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Introduction: Behavioral Cloning (BC) is a common imitation learning method

which utilizes neural networks to approximate the demonstration action samples

for task manipulation skill learning. However, in the real world, the demonstration

trajectories from human are often sparse and imperfect, which makes it

challenging to comprehensively learn directly from the demonstration action

samples. Therefore, in this paper, we proposes a streamlined imitation learning

method under the terse geometric representation to take good advantage of the

demonstration data, and then realize the manipulation skill learning of assembly

tasks.

Methods: We map the demonstration trajectories into the geometric feature

space. Then we align the demonstration trajectories by Dynamic Time Warping

(DTW) method to get the unified data sequence so we can segment them

into several time stages. The Probability Movement Primitives (ProMPs) of the

demonstration trajectories are then extracted, so we can generate a lot of task

trajectories to be the global strategy action samples for training the neural

networks. Notalby, we regard the current state of the assembly task as the via

point of the ProMPs model to get the generated trajectories, while the time point

of the via point is calculated according to the probability model of the di�erent

time stages. And we get the action of the current state according to the target

position of the next time state. Finally, we train the neural network to obtain the

global assembly strategy by Behavioral Cloning.

Results: We applied the proposed method to the peg-in-hole assembly task in

the simulation environment based on Pybullet + Gym to test its task skill learning

performance. And the learned assembly strategy was also executed on a real

robotic platform to verify the feasibility of the method further.

Discussion: According to the result of the experiment, the proposed method

achieves higher success rates compared to traditional imitation learning methods

while exhibiting reasonable generalization capabilities. It shows that the ProMPs

under geometric representation can help the BC method make better use of the

demonstration trajectory and thus better learn the task skills.

KEYWORDS

peg-in-hole assembly, imitation learning, Behavioral Cloning, probabilistic movement

primitives, robot manipulation planning

1. Introduction

Assembly operations are a critical process in manufacturing, involving the connection

and assembly of various components to create products, and they encompass nearly every

aspect of the manufacturing industry (Zhao et al., 2023). Industrial robots, serving as the

primary execution devices in assembly production, face the crucial challenge of rapidly
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acquiring assembly operation skills, which significantly impact the

development of the manufacturing sector.

In order to equip the robot with manipulation skills effectively,

a variety of robot task learning methods have emerged in recent

years (Bing et al., 2022a,b). Among these methods, reinforcement

learning (Luo et al., 2019; Bing et al., 2023b) and imitation learning

(Ehlers et al., 2019; Huang et al., 2019) are the most common

methods. Reinforcement learning methods are designed to give

robots the ability to learn autonomously, which enables the robot to

learn the unknown tasks completely independently through neural

network agents. As for the tasks for which humans have sufficient

operational experience, imitation learning methods can make use

of human operational experience to achieve rapid learning of task

skills and are usually more widely used.

Demonstration learning is a common method for robot

skill acquisition. This approach extracts operation features from

perceptual data obtained during human-demonstrated tasks. It

then models operational skills using mathematical techniques and,

finally, replicates and generalizes actions based on skill parameters.

This methodology mimics the human learning process, enabling

robots to effectively inherit assembly experiential knowledge

already possessed by humans.

Traditional demonstration learning methods mainly fall into

two categories: those based on mathematical models and those

based on neural networks. Mathematical model-based methods,

such as Dynamic Movement Primitives (DMP) (Chen et al.,

2017; Liu et al., 2020), ProMPs (Paraschos et al., 2018), and

Task-Parameterized Gaussian Mixture Model (TP-GMM) (Rozo

et al., 2015, 2016; Silvério et al., 2019), model demonstration

data by establishing trajectory models. These methods learn

operational knowledge by adjusting and optimizing the parameters

of mathematical models, similar to how humans adjust and

refine their modeling process based on relevant experience. While

mathematical approaches can provide precise models, they often

require a high level of accuracy in input state information.

Consequently, it is challenging for these models to generalize

knowledge to the entire global task space.

The paper is organized as follows: Section 2 summarizes

the existing research related to the proposed method; Section

3 introduces the implementation detail and the quantitative

evaluation of the proposed method; Section 4 provides a series

of experimental results and analysis. In Section 5, conclusions are

drawn and directions for future work are provided.

Even though networks is widely known to be used in

machine learning categories (Bing et al., 2023a,c), they are also

beginning to be taken good use for imitation learning methods.

Till now network-based imitation learning methods involve

sampling human-operated skills and then training neural networks

using the acquired sample data to achieve skill learning. As of

now, neural network-based imitation learning methods primarily

include BC methods (Li et al., 2022), where neural networks are

directly trained, and Generative Adversarial Imitation Learning

(GAIL) methods (Tsurumine and Matsubara, 2022), which

approximate strategies through generative adversarial techniques.

Neural network-based imitation learning methods excel in strategy

approximation. However, due to the typically sparse nature of

human demonstration data, training neural networks to obtain

global strategies with a limited sample size poses a significant

challenge.

Peg and hole assembly, a representative assembly task, finds

widespread applications in aerospace manufacturing, shipbuilding,

precision instrumentmanufacturing, and other fields. However, the

diverse ways pegs and holes interact result in a multitude of task

states and corresponding skill strategies. Consequently, collecting

strategy samples becomes exceptionally challenging, making it even

more difficult to achieve global skill learning in the task space

through neural network-based imitation learning methods.

To address this issue, we propose a method that leverages a

compact task representation space to achieve data augmentation.

With limited demonstration data, we employ the ProMPs method

to establish a mathematical model for global task space strategy.We

then use BC to train neural networks, enabling global skill learning

in the task space. This paper’s contributions are as follows:

1. We extracted human demonstration data and mapped it to a

feature space using the method described in Zang et al. (2023).

2. Using the trajectory data from the feature space, we established

an abstract mathematical model for global strategy using the

ProMPs method.

3. Neural networks were trained using the BC method to achieve

assembly task strategy learning within the task space.

This paper is organized as follows: In Section 2, we provide

an overview of related work. Section 3 outlines the methodology

for establishing the velocity assembly skill model and the imitation

learning approach guided by skill knowledge. Next, in Section

4, we conduct both simulation experiments and real robot

experiments to validate the proposed method’s performance and

analyze the experimental results. Finally, Section 5 summarizes the

entire paper.

2. Related work

The proposed method in this paper mainly involves modeling

with probabilistic motion primitives and utilizing simplified

geometric feature representation. This enables robotic assembly

tasks based on behavior cloning methods to achieve improved

learning outcomes. Relevant work in this area includes research

on robot task representation and robot imitation learning. Recent

research achievements in this field are as follows.

2.1. Representation methods for
peg-in-hole assembly tasks

In the field of robot task learning, methods for task

representation play a crucial role. Due to the varying representation

requirements posed by different task learning methods, several

types of task representation methods have emerged to date.

These methods mainly fall into three categories: feature-based

representation, perception-based representation, and neural

network-based abstract representation.

Feature-based representation categorizes task states into

discrete types. For instance, in Tsuruoka et al. (1997), contact states
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are classified into discrete categories such as single-point contact,

two-point contact, three-point contact, surface contact and so on.

A simplified state representation containing only three contact state

categories was proposed in Huang et al. (2020) for medium-gap

dual-arm peg-in-hole assembly tasks. The classification in Park

et al. (2017) can be seen as a simplified version of the one presented

in Tsuruoka et al. (1997) for situations with smaller gaps. While

discrete representation methods effectively incorporate geometric

features into skill learning, the limited number of categories often

hinders detailed task skill modeling.

Continuous perception-based representation methods, as

demonstrated in Huang et al. (2020), establish mappings between

pose samples and the corresponding contact forces manually.

They then use force sensing information to estimate correct

poses, which represent contact states. Work like Park et al.

(2017) introduces five-dimensional contact force information

within the three-dimensional representation, resulting in an eight-

dimensional continuous perceptual variable to represent the state of

reinforcement learning agents. Perception-based information can

be directly obtained from sensors and comprehensively represents

task information, including poses and contact forces. However,

continuous perception information can appear redundant and

cumbersome during abstract skill analysis due to the abstract nature

of skills.

Abstract information representation, as suggested in Ding

et al. (2019), introduces a reinforcement learning-based pose

estimator. This estimator calculates probabilistic weights for the

six-dimensional pose space using visual and force information,

representing the state for high-precision peg-in-hole assembly

tasks in reinforcement learning. A more advanced method

for constructing continuous perceptual abstract information is

proposed in Lee et al. (2020) using Variational Autoencoders

(VAE). They encode multimodal sensory information, including

visual images, depth information, robot force and position sensing

information, and contact force information, into an abstract

code using a neural network variational model encoder. This

approach achieves continuous abstract representation for peg-

in-hole assembly tasks. These studies utilize neural networks to

represent assembly tasks as concise and abstract state information.

In our study (Zang et al., 2023), we propose a continuous

and streamlined representation method for peg-in-hole assembly

states by analyzing the geometric features. This method reduces the

dimensionality of reinforcement learning for peg-in-hole assembly,

simplifying the learning process. In this paper, we will continue to

use this abstract representation method to learn human assembly

skills under geometric feature representation, aiming to acquire

more global assembly skills from sparse human demonstrations.

2.2. Imitation learning methods for robot
manipulation tasks

As mentioned earlier, imitation learning methods are primarily

categorized into those based on mathematical models and those

based on neural networks.

In mathematical analysis-based imitation learning methods,

DMP are one of the earliest and most commonly used approaches.

In Liu et al. (2020), the DMP imitation learning method was

employed to extract the variations in trajectory characteristics

as skill parameters, which were then used for reproducing

demonstrated trajectories. Yang et al. (2019) utilized the DMP

method for skill parameter extraction and operation replication

based on human trajectories and stiffness information. However,

DMP methods are limited to extracting data features and do

not capture specific task features. Consequently, during the

replication and generalization processes, they fail to retain

the task characteristics inherent in demonstrated information,

making it challenging to effectively generalize to similar tasks.

Paraschos et al. (2018) introduced the ProMPs, a derivative of

DMP, to extract probabilistic movement primitives of trajectories

as skill parameters, facilitating the extraction of operation

skill probability distribution parameters. Although ProMPs can

retain probabilistic task-related features through probability

calculations, the dimensionality redundancy in perception-based

task representation compared to task features leads to the inefficient

extraction of some task characteristics. Rozo et al. (2016) used

the TP-GMM method to extract the Gaussian Mixture Model

(GMM) of trajectories in the task coordinate system as skill

parameters. Subsequently, they used Gaussian Mixture Regression

(GMR) to replicate demonstrated operations from these skill

parameters. While this method retains task-related features, its

probability distribution model is still affected by the dimensionality

redundancy in perception-based information representation.

With the rise of artificial intelligence technology, neural

network-based imitation learning methods have gained widespread

application in recent years. Li et al. (2023) employed the BC

method to extract and replicate human driving skill parameters,

enabling driving skill learning. Bhattacharyya et al. (2023) utilized

GAIL to extract skill parameters from different driving styles and

achieve replication of various driving styles. Additionally, Kim et al.

(2020) introduced the Neural-Network-based Movement Primitive

(NNMP) method, which models DMP using neural networks

to retain task characteristics. However, the skill parameters

obtained from neural network-based imitation learning methods

are implicit (uninterpretable) neural network parameters ref8.

These parameters not only fail to retain task characteristics but

also exhibit limited generalization performance, making them

unsuitable for extracting explicit, generic assembly skills.

In this paper, we will continue to learn assembly skills

from human demonstration information using imitation learning

methods, building upon the geometric feature space of peg-in-

hole assembly. This approach aims to improve the performance of

traditional imitation learning methods.

3. Method

In our previous work (Zang et al., 2023), we discovered

that modeling task skills within a simplified geometric feature

representation space allows for more comprehensive skill learning

within the task space. In this paper, we will use traditional

geometric-based imitation learning methods, ProMPs, and

Behavioral Cloning (BC), to learn fundamental peg-in-hole

assembly skills.

Unlike the previous work, this paper takes a different approach.

Instead of directly specifying simple assembly skills, we will

acquire skills from human demonstration information and engage
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in direct imitation learning. While this method involves human

intervention, it aligns with practical applications where the same

assembly task may require different skills under varying task

requirements. Therefore, this approach holds promising prospects

for learning specific assembly skills in particular application

scenarios.

3.1. Peg-in-hole assembly ProMPs under
geometric representation

In this paper, we will utilize a simplified geometric feature

representation of the peg-in-hole assembly task as the task state.

Firstly, for ease of calculation, regardless of whether the experiment

fixes the peg or the hole component, we assume the peg component

remains fixed, and the hole component is mobile when analyzing

relative poses.

We denote the relative pose between the peg and the hole as

Equation (1). And we have Rho = [nx, ny, nz], pho = [px, py, pz]
T .

axTho =

[

Rho pho
0 1

]

(1)

During the calculation process, we map it to the geometric

feature task space following the method described in Zang

et al. (2023), and then get the representation information Y =

{x, z,α,β ,φ, θ} according to Equation (2).

x =

√

p2x + p2y (2)

z = pz (3)

ϕ = arctan(px/py) (4)

θ = arctan(nx(3)/ny(3)) (5)

α =< n′x, [−sinϕ, cosϕ, 0] > (6)

β =< nz , [0, 0,−1] > (7)

where n′x can be denoted as Equation (8).

n′x = Rho

[

cosθ −sinθ 0
]T

(8)

Through the aforementioned method, we can transform the

obtained homogeneous transformation matrices into geometric

feature representation information.

However, since the sensory information from human

demonstrations is not always perfect, before extracting motion

primitives from the sequence Y(N) of relative pose geometric

representations, we first apply DTW to the trajectories. After

DTW processing, we interpolate the geometric representation

sequence as YDTW(N′). In this context, the DTW distance

function is defined as the Euclidean distance between the first

four elements of the geometric representation sequence, denoted

as YDTW
1 : 4 = {x, z,α,β}. The distance between any two sequence

points 1PDTW and 2PDTW , and is expressed as Equation (9):

Dist =
∥

∥

∥

1YDTW
1 : 4 −2 YDTW

1 : 4

∥

∥

∥
(9)

This DTW processing allows us to handle imperfections in the

human demonstration’s sensory data, enabling us to obtain a more

refined geometric representation sequence for further analysis and

motion primitive extraction.

Then, for every dimension k of YDTW
1 : 4 , we calculate the ProMP

model, which are denoted as follows.

yDTWk (t) = 8kwk + ǫyDTW
k

(10)

P(τk‖wk) =
∏

t

N(yDTWk (t)‖8kwk,6yDTW
k

) (11)

Where 8k ∈ R
n represents the basis functions for the

four-dimensional geometric representation variable of ProMPs,

with n denoting the number of basis functions, and wk as the

corresponding weight vector. ǫyDTW
k

∼ N(0,6yDTW
k

).

Next, we parameterize the weight parameters with Gaussian

models θk = {N(µwk
,6wk

)}. We then employ the Maximum

Likelihood Estimation (MLE) method using the demonstrated

trajectories iY
DTW(N) to estimate the parameters of the Gaussian

model for the weights. Here, i ∈ {1, 2, ..,Ndem} represents the

index of the demonstrated trajectory. Subsequently, following the

method described in Zang et al. (2023), we estimate the weights of

the demonstrated trajectories through linear ridge regression. We

use these weights to calculate the Gaussian model for the weight

parameters.

3.2. Behavioral Cloning imitation learning
method

In this paper, we will use the ProMPs model based on the

geometric feature representation mentioned in Section 3.1 as the

foundational model for generating operational knowledge samples

under sparse demonstration data. We will then employ the BC

method, using the knowledge samples to train a neural network for

learning actions in different states. This is done to achieve the goal

of data augmentation from demonstrations.

To facilitate practical applications, the input to the BC neural

network consists of a seven-dimensional array s, composed of

the three-dimensional relative position and the four-dimensional

relative pose between the current peg and hole components. This is

represented as follows:

s = {px, py, pz , qx, qy, qz , qw} (12)

The output of the neural network corresponds to the executed

actions and is structured as a six-dimensional array a as Equation

(13). This array represents the change in the three-dimensional

position and the change in the three-dimensional orientation angles

of the end-effector.

a = {1px,1py,1pz ,1θx,1θy,1θz} (13)

Here, 1p represent the changes in the end-effector’s three-

dimensional position, and 1θ represent the changes in its three-

dimensional orientation angles. These output values provide the
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necessary information for executing actions in the context of the

assembly task.

Because ProMPs can facilitate the learning of trajectory shapes,

especially when waypoints are specified, it outperforms other

imitation learning methods in terms of trajectory shape learning.

In the case of neural network imitation learning methods based on

state and action modeling, when a specific state s is determined,

it is equivalent to specifying a waypoint on the trajectory.

Consequently, ProMPs can be used to determine the knowledge

action accordingly. However, one challenge that remains is how to

determine the time point at which these waypoints occur.

In this paper, we will divide the trajectories aligned by DTW

into several time stages. Then, we will use Gaussian models of

each time stage to estimate which time stage the current state

approximately corresponds to. This allows us to roughly determine

the time point associated with the current state.

We suppose the geometric representation information

corresponding to the trajectory state in a certain time stage is

YDTW(ts), where tstart ≤ ts ≤ tend. These constraints in Equation

(14) are used to ensure that the time stages are appropriately

divided and cover the entire trajectory duration.

{

∀ts,
∥

∥YDTW
1 : 4 (ts)− YDTW

1 : 4 (tstart)
∥

∥ ≤ lthre

ts − ts ≤ tthre
(14)

Under the constraints mentioned above, we select the longest

time stage, which divides the trajectory into different time stages.

Here, we assume that there are Nt time stages.

We extract samples from different time stages yDTW1 : 4 (ts)

of the demonstrated trajectory and compute gaussian models

N(µyDTW1 : 4
,6yDTW1 : 4

) for these samples in each time stage. After

obtaining the representation information yDTW1 : 4 (t) the current state

FIGURE 1

The picture of demonstration data acquisition equipments and the assembly parts.

FIGURE 2

The picture of the assembly parts and the distribution of marker points.
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corresponding to, we calculate the probability that the current

sample point belongs to each time stage. The time stage with the

highest probability is considered the current time stage. The specific

time point can be chosen from within the current time stage, and in

this paper, we directly select the midpoint of the time stage.

Once the time point is determined, we set waypoints in ProMPs

and generate a target trajectory. However, we don’t need to know

all the trajectory information; we only need to use the trajectory

point at a specific time within the next time stage as the target point.

Then, we calculate the action a required to reach the target point,

which serves as the knowledge information sample.

After obtaining the knowledge action sample, we use the

BC method to imitate and learn the assembly skills from

the demonstrated knowledge, thereby acquiring the peg-in-hole

assembly skill.

4. Experiments

To validate the effectiveness of our proposed assembly

skill imitation learning method, we conducted both simulation

experiments and real robot experiments. Below are the details of

the experimental setup and results.

4.1. Acquisition of demonstration
information

To better record human demonstration information and

minimize the impact of robot stalling and damping during the

teaching process, we utilized motion capture equipment to capture

the relative poses of the peg and hole during the human assembly

process. The experimental setup is illustrated in Figure 1, while

detailed schematics of themarkers and the peg-in-hole components

are shown in Figure 2.

During the data acquisition process for demonstration

information, we manually held the peg component and executed

the assembly strategy, which involved approaching the hole

component along the axis of the hole and inserting it. We

performed multiple assembly operations while capturing the

position information of the markers. The trajectories of all the

markers obtained from these operations are depicted in Figure 3.

By using the positions of four square-distributed markers, we

calculated the homogeneous transformation matrix representing

the pose of the peg component during the assembly process. Finally,

from the obtained sensor data, we extracted the raw trajectory

information of the demonstrated operation. After processing, the

trajectory plot is shown in Figure 4.

4.2. Verify experiment of assembly skills
imitaiton learning

After obtaining the raw trajectory information, we mapped the

trajectories into the geometric representation space and applied

DTW for alignment. The aligned trajectories in the geometric

representation space are depicted in Figure 5. In this figure, it

FIGURE 3

The recorded trajectories of the marker points during the human

assembly demonstration.

FIGURE 4

The processed trajectory data which denoted the pose of the peg

part during the assembly demonstration.

can be observed that the demonstrated operation trajectories

align effectively within the geometric feature representation space,

forming a concentrated set of knowledge trajectories.
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FIGURE 5

The aligned trajectories (processed by DTW) in geometric representation space. (A–D) Are the demonstration trajectories for di�erent dimensions

under geometric representation.

FIGURE 6

The aligned trajectories (processed by DTW) in the cartesian representation space. (A–F) Are the demonstration trajectories in di�erent cartesian

dimensions.

FIGURE 7

The ProMPs model in geometric representation space extracted from the aligned trajectories and the trajectories generated from them. (A–D) Are

the ProMPs model for di�erent dimensions under geometric representation.

As a comparison, we also aligned the trajectories in cartesian

representation space, as shown in Figure 6.

As shown in the figure, under the geometric feature

representation, the demonstrated trajectories are more easily

aligned, resulting in a concentrated set of assembly skills.

We extracted ProMPs from the trajectory representation

information processed with DTW and generated some random

trajectories based on the model, as shown in Figure 7.

In comparison, we directly utilized the trajectories obtained in

cartesian space representation to extract ProMPs and generated
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FIGURE 8

The ProMPs model in cartesian representation space extracted from the aligned trajectories and the trajectories generated from them. (A–F) Are the

ProMPs model for di�erent cartesian dimensions.

some random trajectories based on this model, as shown in

Figure 8.

After obtaining the ProMPs model, we sampled several points

in different task space representations. We used the current

sampling point as a through point, generated task trajectories

through this sampling point using the ProMPs model, and then

took the target pose from the next time stage as the target,

resulting in action sampling.We used this data to train a Behavioral

Cloning neural network model. This way, we conducted two

sets of imitation learning experiments in both the geometric

representation task space and the Cartesian task space.

Additionally, we set up three sets of control experiments. The

first one training a neural network for BC using only action

samples from demonstrated trajectories. The second one used

ProMPs under geometric representation to generate trajectories.

The last one used ProMPs under cartesian representation to

generate trajectories. In the end, we had the following five groups

of experiments:

1. EXP_1: ProMPs model in task representation space + BC

imitation learning.

2. EXP_2: ProMPs model in Cartesian representation space + BC

imitation learning.

3. EXP_3: Naive BC imitation learning.

4. EXP_4: ProMPs model in geometric representation space.

5. EXP_5: ProMPs model in Cartesian representation space.

We trained the neural network in an environment based on

Ubuntu and PyTorch. The neural network had six layers, with 100

neurons in each layer. The input to the neural network consisted of

the current relative pose of the components, and the output was a

six-dimensional action.

We conducted simulation experiments in the Pybullet

environment, as shown in Figure 9. The experimental subject

was the Franka Panda robot. We calculated the target pose based

on the current action’s position and angle increment and then

FIGURE 9

The picture of the simulation platform.

calculated the robot’s joint angle changes based on the target pose

for position control. We used the Trac Ik method to calculate the

robot’s inverse kinematics.

The assembly components used have a diameter of 20 mm and

consist of pegs and holes with a matching length of 12 mm. The

gap between the pegs and holes is <0.5 mm. We randomly selected

500 sets of random state data within the task space and conducted

assembly experiments for each of the four configurations. We

choose 200 successful generated trajectories of each experiment

randomly and show them in Figure 10.

The success rate of each experiment as well as the variance of it

are shown in Figure 11.

Additionally, we conducted generalization experiments for

assembly components of different sizes as part of Experiment 1.

This included assembly sizes with diameters of 10 mm (Gen_1) and

15 mm (Gen_2). Two hundred success trajectories are also chosen
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FIGURE 10

Two hundred of the success trajectories of each simulation experiment. (A–E) Is the verify experiment result for EXP_1–EXP_5.

FIGURE 11

The success rate of each experiment as well as the variance of it.

randomly from the generalization experiment result for each grop,

which are shown in Figure 12.

Finally, we performed real-world robot generalization

experiments using the assembly actions learned from Experiment

1. The experimental setup and results in the form of time-

series graphs are illustrated in Figure 13. Notalby, in real

world experiment, we use the impandance control instead of

position control because of the collision of the peg-in-hole

task. We demonstrated that our proposed imitation learning

method for robot peg-in-hole assembly tasks, based on

geometric representations and ProMPs, can effectively learn

assembly strategies and achieve higher performance compared to

traditional methods.

4.3. Discussion

For the simulation experiments, we found that the imitation

learning method based solely on the ProMPs approach had

certain limitations in global task learning, whether in the task

representation or Cartesian representation. This suggests that the

ProMPs model itself has limitations in trajectory generalization.

In other words, when the selected state as a passing point

significantly deviates from the original ProMPs model’s trajectory,

the generalized trajectories generated by the ProMPs model may

struggle to meet the requirements of tasks with rich contacts.

Additionally, the similar success rates obtained in Experiment 4

and Experiment 5 indicate that the ProMPs model’s performance

does not differ significantly in different task representations. We

believe this is because both experiments are based on learning the

same demonstrated trajectories, so the learned trajectory shapes are

generally similar regardless of the representation.

However, this does not imply that the ProMPs model cannot

be an effective method for obtaining generalized trajectories. On

the contrary, the higher success rate achieved in Experiment 1

using the ProMPs model with geometric feature representation

for BC imitation learning suggests that the ProMPs model can

yield high success rates when used in combination with specific

task representations. Nonetheless, we observe that even when both

experiments use the ProMPs model for BC imitation learning,

the success rate in the Cartesian space representation is not ideal.

We attribute this to two factors. First, the ProMPs model in

Cartesian space has higher variance, and the knowledge is not

as concentrated. Additionally, the knowledge in the geometric

feature representation is more concise, making it easier to obtain a

uniform global skill, which is beneficial for neural network learning.
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FIGURE 12

Two hundred of the success trajectories of each generalization experiment. (A) Is the generalization experiment result of peg-in-hole assembly task

with 10mm radius. (B) Is the result of peg-in-hole assembly task with 15mm radius.

FIGURE 13

The picture of the real world experiment platform and the snapshots.

Therefore, we conclude that geometric feature representation plays

a crucial role in neural network-based task learning.

Finally, the surprising results obtained in Experiment 3

with the naive BC imitation learning agent, although slightly

inferior to Experiment 1, can be attributed to the simplicity

of the provided skill. Moreover, the demonstration data

effectively covered the task space, allowing the neural network’s

generalization capabilities to be effectively utilized, leading to

better results.

5. Conclusion

In this paper, we have introduced a robot assembly task

imitation learning method based on ProMPs under a task-specific

representation. This method involves the use of probabilistic

movement primitives in the geometric feature representation

and BC imitation learning based on the ProMPs model. We

have conducted comparative experiments to demonstrate the

effectiveness of our proposed approach and provided generalization

experiments. Finally, we have analyzed the experimental results and

offered our insights into the factors contributing to the outcomes in

different experiments.

While the method presented in this paper has shown

promising results in the current task setting, it still has some

limitations in practical applications. Therefore, in future

work, we aim to integrate the skill modeling capabilities

of imitation learning methods with the generalization

capabilities of neural networks. We plan to investigate

assembly task learning methods for different task settings
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to address these limitations and enhance the applicability of

the approach.
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