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Editorial on the Research Topic

Bio A.I. - from embodied cognition to enactive robotics

Introduction

“The Brain—is wider than the Sky—

For—put them side by side—

The one the other will contain

With ease—and You—beside—

The Brain is deeper than the sea—

For—hold them—Blue to Blue—

The one the other will absorb—

As Sponges—Buckets—do—

The Brain is just the weight of God—

For—Heft them—Pound for Pound—

And they will differ—if they do—

As Syllable from Sound—”

-Emily Dickinson

If the connections of the human brain were disentangled and placed into a sequence,

they would indeed be wider than the sky, being hundreds of kilometers long and likely

capable of stretching to the moon and back. If we consider the kinds of intelligence generated

by brain-body-environment systems, then such emergent minds may be vaster still in

terms of their complex combinatorics, with the pinnacle of expressive power potentially

being found in language with its “infinite use of finite means”. The field of artificial

intelligence and machine learning (AI/ML) seeks to reproduce the powers of biological

learners, where we struggle to recapitulate the ways in which even supposedly simple

animals demonstrate the ability to respond flexibly to a wide range of situations. In this

Research Topic, we were grateful to receive a diverse assortment of articles that address

ways in which principles of enactivism and embodied cognition might allow for advances
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in AI/ML, potentially without requiring explicit representations,

pre-specified algorithms, or centralized control structures. In what

follows, we briefly summarize these contributions, highlight some

potential implications, and end with a discussion of potential ways

forward for AI/ML and cognitive science more generally.

Summary of contributions and
commentary

Please note that while we use the author’s own words where

possible, we strongly encourage interested readers to reference the

original articles.

In “The acquisition of culturally patterned attention styles under

active inference”, Constant et al. present simulations of visual

foraging based on active inference, demonstrating the acquisition of

attention styles patterned according to cultural artifacts that drive

perception, action, and learning. This paper compellingly shows

how material culture may both drive and be driven by human

thought and by the building and rebuilding of patterns of attention.

In “Enacting plant-inspired robotics”, Lee and Calvo suggest

plants as a holistic source of inspiration for soft robotics

in terms of their non-centralized, modular architectures

and highly plastic phenotypes. In contrast with notions of

autonomy based on the independent operability of systems over

an observation window, plants and other living organisms

exhibit a stronger form of autonomous functioning in

terms of needing to support self-production dynamics that

create distinctions between themselves and the “domain of

interactions that maintain the conditions of viability for the

system”. They further suggest that the field of “growbots”

could be advanced if those systems took a more active

role in acquiring sources of matter and energy for the sake

of self-preservation.

In “Carving up participation: sense-making and sociomorphing

for artificial minds”, Zebrowski and McGraw argue that properly

understanding social cognition requires a greater appreciation

of the nature of interactions involving participatory sense-

making (PSM). “Sociomorphing” is proposed as a means

of distinguishing between living sense-makers and artificial

systems, potentially allowing for the gradual incorporation of

AIs into contexts involving initially asymmetric degrees of

sociality. PSM and sociomorphing are suggested to provide

not only a basis for social robotics but also a potentially

robust framework for developing increasingly advanced AIs with

general intelligence.

In “Embodied object representation learning and recognition”,

Van de Maele et al. show how robotics can be informed by

considering the ways in which biological agents achieve scene

understanding for adaptive object manipulation and navigation

capabilities by leveraging active interactions with the world from

their first encounters with novel situations. Taking inspiration

from theories of neuroscience in which neocortical columns

build predictive models about objects within allocentric reference

frames, the authors introduce a Cortical Column Network (CCN)

architecture. In CCNs, each object category is represented in

its own reference frame by learning a generative model over

expected/predicted transformations in pixel space, given actions.

CCN ensembles vote on their respective beliefs regarding candidate

object categories, which results in the creation of novel CCNs

when classification likelihoods are too low. This architecture is

further validated in simulation environments, with classification

improving as agents gather more evidence (with self-supervised

active learning) and choose actions in ways that afford reaching

preferred observations/destinations.

In “Grounding context in embodied cognitive robotics”,

Valenzo et al. describe how autonomous machines may be

augmented with greater behavioral flexibility by providing

systems with a “global context” that integrates agent-related,

environmental, and task-related information. Through the

interaction of these core elements, agents are capable of (1)

selecting self-relevant tasks on the basis of current and anticipated

future needs (for learning and mastering contingencies), (2)

performing tasks with continuous performance monitoring, and

(3) abandoning unsuccessful tasks based on overall prediction

errors during situated action cycles. With respect to prediction-

error monitoring, the rate of reduction is taken as an index of

overall performance success, evoking emotions that both function

as driving elements for autonomous behavior and are also shaped

by the interactions of core elements of global context processing.

In “The problem of meaning: the free energy principle and

artificial agency”, Kiverstein et al. describe how biological agents

solve the “problem of meaning”, by acting in ways that express

sensitivity to context-dependent relevance. Drawing on common

principles of mind-life continuity and enactivist cognitive science,

the authors argue that robustly autonomous agents require

stable, self-sustaining patterns of sensorimotor interaction to

ground values, norms, and goals as they encounter different

(and differently) meaningful environments. The authors further

discuss relationships between enactivism and the FEP, including the

challenge that these perspectives are fundamentally incompatible,

with biological systems exhibiting historical path-dependent

learning but with free-energy-minimizing agents severing this

historicity. Such FEP agents also show a lack of the “interactional

asymmetry” present in enactivist accounts of autonomy. In

addition to addressing these challenges, it is suggested that rather

than fundamental incompatibility, the FEP needs enactivism for

the problem of meaning, and enactivism needs the FEP for

precise formal modeling of the necessary constituent factors for

realizing agency.

In “Avoiding catastrophe: active dendrites enable multi-

task learning in dynamic environments”, Iyer et al. introduce

a neural network architecture for enhancing the embodied

systems to operate in dynamic environments while flexibly

adapting to changing task contexts and continuously learning

without catastrophic forgetting/interference. This is achieved

by incorporating active dendrites and sparsity-promoting local

inhibitory systems, so dynamically constraining and routing

information in a context-specific manner. The architecture is

tested on several benchmarks, including amulti-task reinforcement

learning environment in which agents must solve a variety of

manipulation tasks (cf. meta-learning), in addition to a continual

learning setup in which task predictions change over the course

of training (cf. reversal learning). In both simulations, the

architecture developed overlapping yet distinct sparse subnetworks

that mediated the fluid adaptation to multiple tasks with
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minimal forgetting, providing (for the first time) a demonstration

of high performance with respect to both multitasking and

continual learning.

In “Social neuroAI: social interaction as the “dark matter” of

AI”, Bolotta and Dumas introduce a three-axis framework for

social learning in biologically-inspired AI, informed by FEP-AI:

(1) brain-inspired models of cognitive architectures, such as global

workspace and attention schema theories, that bridge individual

and social intelligence; (2) dynamical systems perspectives for

handling the inherently time-dependent nature of cognition; (3)

embodiment as a source of sophisticated communicative signals.

These social interactions are essential elements of advanced

cognitive ability yet remain under-explored in AI, constituting the

“darkmatter” with respect to attempts to understand human(imal)-

like intelligence. In light of this gap in our understanding, the

authors review the role of social learning in cognitive development

and the emerging field of “Social NeuroAI.”

In “Goal-oriented behavior with a habit-based adaptive

sensorimotor map network”, Woolford and Egbert present a

habit-based robot controller model that draws on enactivist

principles to realize agency via an adaptive sensorimotor map

(ASM) network architecture. ASM networks provide platforms

for experimental investigation that combine (1) mechanisms for

generating continuous motor activity as a function of historical

trajectories and (2) evaluative mechanisms that reinforce or

weaken those trajectories as a function of their support for the

structure of higher-order sensorimotor coordination. The authors

deploy these adaptive networks in a minimal cognition task

involving object discrimination, demonstrating how an individual

robot could learn through a combination of exploratory/random

movements and repetition of successful historical trajectories

of sensorimotor coordination (cf. motor babbling). These

robots display learning without explicit representational

mechanisms or extraneous fitness variables but rather adapt

according to the internal requirements of the action-generating

mechanisms themselves.

In “Embodied intelligence: smooth coping in the learning

intelligent decision agent cognitive architecture”, Kronsted et al.

describe how skillful actions may become habituated and ingrained

through experience, thereby placing less stress on cognitive load

relative to considered and deliberative thought and action (e.g.,

walking, driving, skiing, playing music, short-order cooking).

Smooth coping behaviors appear to be automatized in that they

are rapid and lacking in reflection, corresponding to Hurbert

Dreyfus’ description of Heideggerian phenomenology involving

“mindless” absorption in action and being in a state of flow.

However, pragmatists such as John Dewey et al. suggest that

intelligent flexibility is built into smooth coping in ways that make

it distinct from automatization. The authors detail a conceptual

model of smooth coping using the Learning Intelligent Decision

Agent (LIDA) system, informed by the Global Workspace Theory

of Consciousness, and argue that sequences of automatized

actions are intermittently interspersed with skillful and flexible

adjustment by consciously-mediated action selection (via dorsal

stream processes). An Automatized Action Selection sub-module

is introduced into LIDA to demonstrate these principles within

a hybrid architecture that allows for a synergistic combination of

both enactivist couplings and explicit representation for the sake of

more skillful conscious control of behavior.

In “Situated neural representations: solving the problems of

content”, Piccinini argues that situated approaches to mind based

on embodiment, embedding, enaction, and affect (with extension

not being relevant to their discussion) are deeply intertwined

with neural representation, with such a computational approach

“[requiring] embodiment, embedding, enaction, and affect at its

very core.” Additionally, situatedness is suggested to be necessary

to describe the adaptive shaping of computations in ways that

(1) construct representations with original semantic content, (2)

automatically coordinate neural vehicles with representational

content, (3) allow content to be causally efficacious, (4) allow

content to be sufficiently determinate to be meaningful/useful to

systems, (5) allow representation of distal stimuli, and (6) allow for

the possibility of misrepresentation.

In “An enactivist-inspired mathematical model of cognition”,

Weinstein et al. outline an enactivist-compliant mathematical

framework for natural and artificial cognitive systems that do

not attribute contentful symbolic representations to agents but

instead model nervous systems, bodies, and environments as “an

inseparable part of a greater totality”. Sensorimotor systems are

considered to be special cases of (potentially labeled) “transition

systems” with connections to deterministic automata. Minimal

sufficient requirements are also suggested for the property of

“sufficiency”, including optimal attunement of an organism to its

environment with sufficient history information spaces.

In “Using enactive robotics to think outside of the problem-

solving box: how sensorimotor contingencies constrain the forms

of emergent autonomous habits”, Egbert and Barandiaran suggest

that AI ought to take inspiration from the “precarious, self-

maintaining organization of living systems”. They demonstrate

how robots controlled by an iterative Deformable Sensorimotor

Medium can realize the spontaneous emergence of an organized

ecology of habits capable of re-enacting adaptive behaviors, with

habits formed within modalities having relatively greater similarity

to habits across modalities (similar to observations for biological

systems). These findings are further discussed in terms of their

relevance to sensorimotor contingency theory, adaptationist and

structuralist explanations in biology, and the potential limitations

of functionalist problem-solving approaches to AI.

In “Reach space analysis of baseline differential extrinsic

plasticity [(DEP)] control”, Birrell et al. introduce a learning

rule studied in the context of goal-free simulated agents that

produce environmentally aware behaviors. They further extend

this mechanism to intentional behavior to determine whether

“short-circuited DEP” can generate desired trajectories in a robotic

arm via simple open-loop control, with transient and limit cycle

dynamics explored in experiments involving target reaching and

circular motions.

In “Resonance as a design strategy for AI and social

robots”, Lomas et al. explore the relationships between the

physical mechanisms of resonance and human experience, with

consideration for enhancing those (potentially highly impactful)

experiences within human-robot interactions. The authors discuss

resonance as a cultural and scientific metaphor and review

“sympathetic resonance” as a physical mechanism (including
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synchronization and rhythmic entrainment) and “design strategy”

for shaping interactions between human and non-human systems.

With “Self-concern across scales: a biologically inspired direction

for embodied artificial intelligence”, Sims focuses on a foundation

for intelligence for all biological systems that reflects the existential

task of continued viability. Self-concern is introduced as “a property

of a complex system that describes its tendency to bring about

states that are compatible with its continued self-maintenance”, and

a potential means of recapitulating the power (and principles) of

human-like intelligence in artificial systems.

With “Mind the matter: active matter, soft robotics, and the

making of bio-inspired artificial intelligence”, Harrison et al. argue

for limitations in the realizability of cognitive phenomena such as

memory, learning, goal-directedness, and decision-making. That

is, the authors describe how cognition is deeply intertwined with

its materiality and corporeality and suggest that progress in AI

may require treating the underlying material, living processes as

more than mere “hardware” that can be abstracted over without

consideration for the soft, active, and plastic details of the particular

mechanistic realizers. In short, “the matter matters for cognitive

form and function.” With “multiple realisability 2.0”, materiality

enables, mediates, and constrains cognition, with precarious

conditions for existence being essential for understanding how

autonomous systems value, engage, and interact with their

environments with a goal-directedness grounded in existential

needs of survival, persistence, and reproduction.

In “Reclaiming saliency: rhythmic precision-modulated action

and perception”, Anil Meera et al. characterize the nature of visual

attention and saliency and how standard accounts based on mutual

information between current visual information and estimated

causes fail to consider the circular causality linking perception

and action (including decisions as to where to sample next, given

current beliefs). From this perspective, salience is defined as an

active inferential process that relies on the basic principles of

uncertainty minimization and rhythmic scheduling and attention:

precision control, or the confidence with which beliefs can be

updated, given sampled sense data. Alternatively phrased, salience

is related to uncertainty minimization, underwriting the selection

of future sense data, and attention is related to rhythmic precision

modulation. Numerical experiments are provided to demonstrate

advantages for state and noise estimation, as well as system

identification and action selection for informative path planning.

In “Embodiment enables non-predictive ways of coping with

self-caused sensory stimuli”, Garner and Egbert demonstrate how

sensory attenuation for self- (relative to externally-) caused stimuli

can be explained enactively. This is contrasted with classical

explanations of these phenomena based on efference copies,

wherein motor commands are accompanied by copies of signals

that predict the likely sensory consequences of that activity,

which are then subtracted from the actual sensory input. Genetic

algorithms are used in this work to investigate when non-

predictive solutions might be viable, which in the simple systems

tested involved modifying paper to shape or avoid self-caused

sensory inputs (rather than predicting and filtering them out) and

sometimes leveraging these self-caused inputs for greater control,

all without the need for an explicit internal model.

In “Am I (Deep) Blue? Music-making AI and emotional

awareness”, Novelli and Proksch provide a review of the

applications of AI to creative and emotional artistic endeavors,

focusing on musical composition. The authors suggest limitations

of systems rooted in current AIs that lack “thoroughly embodied,

interoceptive processes associated with the emotional component

of music perception and production”. The authors’ review presents

attempts to combine the impressive power of modern generative

models with more human-like emotional/interoceptive processing.

In “Connecting the free energy principle with quantum

cognition”, Gunji et al. outline a potential conflict between FEP-

AI and quantum cognition. While free energy minimization leads

to a Boolean lattice of classical logical propositions, quantum

cognition leads to an orthomodular lattice of quantum logical

propositions. Excess Bayesian inference is introduced, with binary

relations transformed from a distribution of the joint probabilities

via rough-set lattice techniques.

In “Small steps for mankind: modeling the emergence of

cumulative culture from joint active inference communication”,

Kastel et al. provide a compelling and testable deep active

inference formulation of social behavior and simulations of

cumulative culture. Cultural transmission is cast as a bi-directional

communication process that induces particular convergences (via

generalized synchrony) between the belief states of interlocutors.

Social/cultural exchange is further cast as a process of active

inference, equipping agents with choices regarding who to

engage with as communication partners, thus inducing trade-offs

between confirmation of current beliefs and exploration of social

environments. Cumulative culture emerges from the dynamics

of belief updating, with equilibria manifesting as segregation

into groups whose belief systems are actively sustained through

selective, uncertainty-minimizing, dyadic exchanges. Finally, the

nature(s) of these emergent equilibria crucially depend on the

precision-weighting of each individual’s generative model of their

encultured niches.

Conclusion

Across these contributions, we can see a broad range of views

on what it means for a system to be biologically inspired, many of

which are still neglected in machine learning. For example, people

are increasingly interested in enhancing large language models

with “multimodality” and potential grounding via simulation

environments (Driess et al., 2023; Yin et al., 2023). However,

approaches that attempt to take on enactivist insights are rare,

with business-as-usual oftentimes assuming that we might be able

to rely on achieving new emergent capabilities with sufficient

scaling (Silver et al., 2021). This is in contrast to what might

be suggested from fields such as developmental social robotics,

which emphasize the conditions for bootstrapping (and grounding)

robust and flexibly generative models of systems that “grasp” an

organism’smeaningful interactions with the environment (Dreyfus,

2007; Tani, 2016; Kolchinsky andWolpert, 2018; Linson et al., 2018;

Bisk et al., 2020; Safron, 20211; Hipólito et al., 2023).

From a radically embodied perspective, one might argue that

the entire field of cognitivist deep learning is on shaky foundations

by virtue of needlessly appealing to the literal sense of the mind-

machine metaphor, i.e. to minds as literal information processors

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1301993
https://doi.org/10.3389/fnbot.2022.857614
https://doi.org/10.3389/fnbot.2022.880724
https://doi.org/10.3389/fnbot.2022.896229
https://doi.org/10.3389/fcomp.2022.896465
https://doi.org/10.3389/fnbot.2022.897110
https://doi.org/10.3389/fnbot.2022.910161
https://doi.org/10.3389/fnbot.2022.944986
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Safron et al. 10.3389/fnbot.2023.1301993

(van Gelder, 1990; Van Gelder, 1995; Hutto and Hipólito, 2021;

Beckmann et al., 2023). In their view, because computation and

information processes cannot be found “in the wild” independent

of human (scientific) practices, the literal sense of the analogy

pushes toward a rudimentary view of natural intelligence (even if

operationally useful in some circumstances). However, we believe

that a more ecumenical approach may be called for if we relax some

of the usual assumptions that accompany these more cognitivist

notions, which may perhaps be made more powerful (and flexible)

when re-represented in more enactivist terms. For example, one

may think of a diverse range of scientific representations for

understanding biological intelligence without necessarily endorsing

that the target being represented entails the ontological properties

of the model (Candadai and Izquierdo, 2020; Constant et al., 2020).

These include (but are not limited to) the following models (of

representation/modeling-like phenomena):

1. Implicit “representation” and generalized stigmergic auto-

encoding of action-perception cycles via distributed attractor

dynamics over likely patterns of enaction with information

continuously with/offloaded into the environment in an

extended mind sense (Clark and Chalmers, 1998; Pfeifer and

Bongard, 2006; Heylighen, 2016).

2. Partially disentangled features in shared latent workspaces

(Bengio, 2017; Thomas et al., 2017, 2018)—possibly centered

in posteromedial and lateral parietal cortices (Safron, 2021a)—

potentially describable as reduced-dimension manifolds over

which neuronal activity evolves (Ji et al., 2023).

3. Predictive modeling of the likely homeostatic consequences

of different system-world states by subcortical structures

that ground all cognition in the preconditions for successful

life management and reproduction (Damasio, 2012; Safron,

2021b; Solms, 2021), thus coupling the individual to

phylogenetic (meta-)learning (Campbell, 2016; Ramstead

et al., 2018; Botvinick et al., 2019; Safron, 2019; Wang, 2021).

4. Predictive modeling (and thereby control) of these system-

world estimates by value-canalized striatal-cortical loops

could be understood as conditioning these percepts/concepts

on likely patterns of enaction. At hierarchically lower levels,

these could take the form of softly assembled coalitions of

forward models (cf., amortization and planning as inference)

(Botvinick and Toussaint, 2012; Kaplan and Friston, 2018).

At intermediate levels of abstraction, these could take the

form of (experienceable) patterns of embodied simulation

and the structuring of perception by relevant affordances

(Cisek, 2007). At higher levels, these could take the form

of (not directly experienceable) patterns of recurrent activity

(or reservoirs), whose bifurcations/tensors could flexibly

parameterize likely patterns of enaction with capacities for

evaluating multiple policies (Tani, 2016).

5. Re-representation of these features in the spatiotemporal

trajectories of the hippocampal/entorhinal system (Blouw

et al., 2016; Whittington et al., 2020; George et al., 2021;

Safron et al., 2021; Bengio et al., 2022; Dumont et al., 2023),

so allowing for orchestration of large-scale dynamics by likely

state transitions for the overall agentic system through time-

space, potentially affording some of the kinds of graphical

representations associated with “good-old-fashioned AI” and

symbolic cognitive science (Gentner, 2010; Crouse et al.,

2020).

6. Local objectmodels (Kosiorek et al., 2019; Van deMaele et al.),

which would be consistent with characterizations of cortical

columns as types of transformers, or Numenta’s “1000 brains

theory” (Hawkins, 2021). While it is questionable whether

every cortical column entails full allocentric object modeling

capabilities (Safron et al., 2021), this may be the case for local

“modules” that are capable of achieving sufficient degrees of

functional closure with respect to being able to inform and be

informed by action-perception cycles on the timescales of their

formation (e.g., whisker barrels, but not ocular dominance

columns). This is an example of how seemingly cognitivist

models of mental phenomena involving “representation”

may heavily depend on an understanding of enactivist

principles to accurately characterize the specific details of

the operation.

7. Re-representation of these features through

symbolic/linguistic capacities (which are themselves

realized as probable patterns of enaction for partially

expressed motor sequences/grammars), thus allowing for

cognition to be structured/stabilized/expanded according

to the combinatorics of syntactic language with its “infinite

use of finite means”. By affording multi-level recursive

self-referential self-modeling, an additional set of strange-

loop-involving (Hofstadter, 2007) virtual machines is

placed on top of “cognitive” hierarchies, thereby expanding

“cognitive light cones” to indeed be “wider than the sky.”—For

a preliminary discussion, see Friston et al. (2023).

In this non-exhaustive list of methodologies, it may be possible

to find an inclusive, potentially synergistic, and scientifically

valuable middle ground between seemingly incompatible theories

on the understanding of the mind. This effort is illustrated in

the diverse articles in this collection, ranging from discussions

of the centrality and power of morphological computation

to demonstrations of the promise of biologically-inspired

neural architectures.

It is worth noting that this more ecumenical stance still

requires criticality, as we would also caution against assuming

that adding seemingly biological features to a system will

necessarily improve its intelligent/adaptive functioning. This

cautioning may be especially timely in light of trends in

AI/ML that attempt to project future gains in performance

based on a combination of apparent “laws” of ability scaling

with computation, especially when combined with analogies

regarding human brains as “neural networks”. Of course,

brains are indeed types of neural networks, but they also

have multiple heterogeneous subsystems, which, taken together,

create a control architecture for embodied agents embedded

in environments in which they pursue valued goals, usually

developed (or trained) in the context of intelligently-structured

socioemotional learning curricula (Tomasello, 2014; Veissière

et al., 2019; Safron, 20211). As such, attempts to reduce the

sophistication of cognition to a “master algorithm” are likely

doomed to failure.
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Moreover, a substantial amount of intelligent functioning

may be realizable via the morphological “computation” enabled

by intelligently designed body plans and their physical reactive

dispositions. Indeed, this kind of “offloading” of computational

challenges onto (or into) bodies and environments is precisely

what we would expect from predictive processing systems as they

attempt to achieve adaptive functioning with maximal efficiency.

While “explaining away” prediction errors via dynamics closer

to primary modalities requires fewer neuronal transactions than

leveraging more complicated models, the energetic savings (of

minimizing cybernetic entropy) are even greater still if prediction

errors never enter nervous systems in the first place because they

have been eliminated via (en)active inference (Ramstead et al.,

2019). It follows, we believe, that the most fruitful meta-prior/over-

hypothesis for enactivism-informed cognitive science would be that

when it comes to trying to understand the sources of biological

intelligence, one should begin with observational behavior and how

cognition emerges from a system’s interaction with its context-

sensitive environment.

We are grateful to have had the opportunity to help bring

together this collection on the diverse ways in which embodiment

and environmental interactions provide foundations for cognition,

across multiple scales. While it may still be debated the precise

ways in which systems must be embodied in order to realize which

degrees (and kinds) of intelligence, we would even go so far as

to conclude with the maxim: “no body, never mind.” Or, in the

words of the great late poet Mary Oliver: “The spirit likes to dress

up like this: ten fingers, ten toes, shoulders, and all the rest· · ·

It could float, of course, but would rather plumb rough matter.

Airy and shapeless thing, it needs the metaphor of the body· · ·

it needs the body’s world· · · to be understood, to be more than

pure light that burns where no one is-so it enters us· · · lights up

the deep and wondrous drownings of the body like a star” (Oliver,

1986).
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