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Feature fusion network based on
few-shot fine-grained
classification

Yajie Yang, Yuxuan Feng, Li Zhu*, Haitao Fu, Xin Pan and

Chenlei Jin

College of Information Technology, Jilin Agriculture University, Changchun, China

The objective of few-shot fine-grained learning is to identify subclasses within a

primary class using a limited number of labeled samples. However, many current

methodologies rely on themetric of singular feature, which is either global or local.

In fine-grained image classification tasks, where the inter-class distance is small

and the intra-class distance is big, relying on a singular similarity measurement

can lead to the omission of either inter-class or intra-class information. We

delve into inter-class information through global measures and tap into intra-

class information via local measures. In this study, we introduce the Feature

Fusion Similarity Network (FFSNet). This model employs global measures to

accentuate the di�erences between classes, while utilizing local measures to

consolidate intra-class data. Such an approach enables the model to learn

features characterized by enlarge inter-class distances and reduce intra-class

distances, even with a limited dataset of fine-grained images. Consequently, this

greatly enhances the model’s generalization capabilities. Our experimental results

demonstrated that the proposed paradigm stands its ground against state-of-the-

art models across multiple established fine-grained image benchmark datasets.

KEYWORDS

few-shot classification, fine-grained classification, similarity measurement, inter-class

distinctiveness, intra-class compactness

1. Introduction

Deep learning models have achieved remarkable results in the realm of visual

recognition, spanning tasks like image and text classification (LeCun et al., 2015; Dvornik

et al., 2019; Lin et al., 2020). However, in real-world settings, the efficacy of thesemodels often

hinges on the presence of vast amounts of training data (Simonyan and Zisserman, 2015; Gu

et al., 2017; Lin et al., 2017b). For certain categories, only a handful of labeled instances might

be available. Yet, humans can rapidly acquire knowledge with limited data (Li et al., 2020).

Drawing inspiration from this human-centric learning approach, the concept of few-shot

learning (Jankowski et al., 2011) has been introduced to align machine learning more closely

with human cognition.

In recent years, a plethora of methods have emerged in the field of few-shot learning.

Broadly, these can be categorized into meta-learning methods (Lake et al., 2017; Ravi and

Larochelle, 2017; Nichol et al., 2018; Rusu et al., 2019) and metric learning methods (Vinyals

et al., 2016; Li et al., 2017; Snell et al., 2017). Meta-learning-based approaches concentrate on

sampling learners from the distribution for each task or episode. They execute the optimizer

or conduct several unfolded weight updates in parallel to adapt the model specifically for the

task at hand. On the other hand, metric learningmethods prioritize embedding both support

and query samples into a common feature space to gauge feature similarity (Vinyals et al.,

2016). Among these, metric learning stands out for its simplicity, ease in introducing new
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categories, and capability for incremental learning. It has shown

exemplary performance on fine-grained images (Lin et al., 2017a;

Li et al., 2019a).

Fine-grained few-shot learning (Chen et al., 2020; Shermin

et al., 2021) frequently utilizes datasets such as Stanford-Cars

(Wang et al., 2021), Stanford-Dogs (Krause et al., 2013), FGVC-

Aircraft (Khosla et al., 2013), and CUB-200-2011 (Maji et al.,

2013). Each of these datasets consists of numerous subcategories,

with only a handful of images per subclass. Given the marked

similarities between each class within fine-grained datasets,

the crux of fine-grained image classification revolves around

pinpointing local areas exhibiting nuanced differences (Wah et al.,

2011). Consequently, efficiently detecting foreground objects and

identifying critical local area information has emerged as a

pivotal challenge in the realm of fine-grained image classification

algorithms (Zhang et al., 2017; Li et al., 2019b; Ma et al.,

2019).

Few-shot metric learning methods that are easy to operate

typically employ a single similarity measure. Traditional metric

learning techniques, like matching networks and relation networks,

often depend on entire image features for recognition. This

approach, however, is not particularly effective for fine-grained

image classification tasks where the inter-class distances are

narrow and the intra-class distances are broad. DN4 and

TDSNet (Chang et al., 2020) have introduced deep local

descriptors, shifting the focus toward local feature information.

Nevertheless, relying on a single similarity measure can introduce

particular similarity biases, especially when dealing with limited

training data. This can undermine the model’s generalization

capability. As illustrated in Figure 1, merging global and local

features can amplify the inter-class differences and condense

the intra-class variances, enhancing accuracy in fine-grained

image classification.

In this paper, we introduce a Feature Fusion Similarity Network

designed to assess global and local similarities within each task

generated by the meta-training dataset. It fully leverages the

global invariant features and local detailed features present in

the images. The Feature Fusion Similarity Network comprises

three modules, as illustrated in Figure 2. The initial module is a

convolution-based embedding module responsible for generating

feature information for both query and support images and

subsequently assessing similarity through global and local modules.

During the meta-training phase, the total loss is computed as the

sum of the global and local losses. Extensive experiments have

been conducted to showcase the performance of the proposed

Feature Fusion Similarity Network. Our contributions can be

summarized as follows: (1) We introduce a novel few-shot fine-

grained framework that incorporates global and local features,

enabling the extraction of fine-grained image feature information

during the meta-learning training process. (2) The fusion of global

and local features not only explicitly constructs crucial connections

between different parts of fine-grained objects but also implicitly

captures fine-grained details with discriminative characteristics.

(3) We conducted comprehensive experiments on four prominent

fine-grained datasets to demonstrate the effectiveness of our

proposed approach. The results of these experiments affirm the

high competitiveness of our proposed model.

2. Related work

Fine-grained image recognition has consistently ranked among

the most active research domains in Fine-Grained Visual

Recognition (FGVR), presenting a set of significant challenges.

The strong performance of deep learning techniques on large

datasets with labeled information has been noteworthy. For

instance, Qi et al. (2022) employed a bilinear network to capture

local distinctions among different subordinate classes, enhancing

discriminative capabilities. Fu et al. (2017) demonstrated the

feasibility of employing an optimization scheme to train attention

proposal networks and region-based classifiers when dealing

with related tasks. Lin et al. (2015) introduced the Diversified

Visual Attention Network (DVAN), with a particular emphasis

on diversifying attention mechanisms to better capture crucial

discriminative information.

Building upon the foundation of fine-grained image

recognition, few-shot fine-grained image recognition has garnered

significant attention (Zhao et al., 2017). This approach enables

models to recognize new fine-grained categories with minimal

labeled information. Few-shot fine-grained image recognition can

be categorized into methods based on meta-learning and methods

based on metric learning.

Meta-learning-based methods: In Rusu et al. (2019), a model

adapts to new episodic tasks by generating parameter updates

through a recursive meta-learner. MAML (Finn et al., 2017) and

its variants (Lake et al., 2017; Ravi and Larochelle, 2017) have

demonstrated that optimizing the parameters of the learner model

enables it to quickly adapt to specific tasks. However, Lake et al.

(2017) pointed out that while these methods iteratively handle

samples from all classes in task updates, they often struggle to

learn effective embedding representations. To address this issue,

one approach involves updating the weights only for the top

layer and applying them to the “inner loop.” Specifically, the top-

layer weights can be initialized by sampling from a generative

distribution conditioned on task samples and then pretraining on

visual features during the initial supervised phase. In contrast,

metric-learning-based methods have achieved considerable success

in learning high-quality features.

Metric-learning-based methods: Metric learning methods

primarily focus on learning a rich similarity metric. In Snell et al.

(2017), the concept of episode training was introduced in few-

shot learning, while prototype networks (Li et al., 2017) determine

the category of a query image by comparing its distance to class

prototypes in the support set, inspired byWei et al. (2019). Relation

networks (Sung et al., 2018) utilize neural networks with cascaded

feature embeddings to assess the relationship between each query-

support set pair. DN4 (Li et al., 2019a) employs K-nearest neighbors

to create an image-to-class search space using local representations.

Lifchitz et al. (2019) directly predicts the classification of each local

representation and computes the loss. Ourmethod combines global

and local metrics. Unlike relation networks, we integrate local

information while considering global relationships. Through local

measurements, we effectively compare two objects rather than two

images, which enhances the ease and effectiveness of the process. By

merging global and local features, our algorithm has demonstrated

satisfactory results.
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FIGURE 1

Motivation diagram. (A) In the diagram, the exploration of global information aims to maximize the separation distance between di�erent classes; (B)

in the diagram, the exploration of local information directs the network to concentrate on crucial local regions and assigns varying weights to make

intra-class information more compact; ultimately, global and local information are combined for class determination.

3. Approach

3.1. Problem definition

Few-shot classification is often defined as an N − way

K − shot classification problem. An N − way K − shot

classification problem refers to a scenario where a small

dataset S, also known as a support set, contains limited

labeled information. The support set comprises N categories

of images, with each category containing K labeled sample

images, where the value of K can vary from 1 to 10 samples.

In a given query set Q, each sample is an unlabeled instance

awaiting classification. The objective of few-shot classification

is to perform classification on the unlabeled samples in the

query set Q, utilizing the limited information available in the

support set S.

To address this issue, Vinyals et al. (2016) introduced

an episode training approach. Given a task T = {Ds,Dq},

it comprises a support set Ds =
{

xsi′y
s
i

}Ns

i=1
(where xi

represents an image in the support set, and yi represents the

label of the image) and a query set Dq =
{

x
q
i

}Nq

i=1
. The

support set consists of a total of NS = N × K labeled

sample images, while the query set Dq contains Nq unlabeled

sample images. In each episode, training is carried out by

iteratively constructing the support set Ds =
{

xsi′y
s
i

}Ns

i=1
and

the query set Dq =
{

x
q
i

}Nq

i=1
through random sampling. This

same sampling pattern must be adhered to during the testing

process. The trained model can then recognize each sample

in the query set Q by utilizing the constructed support set S,

where Ctrain ∩ Ctest = ∅.

3.2. Feature fusion similarity network

The overall model framework is depicted in Figure 2. Firstly,

data augmentation is applied to the support set, which is then

fed along with the query set into the embedding module fθ . This

embedding module can either be a simple convolutional layer or

a ResNet (He et al., 2016), used for extracting feature information

to obtain image feature vectors. These image feature vectors serve

as inputs for the Relation Matrix M Module, Attention Weight

Module, Relation Matrix M_A Module, and Relation Module.

The Relation Matrix M module constructs a local description

space and calculates the similarity between the query image and

the corresponding local region in the support set. The Attention

Weight Module reweights the locally significant areas and, utilizing

a K-Nearest-Neighbors classifier (K − NN for short), calculates

the similarity of the query image to each category in the support

set, effectively reducing noise. The Relation Matrix M_A Module

serves as a refinement of the AttentionWeight Module. Its purpose

is to assess the correctness of the locally important areas and to

fuse and calculate similarities with the feature map obtained from

the Relation MatrixM Module. The Relation Module concatenates

the feature vector corresponding to each query set image with
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FIGURE 2

Schematic of the FFSNet framework. The support set initially passes through a data augmentation module and is then combined with the query set in

the embedding module. Following the fusion of global information extraction and local important area feature weighting, the resulting features are

utilized for classification purposes.

the feature vector of each image in the support set to calculate

their similarity. These two similarities are then combined to obtain

class information.

3.2.1. Data augmentation module
In the data augmentation module, we discovered that applying

extensive transformations to the original image led to a decrease in

classification accuracy during training and resulted in substantial

information loss in smaller data domains. As a result, we

opted for horizontal flipping enhancements and adjustments

to image contrast processing, which perturb the data without

sacrificing information, thereby ensuring consistency between

training and testing.

3.2.2. Feature embedding module
We chose four convolutional blocks as the embedding module

of the network to extract feature information. Each convolutional

block consists of a 3 × 3 convolution with 64 filters, followed by

batch normalization and ReLU activation function, as shown in

Figure 3.

The extracted fθ (S) and fθ (Q) from the embedding module are

represented as follows:

Input(S):(N,K,C,H,W) −→ fθ (S):(N · K,C1,H1,W1) (1)

Input(Q):(N,K,C,H,W)−→fθ (Q):(K,C1,H1,W1) (2)

where N · K represents the total number of samples in the

support set, with N classes and K samples per class. N represents

the number of classes, K represents the number of samples in the

support set and query set, and C, H, W respectively represent the

number of input channels, width, and height.

FIGURE 3

Structural framework of the embedding module, which is

responsible for extracting feature information from both the support

set and the query set.

3.2.3. Relation matrix M module
Recent research on DN4 and TDSNet has shown that features

based on local descriptors are more distinctive than global features.

Specifically, local descriptors have the ability to capture subtle

details in the local areas of an image. After being extracted by

the Feature Embedding module into fθ (·)ǫR
H×W×C, it can be

represented as m = (H × W) individual d-dimensional local

descriptors. The support set can be represented as fθ (S)ǫR
N×m×C,
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and similarly, the query set is fθ (Q)ǫR
m×C . Next, we construct the

relationship matrixM for local similarity calculation.

M = COS(fθ (Q), fθ (S)) (3)

where COS(·) represents the cosine similarity, and each row of

the relationship matrix M represents the similarity between a local

area of the query image and each local area of the support set.

3.2.4. Attention weight module
The MA module takes the query set features and support set

features as input, and directly generates spatial attention to locate

the support class objects in the query image, thereby creating an

attention map on the query image. In this module, we pass the

fθ (·) extracted by the Feature Embedding module through a 1 × 1

convolution block. The purpose of this step is to reweight the

local areas. When calculating local similarity, if there are multiple

duplicate areas in the query image that overlap with the support

set, it can lead to misjudgment during discrimination. Therefore,

this module disperses attention and focuses on the relatively smaller

parts in the local descriptor, effectively reweighting them. By

employing the Relation Matrix M Module method, an Attention

MatrixMA is constructed. Subsequently, the minimum value of the

Attention Matrix is obtained through the TOP − K of the K − NN

(K-Nearest Neighbors) algorithm to suppress noise.

MA = I(M) (4)

I(x) =

{

x, if x > β

0, otherwise,
(5)

where β is selected by the K − NN (K-Nearest Neighbors)

algorithm based on the first three minimum values of the relation

matrixM.

3.2.5. Relation matrix M−A module
We obtain the element-wise multiplication between the feature

matrix and the relationship matrix M, which is crucial for

classification, using the weight matrix MA. Finally, the local

similarity score between the query image Xq and the support class

Xs can be computed by applying the attention map to the similarity

matrixM, as shown below:

S1 = M−A =
1

HW

HW
∑

i=1

HW
∑

j=1

(MA ·M)i,j, (6)

where H and W represent the row and column indices of

the matrix.

3.2.6. Relation module
In the relationship network, the relationship module is used to

concatenate the feature vector fθ (xq) corresponding to the query set

image with the feature information fθ (xn) corresponding to each

image in the support set.

S2 = gϕ([fθ (xn)||fθ (xq)]), n = 1, · · · (Dn) (7)

where || represents the concatenation operator. The similarity

module gϕ consists of two 3× 3 convolution blocks, each followed

by a 2× 2 max-pooling layer and a fully connected layer.

The final formula for the overall prediction score is:

Stotal =
1

2
(S1 + S2) (8)

where S1 represents the score of the Relation Matrix M−A

Module, and S2 represents the score of the Relation Module.

3.2.7. Loss function
In the Feature Fusion Similarity Network, we obtain two

prediction results, y1 and y2, through the local module and global

module, respectively. Then, we calculate the losses l1 and l2 between

the two prediction results and the true values.

L1 =

N
∑

j

(

y1q,j − yq,j
)2
, q = 1, · · ·

(

Dq

)

(9)

L2 =

N
∑

j

(

y2q,j − yq,j

)2
, q = 1, · · · (Dq) (10)

where y1 represents the predicted label and y represents the

true label.

Because the network architecture we have designed combines

local and global information, after obtaining the loss L1 of the local

module and the loss L2 of the global module separately, we need to

add them together to calculate the overall loss of the model:

Ltotal = L1 + L2 (11)

Where L1 represents the loss function of the Relation Matrix

M−A Module, and L2 represents the loss function of the

Relation Module.

4. Experiments

4.1. Experiments settings

The experimental datasets used in this paper consist of

four common datasets for few-shot classification. Among them,

three datasets are frequently employed in fine-grained image

classification in the context of few-shot learning: Stanford-Dogs,

Stanford-Cars, and CUB-200-2011. To assess the generalizability

of our model, we also conducted experiments on the widely used

few-shot classification dataset Mini-ImageNet.
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TABLE 1 Data set partition table.

Datasets Divide Number of
classes

Sample
number

Train 60 10,337

Stanford-Dogs Val 30 5,128

Test 30 5115

Train 98 8,203

Stanford-Cars Val 49 4,004

Test 49 3,978

Train 100 4,719

CUB-200-2011 Val 50 4,715

Test 50 2,953

Train 64 38,400

Mini-ImageNet Val 16 9,600

Test 20 12,000

The Stanford-Dogs dataset comprises 120 categories of dogs,

totaling 20,580 images. This dataset divides the 120 categories into

training, validation, and test sets, consisting of 60, 30, and 30

classes, respectively. The Stanford-Cars dataset consists of 196 car

classes, with a total of 16,185 images. It divides these 196 classes

into training, validation, and test sets, consisting of 98, 49, and 49

classes, respectively. CUB-200-2011 includes 200 bird species and

has a total of 11,788 images. This dataset divides its 200 classes

into training, validation, and test sets, comprising 100, 50, and 50

classes, respectively. Mini-ImageNet is a subset of ImageNet (Deng

et al., 2009), containing 100 classes, with 600 images per class,

totaling 60,000 images. Mini-ImageNet’s 100 classes are divided

into training, validation, and test sets, consisting of 64, 16, and 20

classes, respectively, following the method described in Ravi and

Larochelle (2017). The total number of samples in the training,

validation, and test sets of the above datasets can be found in

Table 1.

4.1.1. Evaluation metrics
We reported the average accuracy (%) for 600 randomly

generated episodes, along with the 95% confidence interval on the

test set, following the approach commonly used in most methods

(Jankowski et al., 2011; Nichol et al., 2018; Xu et al., 2022). Our

model was trained end-to-end, without any pre-training process.

4.1.2. Implementation details
We conducted experiments on four datasets: Stanford-Dogs,

Stanford-Cars, CUB-200-2011, and Mini-ImageNet, using two

settings, namely 5-Way 1-shot and 5-Way 5-shot. There were 15

query samples per class. The input image size was resized to 84×84.

We randomly sampled 60,000 and 40,000 tasks under the 1-shot

and 5-shot experimental settings, respectively, to iteratively train

the model. During the training process, we utilized the Adam

optimizer (Kingma and Ba, 2017) to optimize themodel parameters

withmean squared error loss, setting an initial learning rate of 0.001

and a weight decay rate of 0.

4.2. Performance comprison

4.2.1. Few-shot fine-grained image classification
We conducted classification experiments using the proposed

method on three fine-grained image classification datasets:

Stanford-Dogs, Stanford-Cars, and CUB-200-2011, with 5-Way

1-shot and 5-Way 5-shot experiments. We compared the

experimental results with the current mainstreammethods, and the

results are presented in Table 2.

From Table 2, it can be observed that our proposed method

achieves the highest classification accuracy in the 1-shot

experiments on the datasets Stanford-Dogs, Stanford-Cars, and

CUB-200-2011. This is attributed to our method assigning higher

weights to significant local information while simultaneously

integrating global information to enhance accuracy. In the 5-shot

experiment on Stanford-Cars, our classification results are slightly

lower than those of DN4. However, when compared to some

classic few-shot models such as Matching Net, Prototype Net,

Relation Net, and MAML, there is a noticeable improvement. In

the 1-shot experiments, we see improvements of 8.93%, 14.93%,

6.87%, and 7.31% on Stanford-Dogs, and 13.03%, 21.94%, 12.49%,

and 9.95% on Stanford-Cars. Similarly, in the 1-shot experiment

on CUB-200-2011, we observe improvements of 12.65%, 16.78%,

5.63%, and 12.38%. In the 5-shot experiments, our method also

demonstrates improvements of 11.25%, 10.62%, 6.29%, and

8.29% on Stanford-Dogs, and 11.68%, 11.84%, 7.67%, and 10.27%

on Stanford-Cars. Additionally, in the 5-shot experiment on

CUB-200-2011, there are improvements of 8.04%, 10.43%, 3.7%,

and 8.55%.

4.2.2. Few-shot image classification
To further assess the generalization performance of the method

proposed in this paper, we conducted 5-Way 1-shot and 5-Way

5-shot classification experiments on the Mini-ImageNet dataset.

We compared the experimental results with mainstream few-

shot image classification methods to validate the generalization

performance of our proposed method. The results are presented in

Table 3.

In Table 3, meta-learning disregards the training complexity of

the model and the challenges associated with model convergence,

leading to lower overall classification accuracy. In comparison to

MAML, our method exhibits improvements of 5.9 and 5.48% in the

1-shot and 5-shot experiments, respectively. Furthermore, when

compared to Meta-Learner LSTM, it demonstrates improvements

of 8.93 and 7.59% in the 1-shot and 5-shot experiments,

respectively. Moreover, in comparison to the metric-based

approaches such as Matching Net, Prototype Net, Relation Net,

GNN, and Matching Nets FCE as shown in Table 3, our method

outperforms them in terms of classification performance in

both the 1-shot and 5-shot experiments on Mini-ImageNet.

This underscores that our proposed method exhibits superior

classification performance on the Mini-ImageNet dataset.
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TABLE 2 Comparison with typical FSL methods on three fine-grained.

Model

5-Way accuracy (%)

Stanford-Dogs Stanford-Cars CUB-200-2011

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Net (Vinyals et al., 2016) 45.05± 0.66 59.60± 0.73 45.29± 0.82 64.00± 0.74 55.65± 0.38 72.60± 0.45

Prototype Net (Snell et al., 2017) 39.05± 0.66 60.23± 0.22 36.38± 0.52 63.84± 0.85 51.52± 0.95 70.21± 0.38

Relation Net (Sung et al., 2018) 47.11± 0.90 64.56± 0.74 45.83± 0.86 68.01± 0.78 62.67± 0.98 76.94± 0.66

MAML (Finn et al., 2017) 46.67± 0.87 62.56± 0.80 48.37± 0.81 65.41± 0.77 55.92± 0.94 72.09± 0.76

PCM (Wei et al., 2019) 28.78± 0.95 46.92± 0.85 29.63± 0.65 52.28± 0.78 42.10± 0.35 62.48± 0.35

CovaMNet (Li et al., 2019b) 49.11± 0.56 63.04± 0.76 56.65± 0.86 69.56± 0.78 52.42± 0.76 63.76± 0.64

DN4 (Li et al., 2019a) 45.41± 0.76 63.51± 0.62 57.84± 0.80 87.47 ± 0.47 46.84± 0.81 74.92± 0.64

BSNet (Li et al., 2021) 50.68± 0.56 67.93± 0.75 54.39± 0.92 72.37± 0.77 65.89± 0.46 78.48± 0.65

TDSNet (Qi et al., 2022) 52.48± 0.87 66.45± 0.49 57.35± 0.91 73.64± 0.72 67.34± 0.85 79.38± 0.59

Our 53.98 ± 0.96 70.85 ± 0.75 58.32 ± 0.62 75.68± 0.76 68.30 ± 0.90 80.64 ± 0.64

Bold values represents the maximum value in each column.

5. Analysis

5.1. Ablation experiment

To comprehensively validate the effectiveness of the proposed

Feature Fusion Similarity Network, we conducted an ablation

experiment on the CUB-200-2011 dataset using the Baseline,

which consists of the feature embedding module and relationship

module presented in this paper. As shown in Table 4, several

key modules were added incrementally to the baseline model.

Firstly, the addition of the aug (data augmentation module)

led to an increase in the accuracy of our model by 3.35 and

2.93% for 1-shot and 5-shot experiments, respectively. This

improvement ismainly attributed to the data augmentationmodule

enhancing themodel’s robustness, reducing its sensitivity to images,

increasing the training data, improving the model’s generalization

ability, and mitigating sample imbalance. Subsequently, by

incorporating the LS (local similarity module), we observed a

notable increase in accuracy of 5.23 and 5.64% for 1-shot and

5-shot experiments, respectively. This demonstrates that relying

solely on the global module makes it challenging to detect subtle

local information. The inclusion of the local module makes

the system more sensitive to certain fine-grained local details.

Finally, we verified the effectiveness of the att (attention weight

module), which improved the accuracy in 1-shot and 5-shot

experiments by 8.98 and 7.42%, respectively. The att module

reweights important local areas, suppresses noise, and enhances the

model’s performance.

5.2. Case study

From Figure 4, it is evident that the color change trend on

the CUB-200-2011 dataset indicates that our proposed network

model exhibits better classification accuracy in the experiment

compared to the original relation network. The relation network’s

TABLE 3 The accuracy of few-shot image classification on the

Mini-ImageNet dataset.

Model Type
5-Way accuracy (%)

1-shot 5-shot

Meta-Learner LSTM

(Ravi and Larochelle,

2017)

Meta-learning 43.44± 0.77 60.60± 0.71

MAML (Finn et al.,

2017)

Meta-learning 46.47± 0.82 62.71± 0.71

Matching net (Vinyals

et al., 2016)

Metric learning 48.14± 0.23 63.48± 0.66

Prototype net (Snell

et al., 2017)

Metric learning 44.42± 0.84 64.24± 0.72

Relation net (Sung et al.,

2018)

Metric learning 49.33± 0.85 65.44± 0.69

Matching nets FCE

(Vinyals et al., 2016)

Metric learning 43.56± 0.96 55.31± 0.73

GNN (Garcia and Bruna,

2018)

Metric learning 50.33± 0.36 65.23± 0.86

Our Metric learning 52.37 ± 0.78 68.19 ± 0.95

Bold values represents the maximum value in each column.

TABLE 4 Results of ablative experiments on CUB-200-2011 datasets.

Model
5-Way accuracy (%)

1-shot 5-shot

Baseline 59.32± 0.71 73.22± 0.14

Baseline + aug 62.67± 0.98 76.15± 0.66

Baseline + aug + LS 64.55± 0.89 78.86± 0.37

Baseline + aug + LS + att 68.30 ± 0.90 80.64 ± 0.64

aug, data augmentation module; LS, local similarity module; att, attention weight moudle.

Bold values represents the maximum value in each column.

inter-class discriminability and intra-class compactness on fine-

grained datasets need improvement, which results in numerous

misjudged areas in the measurement results and subsequently
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FIGURE 4

Visualization of the similarity scores predicted by the Relation Network and the network proposed in this paper on the CUB-200-2011 dataset is

presented. In each matrix, the horizontal axis represents 15 query samples from each of the five classes, totaling 75 samples. The vertical axis

represents the five classes in the task. The deeper the color, the higher the similarity.

FIGURE 5

Feature visualization of the Matching Network, Prototype Network, Relation Network, and our Network on the CUB-200-2011 dataset (the redder

the area, the more class-discriminative it is).

leads to poor outcomes. In contrast, our network demonstrates

a high adaptability to fine-grained datasets and excels in fine-

grained classification. This improvement enhances both inter-class

discriminability and intra-class compactness, contributing to its

superior performance.

We visualized important areas in the original images using the

gradient-based Grad-CAM (Selvaraju et al., 2017) technique on

the CUB-200-2011 dataset. Nine original images were randomly

selected from the CUB-200-2011 test dataset, and these selected

images were resized to match the size of the output features

from the embedding module. Subsequently, Grad-CAM images

were generated using the Matching Network, Prototype Network,

Relation Network, and our Network. As shown in Figure 5, it

is evident from the images that the class-discriminative areas

in our Network are primarily concentrated on the target object,

whereas other methods also exhibit more class-discriminative
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areas distributed in the background. Therefore, our model is

more efficient in focusing on the target object and reducing

background interference.

6. Conclusion

The article introduces a network that integrates both global

and local information, termed the Feature Fusion Similarity

Network. This network comprises image data augmentation,

feature embedding modules, and both global and local metric

modules. By amalgamating global and local insights, it becomes

possible to discern regions from various angles, which in turn

amplifies classification accuracy. Thorough experimental evidence

reveals that our approach showcases competitive performance

on fine-grained image datasets when juxtaposed with other

mainstream methodologies. Moving forward, our objective is to

further refine the object features within images to optimize the

model’s classification capabilities.
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