6 2 200 145

3.2 Experimental results and analytical
discussion

In this subsection, we begin by employing the Iris dataset,

the features of which are displayed in Table 1, to ascertain the

efficacy of the V-DPELM algorithm. The corresponding outcomes

are illustrated through Figures 3–5 and Table 2. Figures 3, 4 depict

the graphs of the confusion matrix. Within these figures, the values

along the diagonal of the matrix signify the correctly classified

samples, whereas those located elsewhere indicate the misclassified

samples.
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It is evident that V-DPELM exhibits noteworthy proficiency

in performing classification tasks, both in testing and training

scenarios. Furthermore, as evident from Figure 5, the optimal

classification accuracy reaches approximately 99.5% during testing

FIGURE 3

Training confusion matrix of Iris dataset.

FIGURE 4

Test confusion matrix of Iris dataset.

and 98% during training. Notably, Figure 5 unveils a significant

observation: the generalization performance of V-DPELM remains

stable even with a modest number of hidden-layer neurons.

FIGURE 5

V-DPELM classification accuracy for Iris dataset.

TABLE 2 Classification performance of V-DPELM with di�erent hidden

layer neuron numbers in the Iris Dataset.

V-DPELM Accuracy rate (%) Neurons

Training Testing

98.09 99.40 1

98.02 99.36 2

98.13 99.42 3

98.12 99.52 4

98.10 99.30 5

98.11 99.46 10

98.07 99.56 20

98.15 99.42 50

98.17 99.52 100

TABLE 3 Comparisons of classification accuracy and number of hidden layer neurons of di�erent algorithms.

Datasets Testing (%) Hidden layer neurons

V-ELM V-DPELM V-ELM V-DPELM

SL 90.25 92.30 83 63

Iris 98.42 99.56 15 9

Wine 99.38 99.93 30 10

Liver Disorders (LD) 73.24 73.33 24 7

Pima Indians Diabetes (PID) 81.07 83.37 35 30

Innosphere 91.35 92.88 47 5

Diabetes 70.96 81.23 40 5

Zoo 96.61 98.22 20 10

Balance 90.49 92.08 40 30

Ecoli 85.23 89.15 20 10

Waveform 76.37 78.31 80 30

Liver 71.56 73.79 20 10

Bold values indicate the maximum value.
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This finding is corroborated by Table 2. Specifically, when the

count of hidden-layer neurons is set to 3, optimal and consistent

classification accuracy is achieved. This phenomenon holds true for

other cases as well.

FIGURE 6

SL data set comparison experiment results. (A) Changes in

classification accuracy. (B) Changes in range. (C) Changes in

variance.

Regarding Table 2, there is an additional aspect that requires

elucidation. In the context of assessing the presented growth

methodology, the number of hidden-layer neurons in V-DPELM

is tuned either manually, with an increment of 1, or automatically

FIGURE 7

Diabetes data set comparison experiment results. (A) Changes in

classification accuracy. (B) Changes in range. (C) Changes in

variance.
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through the growth method. As demonstrated in the table, the

proposed growthmethod effectively identifies the optimal structure

for V-DPELM. Consequently, the effectiveness of V-DPELM in

pattern classification is preliminarily affirmed.

The impact of the number of neurons in the hidden layer

on the predictive performance of both the traditional V-ELM

and the algorithm proposed in this study is investigated through

experimental comparisons. Initially, a subset of samples from each

dataset is selected as training and testing data, with the division

between them fixed throughout the experiment. The growing

method is employed to determine the number of neurons in the

hidden layer, where the accuracy is observed after each addition

of one neuron. The corresponding algorithm is considered to have

the best network structure when the accuracy remains unchanged

or the change falls below a predefined threshold. Subsequently,

the ELM algorithm and the algorithm proposed in this paper

are executed 100 times within the optimized network structure,

and the average classification accuracy is computed using the

test dataset. In this experiment, the tangent function (tan) is

chosen as the activation function, with its inverse function being

the arctangent function (arctan). The comparative analysis of

classification accuracy for different algorithms and the required

number of neurons in the hidden layer to achieve the highest

classification accuracy are presented in Table 3.

From Table 3, it can be observed that the algorithm proposed

in this paper outperforms the traditional V-ELM algorithm

in terms of classification performance, both in binary datasets

and multi-classification datasets. The proposed algorithm

achieves higher classification accuracy with fewer neurons in

the hidden layer, resulting in a simpler network structure.

This indicates that the analytical weight initialization method

employed in this paper yields superior results compared to the

random weight initialization method. Furthermore, to further

analyze the impact of algorithm parameters on classification

performance and algorithm stability, this study selects one dataset

each from binary and multi-class problems for performance

comparison.

The SL dataset, a multi-class dataset, and the Diabetes

dataset, a binary classification dataset, are selected for this

study. The training and testing sets for both datasets are fixed

and unchanged throughout the experiments. The number of

neurons in the hidden layer is set to increment from 1 to

100. For each additional neuron, the ELM algorithm and the

algorithm proposed in this paper are executed 100 times. The

experimental results are analyzed in terms of the mean, variance,

and range, as depicted in Figures 6, 7. In these figures, the

positions indicated by black pentagons and triangles represent the

locations where each algorithm achieves the highest classification

accuracy.

Observing Figures 6A, 7A, it becomes evident that the increase

in the number of neurons in the hidden layer leads to an

initial rapid rise in prediction accuracy for both the traditional

V-ELM algorithm and the algorithm proposed in this paper.

However, after reaching a certain point, the accuracy levels off

or slightly declines. By considering the experimental findings

and the Theorem presented in Huang et al. (2006), it can be

deduced that the algorithm proposed in this study shares similar

characteristics with the traditional V-ELM algorithm. Specifically,

as the number of neurons in the hidden layer increases, the

algorithm’s fitting performance improves. Nevertheless, beyond

a critical threshold, further augmenting the number of hidden

neurons may cause overfitting on the training samples, resulting

in a slower or even decreasing classification accuracy on the test

samples.

Furthermore, a thorough examination of Figures 6, 7

reveals that, in both the multi-class SL dataset and the binary

Diabetes dataset, the proposed algorithm demonstrates a

faster rate of average classification accuracy improvement

compared to the conventional V-ELM algorithm. Remarkably,

achieving this progress requires a smaller number of

neurons in the hidden layer. Additionally, the analysis of

variance and range reveals that the proposed algorithm

exhibits lower values for both metrics compared to the

traditional V-ELM algorithm on the SL and Diabetes

datasets. This finding suggests that the proposed algorithm

possesses superior stability in comparison to the traditional

V-ELM algorithm.

4 Application of V-DPELM in the
diagnosis of breast tumors

In order to further validate the accuracy of voting based

double pseudo-inverse weights determination extreme learning

machine algorithm, this study applies it to the classification and

recognition of breast tumor diagnosis. Multiple distinct algorithms

are employed to train and recognize the same breast tumor training

and testing sets, which are then compared against the performance

of the method proposed in this paper.

TABLE 4 Performance comparison of multiple algorithms.

Algorithm Average classification accuracy (%) Benign diagnosis rate (%) Malignant diagnosis rate (%)

V-DPELM 98.32 98.67 97.73

V-ELM 97.47 99.93 93.29

ELM 96.47 96.22 90.13

AFSA-ELM 96.59 96.38 90.61

LVQ 91.57 94.82 85.08

BP 85.88 84.87 88.93

Bold values indicate the maximum value.
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4.1 Experimental data

Data in this study were collected from an open data set

published by the University of Wisconsin School of Medicine,

including 569 cases of breast tumors, 357 benign and 212

malignant. In this paper, 450 groups of tumor data (282 benign

cases, 168 malignant cases) were randomly selected as the training

set, and the remaining 119 groups of tumor data (75 benign cases,

44 malignant cases) were selected as the test set. Each sample

was composed of 30 data, including the mean, standard deviation

and maximum value of 10 characteristic values extracted from the

breast tumor sample data.

4.2 Experimental results and analysis

For the purpose of comparing algorithmic performance, three

performance metrics were considered: the mean diagnostic rate for

benign tumors (referred to as benign diagnosis rate), the mean

diagnostic rate for malignant tumors (referred to as malignant

diagnosis rate), and the average diagnostic accuracy rate. To

ensure robustness of the comparison, independent experiments

were conducted 20 times for each algorithm, including the

proposed algorithm, V-ELM, Artificial Fish Swarm Algorithm-

Extreme Learning Machine (AFSA-ELM), ELM, Learning Vector

Quantization (LVQ), and Backpropagation Algorithm (BP). The

average values of the benign diagnosis rate, malignant diagnosis

rate, and overall accuracy rate were calculated and compared. It

should be noted that the experimental results for V-ELM, AFSA-

ELM, ELM, LVQ, and BP algorithms were sourced from Zhou and

Yuan (2017). The comparative findings are summarized in Table 4.

From the findings presented in Table 4, it is apparent that the

average accuracy rate achieved by the proposed algorithm surpasses

that of the other algorithms. Although the benign diagnosis rate

is slightly lower than that of the V-ELM algorithm, the malignant

tumor diagnosis rate is considerably higher. These results highlight

the efficacy of the proposed algorithm in rapidly and accurately

identifying malignant tumors, thus mitigating the risks associated

with delayed treatment and potential impacts on treatment efficacy

resulting from misdiagnosis.

5 Conclusions

In the 12 randomly selected UCI datasets, the algorithm

proposed in this paper, voting based double pseudo-

inverse weights determination extreme learning machine

algorithm, exhibits varying degrees of improvement in

classification performance compared to the traditional V-

ELM algorithm. Among these datasets, the Diabetes dataset

shows the greatest increase in classification accuracy, with

a significant enhancement of 10.27%. On the other hand,

the LD dataset demonstrates the smallest improvement,

with a marginal increase of only 0.09% in classification

accuracy.

Moreover, the improved algorithm achieves optimal

classification accuracy with fewer hidden layer neurons compared

to the traditional ELM algorithm, resulting in a simpler network

structure.

Additionally, the improved algorithm exhibits reduced

variance and range in both the SL and Diabetes dataset

experiments, indicating enhanced stability. Furthermore, in

the breast tumor classification and recognition experiments, the

diagnostic performance of the proposed algorithm surpasses

that of V-ELM, AFSA-ELM, ELM, LVQ, and BP methods. This

observation highlights the advantage of the proposed algorithm

in achieving high classification accuracy in breast tumor auxiliary

diagnosis. Thus, the application of this method for breast tumor

auxiliary diagnosis is deemed feasible. In addition, it is worth

pointing out that processing multi-dimensional data can be a

research direction for future work.
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