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Detection of tactile-based
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Robot learning based on implicitly extracted error detections (e.g., EEG-based

error detections) has been well-investigated in human-robot interaction (HRI). In

particular, the use of error-related potential (ErrP) evoked when recognizing errors

is advantageous for robot learning when evaluation criteria cannot be explicitly

defined, e.g., due to the complex behavior of robots. In most studies, erroneous

behavior of robots were recognized visually. In some studies, visuo-tactile stimuli

were used to evoke ErrPs or a tactile cue was used to indicate upcoming errors. To

our knowledge, there are no studies in which ErrPs are evoked when recognizing

errors only via the tactile channel. Hence, we investigated ErrPs evoked by

tactile recognition of errors during HRI. In our scenario, subjects recognized

errors caused by incorrect behavior of an orthosis during the execution of arm

movements tactilely. EEG data from eight subjects was recorded. Subjects were

asked to give a motor response to ensure error detection. Latency between

the occurrence of errors and the response to errors was expected to be short.

We assumed that the motor related brain activity is timely correlated with the

ErrP and might be used from the classifier. To better interpret and test our

results, we therefore tested ErrP detections in two additional scenarios, i.e.,

without motor response and with delayed motor response. In addition, we

transferred three scenarios (motor response, no motor response, delayed motor

response). Response times to error was short. However, high ErrP-classification

performance was found for all subjects in case of motor response and no motor

response condition. Further, ErrP classification performance was reduced for the

transfer between motor response and delayed motor response, but not for the

transfer between motor response and no motor response. We have shown that

tactilely induced errors can be detected with high accuracy from brain activity.

Our preliminary results suggest that also in tactile ErrPs the brain response

is clear enough such that motor response is not relevant for classification.

However, in future work, we will more systematically investigate tactile-based ErrP

classification.
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1 Introduction

In recent years, the human-in-the-loop approach has shown great impact on human-
robot interaction, and the effects of both explicit and implicit evaluation in robot learning
in human-robot interaction have also been well-studied (Daniel et al., 2014; Iturrate et al.,
2015; Kim et al., 2017, 2020a,b). In particular, implicitly extracted error detection, e.g., by
using electroencephalogram (EEG) is advantageous for robot learning, when evaluation
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criteria cannot be explicitly defined, e.g., due to the complex
behavior of robots or subjective preferences of the interacting
person (e.g., Kim et al., 2017).

For detection of implicit evaluation of errors, error-related
potentials (ErrPs) have been widely used for various applications
(see review, Chavarriaga et al., 2014). In the literature, ErrPs
have been classified into four types: response ErrPs (ErrPs elicited
by self-induced errors; Falkenstein et al., 2000), feedback ErrPs
(ErrPs elicited when recognizing errors after receiving the feedback
indicating erroneous events; Holroyd and Coles, 2002), observation
ErrPs (ErrPs elicited when observing erroneous actions; van
Schie et al., 2004), interaction ErrPs [ErrPs elicited during
interaction (Ferrez and Millán, 2008), and i.e., originally interface
errors caused by interaction with BCI interfaces].

In robotics, ErrPs have been evoked when observing erroneous
actions of robots or systems (Iturrate et al., 2010; Kim and Kirchner,
2013, 2015) or interaction with robots (Kim et al., 2017, 2020a). In
human-robot interaction, ErrPs have been used for robot learning
(Iturrate et al., 2015; Kim et al., 2017), co-adaptation (Ehrlich and
Cheng, 2018), or corrections of erroneous robot behavior (Salazar-
Gomez et al., 2017). Furthermore, ErrP-based error detections have
been widely used for adaptive classifier of P300 or motor imagery,
e.g., by correcting misclassification of P300 (Dal Seno et al., 2010;
Combaz et al., 2012; Margaux et al., 2012) or motor-related cortical
potentials (MRCPs; Bhattacharyya et al., 2017; Tao et al., 2023) in
brain-computer interface (BCIs) area.

In most ErrP-based studies, ErrPs were elicited when
recognizing errors visually. For example, ErrPs were elicited when
subjects recognized erroneous behavior of robots while observing
(e.g., Iturrate et al., 2010; Kim and Kirchner, 2013) or interacting
with robots (e.g., Kim et al., 2017). However, tactile-based ErrP
classifications have not been widely investigated. Although tactile-
based BCIs are not studied as intensively as visual-based BCIs,
tactile-based BCIs have a potential for motor rehabilitation and
exoskeleton control in rehabilitation applications (e.g., Yao et al.,
2022; Lakshminarayanan et al., 2023). In ErrP-based studies, some
studies investigated error detections using visuo-tactile stimuli. For
example, visual and tactile stimuli were used together to detect
errors and these visuo-tactile stimuli evoked ErrPs (Tessadori
et al., 2017; Schiatti et al., 2019). In other studies, tactile stimuli
were used to indicate upcoming errors, but the errors were
recognized visually. Thus, ErrPs were evoked by visual recognition
of errors indicated by the tactile cue (Chavarriaga et al., 2012;
Ahkami and Ghassemi, 2021). In Perrin et al. (2008), various
modalities of stimuli (visual, auditory, tactile) were compared,
in which the effect of different modalities of stimuli on reaction
time was systematically investigated, but only preliminary results
of ErrP classification were shown due to the very small sample
size and very large variability between subjects and between
stimulus types. In this study, the modalities of stimuli (visual,
auditory, tactile) were used to indicated upcoming errors, and the
visual recognition of errors evoked ErrPs. In summary, to our
knowledge, there were no studies in which ErrPs were evoked when
recognizing errors only through tactile channel. In Section 1.1,
ErrP-based BCI studies using visuo-tactile stimuli are described
in detail.

1.1 Related works

In Tessadori et al. (2017), both visual and tactile stimuli were
used together, in which the subjects received a vibration from the
wristband (Myo armband) in two of three experiments. Here, the
subjects wore a Myo armband on each of their left and right wrists.
ErrPs were not evoked when a cursor (green square) moved to
the target position (orange square), whereas ErrPs were evoked
when the cursor moved in the opposite direction of the target
position. The authors hypothesized that the additional use of tactile
stimuli would increase ErrP classification performance. In the
first experiment, errors were recognized visually without the use
of tactile stimuli. In the second experiment, the Myo wristband
vibrated according to the direction of the cursor movements, e.g.,
the Myo armband of the right wrist vibrated when the cursor move
to the right or vice versa. In this case, the visual recognition of
the cursor movement was congruent with the tactile stimulation.
In the third experiment, the Myo armband vibrated not according
to the direction of the cursor movements, e.g., the cursor moved
to the target position (move to the right), but the Myo armband
of the opposite site of the target vibrated (vibration of the Myo
armband on the left wrist). Thatmeans, the visual recognition of the
cursor movement was not congruent with the tactile stimulation.
The authors found that classification performance was higher when
both visual and tactile stimuli were used together than when only
visual stimuli were used (first vs. second experiment or first vs. third
experiment). However, there was no difference in classification
performance depending on congruency of visual and tactile stimuli
caused by a mismatch between the two types of feedback (second
vs. third experiment).

In Schiatti et al. (2019), visuo-tactile stimuli were used to
evoke ErrPs. ErrPs were not evoked when the cursor moved in
the direction depicted by the arrow which indicated the correct
direction (e.g., move to the left). When the cursor did not move
in the direction pointed by the arrow (e.g., move to right, up,
or down), ErrP were evoked. ErrP classification performance was
slightly higher when visual and tactile stimuli were used together
than when only visual stimuli were used.

In Chavarriaga et al. (2012), a visual (arrow) or tactile stimulus
(vibration) was used to indicate the upcoming movement direction
of the simulated robot, and ErrPs were evoked during visual
recognition of the incongruence between the (visually or tactilely)
cued movement direction of the simulated robot and the direction
of the actually executed movement of the simulated robot. The
authors performed two experiments (visual cue and tactile cue).
In the first experiment, a visual cue was used to indicate the
upcoming movement direction of the simulated robot (i.e., visually
presented arrow). ErrPs were elicited during visual recognition
of the incongruence between the visual cue and the direction of
the actually executed movement of the simulated robot. In the
second experiment, a tactile cue was used to indicate the upcoming
movement direction of the simulated robot (vibration instead of
visual arrow). ErrPs were elicited during visual recognition of
the incongruence between the tactile cue and the direction of
the actually executed movement of the simulated robot. In both
experiments, the incorrectly chosen movement direction of the
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simulated robot (errors) was recognized visually and ErrPs were
evoked when recognizing these errors.

In Ahkami and Ghassemi (2021), a visual or tactile stimulus
was used as a cue to indicate the upcoming movements or the
direction of upcoming movements. ErrPs were evoked during the
recognition of (1) the incongruence between the cued movements
and the absence of movements (i.e., errors) or (2) the incongruence
between the cued movement direction and the direction of the
actually executed movement (i.e., error). The correct and incorrect
condition were predefined depending on movement direction or
absence of movement: it was correct if the red square moved to the
left (first, third, and fourth experiment), whereas it was incorrect
when the red square moved to the right (first, third, and fourth
experiment) or when the red square did not move at all (second
experiment), indicating that there was no correct condition in the
second experiment. In the first experiment, ErrPs were evoked
when the red square moved to the right (incorrect condition)
and ErrPs were not evoked when the red square moved to the
left (correct condition), in which the green and red squares were
visually presented. That is, the visual recognition of errors can
evoke ErrPs. In the second experiment, according to the authors
only tactile stimulation was used to evoke ErrPs. Here, the subjects
were told that the red square would move after tactile stimulation
and they observed the red square visually. That is, the tactile
stimulation was used as a cue to anticipate the movement of the
red square, but the errors (i.e., the absence of the movement of
the red square) were visually recognized. Thus, visual recognition
of the absence of movement of the square (error) did elicit ErrPs,
not the recognition of tactile stimulation. In the third and fourth
experiments, tactile stimulation was used as a cue to anticipate the
movement direction of the red square (i.e., the red square moves
to the right or left). If the direction of movement indicated by
tactile stimulation (e.g., move to the right) does notmatch the visual
recognition of the direction of movement of the red cursor (e.g.,
move to the left), ErrPs can be elicited.

In Perrin et al. (2008), six different types of stimulus used
to indicate errors were compared in a simulated robot control:
visual arrows, visual cursors, auditory tones, auditory words,
and vibro-tactile actuator. Subjects were asked to press a button
when recognizing error (i.e., incongruence between the visually,
auditorily, tactilely cue and the executed action of the simulated
robot). Here, the action of the simulated robot was visually
recognized. The reaction time was shorter for visual stimuli
(visual arrows, visual cursors) than auditory stimuli (auditory
tones, auditory words) or tactile stimuli. There was no significant
difference in reaction time between auditory and tactile stimuli,
but the reaction time was longer for auditory stimuli than tactile
stimuli. Especially, the voice cue had the longest reaction time
and the largest variation between subjects. ErrP classification
performance was very heterogeneous between subjects and between
stimulus types so that the comparison between six different types of
stimulus was not possible, e.g., the ranking of ErrP classification
performance depending on stimulus types was completely different
between subjects. Behavioral data (e.g., reaction time) was collected
from twenty two subjects, but EEG data was recorded only from
four subject of them. For this reason, the authors noted that the
results of ErrP classification were preliminary.

In summary, visual and tactile stimuli were used together to
evoke ErrPs (Tessadori et al., 2017; Schiatti et al., 2019) or tactile
stimuli were used to indicate upcoming errors and the visual
recognition of errors evoked ErrPs (Perrin et al., 2008; Chavarriaga
et al., 2012; Ahkami and Ghassemi, 2021).

1.2 Approaches and goals

In our study, we used tactile stimuli directly to evoke ErrPs
without the combination with the visual channel. We also did not
use any other cues (visual, auditory, or tactile cue) to indicate
upcoming errors. We aimed to evoke ErrPs when recognizing
errors only through tactile channel.

In our scenario, the subjects wore an orthosis on their right
arm and performed arm movements (details, see Section 2.2).
Sometimes, the orthosis did not work correctly, i.e., the orthosis
briefly moved in the opposite direction of the intended movements
of subjects. This malfunction of the orthosis was preprogrammed to
induce errors. Here, we expected ErrPs when subjects recognized
such malfunction of the orthosis (i.e., interaction errors) only
through the tactile channel.

Since we did not find studies in which ErrPs were evoked when
tactile errors were recognized, we asked the subjects to press a
button when they felt the malfunction of the orthosis to ensure that
the subject can detect tactile based errors. However, in our previous
studies (Kim et al., 2017, 2020a,b), we have successfully classified
ErrPs without motor response (e.g., button press).

On the other hand, we assumed that the motor potential can
also be used for feature extraction of ErrP classification because the
latency between the occurrence of errors and the response to errors
(e.g., button press) was short. Therefore, we performed additional
tests, i.e., test experiments, in a scenario, in which a motor response
was not requested after error detection to better interpret our
results and to ensure that ErrP-classification performance might be
increased or decreased, e.g., without motor response (see Figure 3
and Table 5). To this end, we additionally recorded 10 datasets from
one subject (Subject 1) in the experiments, where the subject was
not asked to press a button after error detection.We also conducted
experiments in a scenario, in which a subject was asked to delay
a motor response after error detection to avoid including features
possibly used for ErrP detection. To this end we recorded three
datasets from one subject (Subject 8) in both scenarios: (a) ErrP
detections without motor response and (b) ErrP detections with
delayed motor response. Here, three scenarios (motor response, no
motor response, delayedmotor response) were transferred to better
interpret our assumption (see Figure 3 and Table 4). However, these
additional experiments only serve us as a preview for future work
will need further experiments that were out of the focus of this
work.

2 Methods

2.1 Subjects

Eight healthy subjects (four male and four female; 21.8 ± 2.4
ages; right-handed; students) participated in the experiments. All
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experiments were carried out in accordance with the approved
guidelines. Experimental protocols were approved by the ethics
committee of the department of Computer Science and Applied
Cognitive Science of the Faculty of Engineering at the University
of Duisburg-Essen. Written informed consent was obtained from
all participants that volunteered to perform the experiments.

2.2 Experimental setup

Figure 1 shows the experimental setup. The subjects wore an
orthosis on their right arm and held a button with their left
hand. The orthosis was developed at the DFKI (details, see Kueper
et al., 2023). The subjects performed arm movements consisting of
flexions and extensions. We programmed the orthosis to move in
the opposite direction of the subjects’ intended movements with
a certain probability for 0.25s. For example, subjects intended to
extend their arm wearing the orthosis, but the orthosis briefly
moved in the opposite direction of the intended movements. We
hypothesized that such simulated malfunction of the orthosis,
i.e., erroneous actions of the orthosis (errors) would elicit ErrPs.
The subjects were asked to press a button when they felt that
the orthosis was not functioning properly, i.e., when subjects felt
erroneous actions of the orthosis. The button press was intended
to serve as a response to the error detection. The responses
(i.e., button presses) of subjects were sent to the EEG recording
system so that the responses were written in the EEG data in real
time (see Figure 1 response markers). The onset of movements
(the onset of extension and flexion) and the onset of stimulated
errors (i.e., incorrect orthosis behavior) were also sent to the
EEG recording system (see Figure 1 movement markers and error
markers, i.e., markers for error trials). Note that the orthosis
position is denoted as−10◦ when the arm is fully extended, whereas
the orthosis position is denoted as −90◦ when the arm is fully
flexed. Malfunction of the orthosis (errors) are simulated to make
the orthosis move in the opposite direction with the mean error
position of −42◦ (flexion) and −58◦ (extension), respectively. The
experiment procedure is described in detail in the next section
(Section 2.3 and Figure 2).

2.3 Experimental design and procedure

Figure 2 shows the experimental design. Before the main
experiment (see Figure 2a), subjects performed 30 movements (15
flexions, 15 extensions) without errors to familiarize themselves
with the system (orthosis). After that, the practice set was
performed to learn the experiment procedure of the main
experiment (see Figure 2b). The main experiment consists of three
parts: recordings of five sets, break, and recordings of further five
sets (see Figures 2c–e).

In the main experiment, it was implemented that errors occur
randomly with a probability of 20%. Two facts emerged from this:
(a) errors can occur during the last movement (the last, i.e., 30th
flexion and the 30th extension) and (b) 6 errors (i.e., simulated
malfunction of the orthosis) occur within 30 arm movements (i.e.,
24 correct trials and 6 incorrect trials). In the main study, we

added two movement (one flexion, one extension) to avoid that
the final trials (flexion and extension) did not contain simulated
errors. Thus, the subject performed additional twomovements after
performing 30 movements. This results in two facts: (a) each set
contained 32 movements (16 flexions and 16 extensions) and (b)
the last movements cannot contain errors, since the errors were
simulated within the first 30 arm movements. Finally, each set
contained 26 correct trials and 6 incorrect trials (i.e., 6 errors).

We defined a trial as an extension movement or a flexion
movement. We calculated the median value of trial duration since
the trial duration varied depending on sets and subjects. The
median trial duration was ∼7 s across all subjects (details, see
Table 1). The interval between trials (i.e., inter-trial interval) also
varied across subjects, e.g., some subjects had a longer break
between trials than others. The inter-trial interval ranged between
0.5 and 1 s per set. Thus, the task duration was between 4 and 5
min per set (32 trials for each set). We measured the task duration
of 22 min for each recording phase (see Figures 2c, e) across all
subjects. Hence, the duration of the main experiment was 44 min
excluding the break between two recording phases, the practice
set and the baseline experiment. According to the experimental
design (Figure 2), the whole experiment should take 1 h and 7 min.
However, the actual duration of the experiment was∼2 h, since we
checked impedance and correct transfer of the markers in the EEG
data file (see Figure 1) after each measurement (i.e., after recording
of each set), which took∼5–10 min per set, and from 50 min to 1 h
for all 10 sets per subject. Furthermore, the preparation of EEG and
EMGmeasurements took between 1 and 2 h depending on subjects,
where impedance was kept below 5 k�. Thus, the duration of the
whole experiment including experiment preparation was between
3 and 4 h.

In addition to our main scenario described above, one subject
(Subject 8) participated in two additional scenarios after the
main scenario (ButtonPress scenario), in which (a) the subject
was instructed not to give motor response after error detection
(NoButtonPress scenario) and (b) the subject was asked to
artificially delay a motor response (DelayedButtonPress scenario).
Here, we recorded three datasets for the DelayedButtonPress

scenario and three datasets for the NoButtonPress scenario,
because the main study was expected to take 2 h. We started
the following experiment sequences: NoButtonPress scenario,
DelayedButtonPress scenario, and ButtonPress scenario. Indeed,
the main study took 1 h 50 min. Recording more than 16 EEG
data sets (3 h and 30 min without the preparation time) was not
realistic. Note that 10 datasets from the main scenario (ButtonPress
scenario) were used to train a classifier to evaluate the datasets from
DelayedButtonPress scenario or NoButtonPress scenario (details,
see Section 2.8.4 and Figure 3).

Another subject (Subject 1) participated in our main scenario
(ButtonPress scenario) on one day and in the scenario where motor
response was not required after error detection (NoButtonPress
scenario) on another day. Here, we recorded 10 datasets for the
NoButtonPress scenario just like for the main scenario (ButtonPress
scenario). Due to the long duration of main study (at least 2 h
and 30 min), it was not possible to record 10 datasets for each
scenario (ButtonPress andNoButtonPress) at the same day from the
same subject. The reason for this additional data acquisition was
explained in Section 1.2.
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FIGURE 1

Experimental setup. The subjects wore an orthosis on their right arm and held a button with their left hand. In the main experiment, the subjects were

instructed to press the button when they recognized tactile errors, i.e., incorrect behavior of the orthosis (e.g., the orthosis moved in the opposite

direction of the intended movements of the subjects). We expect ErrPs when recognizing tactile errors.

FIGURE 2

Experimental design. A baseline set without tactile errors (a) and the practice set including tactile errors (b) were recorded before the main

experiment (c, d), which divided into two parts: 5 sets (c) before the break and 5 sets after the break (e).

2.4 Dataset

In the main experiment, we recorded 10 EEG datasets per
subject. Each dataset contained 26 correct trials and 6 incorrect
trials. Thus, we collected a total of 260 correct trials and 60
incorrect trials per subject. As mentioned earlier, we carried
out experiments in two additional scenarios to test whether the
ErrP-classification performance might be increased or decreased,
e.g., without motor response. Thus, for one subject (Subject
8), we additionally recorded three datasets for error detection
without motor response (NoButtonPress) and three datasets for

error detection with delayed motor response (DelayedButtonPress).
In total, for Subject 8, we recorded 10 datasets for error
detection with motor response (ButtonPress), three datasets
for error detection without motor response (NoButtonPress),
and three datasets for error detection with delayed motor
response (DelayedButtonPress). In the end, we also recorded 10
EEG datasets for one subject (Subject 1) on another day for
error detection without motor response (NoButtonPress). In this
way, we recorded 10 EEG datasets for error detection with
motor response (ButtonPress) and 10 EEG datasets for error
detection without motor response (NoButtonPress). For our main
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analysis, we used 10 EEG datasets with motor response from
eight subjects.

2.5 Behavioral data acquisition

We recorded the behavioral data of subjects (e.g., response to
errors) to analyze the accuracy of responses and response time per
subject (see Figure 1).

2.6 EEG data acquisition

As mentioned earlier in Section, 2.4 we recorded EEG datasets
from eight subjects. EEGs were continuously recorded using the
actiCapSlim system (Brain Products GmbH, Munich, Germany),
in which 64 active electrodes were arranged in accordance to an

TABLE 1 Median trial duration for each subject and the mean value across

subjects.

Subject Median trial duration (s)

Subject 1 7.073

Subject 2 6.576

Subject 3 6.741

Subject 4 6.418

Subject 5 7.118

Subject 6 7.352

Subject 7 6.710

Subject 8 6.868

µ ± σ 6.857± 0.309

µ ± σ : mean± standard deviation.

extended 10-20 system with reference at FCz. Impedance was kept
below 5 k�. EEG signals were sampled at 500Hz, amplified by
two 32 channel BrainLiveAmp amplifiers (Brain Products GmbH,
Munich, Germany), and filtered with a low cut-off of 0.1Hz and
high cut-off of 1 kHz. We sent EEG markers (labels) for relevant
events to the EEG recording system to write the EEG markers
into the continuous EEGs (see Figure 1): (a) movement onset for
flexion, (b) movement onset for extension, (c) onset of simulated
erroneous behavior of the orthosis (i.e., ErrP label), and (d) onset
of button press to erroneous behavior of the orthosis (errors). In
addition, we also sent a marker after the start of movement (flexion
or extension) to obtain the NoErrP label, in case that the orthosis
performed correctly.

2.7 Behavioral data analysis

We calculated response time, i.e., reaction time (RT) to error
detection. We also calculated the number of undetected errors, i.e.,
false negatives (FN) and the number of incorrect responses, i.e.,
false positive (FP) responses. The analysis of the behavioral data
was later used to exclude the epochs with erroneous response for
both classes, e.g., button press for correct behavior of the orthosis
or no button press for incorrect behavior of the orthosis (Details,
see Section 2.8.1).

2.8 EEG data analysis

2.8.1 EEG preprocessing
The EEG data was analyzed using a Python-based

framework for preprocessing and classification (Krell et al.,
2013) containing algorithms and external packages for feature
extraction and classification [e.g., xDAWN (Rivet et al., 2009),
pyRiemann (Barachant, 2015; Barachant et al., 2022)]. The

FIGURE 3

Evaluation design. For the main study (a), a 10-fold cross validation was applied for evaluation. For the NoButtonPress scenario (b), a 10-fold cross

validation was also applied for evaluation, where the same subject (Subject 1) participated in the ButtonPress scenario and the NoButtonPress

scenario on di�erent days. For transfer learning (c, d), the 10 datasets from the ButtonPress scenario (main study) was used to train a classifier. This

trained classifier was used to evaluate the data from the NoButtonPress scenario (c) or DelayedResponse Press scenario (d).
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continuous EEG signal was segmented into epochs from −0.1 to
1 s for each event type (correct/erroneous trial). Here, we excluded
the epochs containing an incorrect response from EEG analysis.
For example, epochs in which subjects pressed the button although
the behavior of the orthosis was correct (false positive). On the
other hand, we excluded epochs in which subjects did not press the
button even though the behavior of the orthosis was incorrect (false
negative). Hence, only the epochs with correct responses to errors
(incorrect orthosis behavior) were labeled as incorrect, and the
epochs with correct responses, i.e., no responses, to correct orthosis
behavior were labeled as correct. All epochs were normalized to
zero mean for each channel, decimated to 50Hz, and band pass
filtered (0.1–12Hz).

2.8.2 Feature extraction and classification
Features were extracted per subject. All datasets (i.e., 10

datasets) were concatenated per subject. The xDAWN spatial
filter (Rivet et al., 2009) was used to enhance the signal-to-noise
ratio. By applying the xDAWN the number of 64 physical channels
was reduced to 7 pseudo channels. In this way, the signal-to-noise
ratio for the positive class, i.e., incorrect class was maximized. All
epochs were projected into the pseudo channels, i.e., 350 data
points (7 channels × 50 data points) were obtained after applying
xDAWN.

After applying xDAWN, we used a Riemmanian manifold
approach (for review Yger et al., 2016; Congedo et al., 2017). First,
we generated extended epochs (Barachant and Congedo, 2014) and
obtained 14 pseudo channels (7 · 2 = 14 channels). We estimated a
14 × 14-dimensional covariance matrix across the 50 data points
for each extended epoch. To this end, we used the shrinkage
regularized estimator of Ledoit-Wolf (Ledoit and Wolf, 2004),
which ensures that the estimated covariance matrices are positively
defined. After estimating the covariancematrices, we approximated
their Riemannian center of mass (Fréchet mean; Cartan, 1929) or
often called geometric mean in BCI applications. This Riemannian
center of mass was used as reference point to append a tangent
space. All training and testing data were projected into this
tangent space and vectorized usingMandel notation. UsingMandel
notation, we reduced the symmetric 14× 14-dimensional matrices
into 105-dimensional feature vectors. After that, we normalized
the feature vectors. For classification, we used a linear Support
Vector Machine (SVM; Cortes and Vapnik, 1995; Mangasarian
and Musicant, 1999). We optimized the cost parameter of the
SVM (i.e., regularization constant; Schölkopf et al., 2000). To
this end, the hyperparameter C of the SVM was selected from
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1} using a five-fold stratified
cross validation, in which the correct (NoErrP) and incorrect (ErrP)
classes were weighted as 1:2.

2.8.3 Event-related potential analysis
For ERP analysis, we analyzed the EEG data using EEGLAB1.

For preprocessing, the raw EEGs were downsampled to 250Hz,
re-referenced to an average reference, and filtered between 0.1 and
15Hz. The FCz channel, used as a reference in the EEG recording,

1 https://sccn.ucsd.edu/eeglab/index.php

was recalculated as an EEG channel for ERP analysis. After
preprocessing, independent component analysis (ICA) was applied
for artifact removal. We used Infomax ICA to remove artifacts
(e.g., muscle, eye blinks, or eye movements) by subtracting ICA
components containing eye artifacts. After artifact removal, EEG
data were segmented into epochs from 0.1 to 1 s after each event
type (correct/incorrect). Epochs were averaged within each event
type with a baseline correction (−0.1 s until stimulus onset) per
subject. For calculation of grand average ERP, the ERPs of all
subjects were averaged.

2.8.4 Evaluation
Figure 3 shows the evaluation design for our study. For

evaluation, we used two labels: correct behavior of the orthosis
(NoErrP) and incorrect behavior of the orthosis (ErrP). As
mentioned earlier, we concatenated the epochs of the 10 datasets
and obtained a total of 260 correct trials and 60 incorrect trials
per subject. A ten fold stratified cross validation was applied
on the concatenated datasets per subject (see Figure 3a). Thus,
we obtained the classification performance for each subject.
For performance metric, we used a balanced accuracy, i.e., the
arithmetic mean of true positive rate (TRP) and true negative
rate (TNR). We also additionally reported TPR (recall), TNR, F
measure, and precision (Details, see Section 3.2). Note that the
positive class stands for incorrect behavior of the orthosis and
negative class stands for correct behavior of the orthosis. For
transfer learning, we trained a classifier based on the 10 datasets
recorded in the scenario (ButtonPress scenario), in which motor
response was required after error detection. This trained classifier
was used to test the three datasets and three datasets, respectively
recorded in the scenario (NoButtonPress scenario) where motor
response was not required after error detection (see Figure 3c)
or in the scenario (DelayedButtonPress scenario) where delayed
response was required after error detection (see Figure 3d). For
transfer learning, as mentioned earlier, we evaluated datasets from
both scenarios for one subject (Subject 8). For the evaluation of
NoButtonPress scenario, the same evaluation process was used for
the evaluation of ButtonPress scenario (main study) to compare
the two scenarios ButtonPress and NoButtonPress (see Figure 3b),
where the same subject (Subject 1) participated in both scenarios
on different days.

3 Results

3.1 Behavior data

Figure 4 and Table 2 shows the results of response time, i.e.,
reaction time (RT) to errors. Figure 4A and Table 2A show the
median value of reaction time for each set across eight subjects
whereas Figure 4B and Table 2A show the median value of reaction
time for each subject across 10 sets. We obtained a mean of 0.746 s
RT across all subjects (Table 2A) and a mean of 0.728 s RT across all
sets (Table 2B). However, as shown in Figure 4A, a high variation in
reaction time between subjects was observed for all sets. Similarly,
the variation in reaction time between sets was observed for all
subjects except for Subject 4 and Subject 7 (Figure 4B). For example,
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FIGURE 4

Response time to erroneous behavior of the orthosis (i.e., reaction time) for all sets and all subjects. (A) Reaction time per set across eight subjects.

(B) Reaction time per subject across 10 sets.

TABLE 2 Results of response time (RT).

(A) Median RT for
each subject
across datasets

(B) Median RT for
each set across
subjects

Subject Median reaction
time (s)

Dataset Median reaction
time (s)

Subject 1 0.668 Set 1 0.724

Subject 2 0.608 Set 2 0.728

Subject 3 0.826 Set 3 0.701

Subject 4 0.720 Set 4 0.714

Subject 5 0.674 Set 5 0.696

Subject 6 0.910 Set 6 0.796

Subject 7 0.676 Set 7 0.738

Subject 8 0.890 Set 8 0.758

Set 9 0.684

Set 10 0.742

µ ± σ 0.746± 0.113 µ ± σ 0.728± 0.032

(A) Median reaction time for each subject across 10 datasets. (B) Median reaction time for

each set across 8 subjects. µ ± σ : mean± standard deviation.

the reaction time after half of the experiments (from Set 6) was
longer in Subject 3 (Figure 5A), whereas the reaction time was
highly different between sets for Subject 8 (Figure 5B). Figure 6
shows the results of response time, i.e., reaction time (RT) to errors
in the experiment, in which the subject (subject 8) was asked to
delay his motor response after error recognition. We obtained a
mean of 4.54 s RT across all sets for this subject.

We also analyzed the accuracy of the response to errors. We
have calculated the number of undetected errors, i.e., false negatives
(FN). A total of 471 errors were detected from 480 errors (6 errors

× 10 sets × 8 subjects). This results in an average error detection
accuracy of 98.82% for all subjects. In other words, we obtained
a mean of 1.88% FN across all subjects. We also calculated the
number of incorrect responses, i.e., false positive (FP) responses.
(i.e., the button was pressed even though there was no error). We
obtained a mean of 0.83% FP for all subjects.

3.2 EEG data

3.2.1 EEG classification performance
Table 3 shows ErrP-classification performance. We obtained

high ErrP classification performance for all subjects. The mean
value of TNR was slightly higher compared to TPR, i.e., the false
positive rate (1-TNR) was less than the false negative rate (1-TPR).
We also found more variability between subjects for TPR than
TNR.

Table 4 shows ErrP-classification performance for transfer
learning. As mentioned earlier, we performed experiments in
two additional scenarios to evaluate whether ErrP-classification
performance might be increased or decreased, e.g., without motor
response. We trained a classifier using the datasets recorded in the
main scenario, in which motor response was required after error
recognition (ButtonPress). This trained classifier was used to test
(a) the datasets recorded in the scenario, in which the subjects
were instructed not to give motor response after error recognition
(NoButtonPress) or (b) the datasets recorded in the scenario, where
subjects were asked to artificially delay motor response after error
detection (DelayedButtonPress).

As shown in Table 4A, we still observed a high TPR, but a
slightly lower TNRwhen transferring from the scenario with motor
response to the scenario without motor response. That means, the
rate of error detection (ErrP detection) was still high, but there were
many false alarms, i.e., the false positive rate was high (1-TNR).
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FIGURE 5

Response time to erroneous behavior of the orthosis (i.e., reaction time) for Subject 3 and Subject 8 as example. (A) Reaction time (subject 3). (B)

Reaction time (subject 8).

FIGURE 6

Response time to erroneous behavior of the orthosis (i.e., reaction

time) for Subject 8 in the experiment, where the subject was asked

to delay his motor response after error detection

(DelayedButtonPress experiment).

In contrast, we observed a very low TPR, but a high TNR when
transferring from the scenario with motor response to the scenario
with delayed motor response (see Table 5B). That means, the false
alarm (false positive rate) was not high, but the rate of error
detection (ErrP detection) was very low.

Table 5 shows the comparison between two scenarios (motor
response after error detection vs. no motor response after error
detection) in ErrP-classification performance in the same subjects
(subject 1). Note that the datasets were not recorded on the

same day. We achieved high ErrP-classification performance for
both scenarios. That means, we obtained high ErrP-classification
performance in the scenario, in which motor response was not
required after error detection.

3.2.2 Event-related potential analysis
Figure 7 shows the grand average ERPs in our main study

(ButtonPress scenario) at Fz, FCz, Cz, and Pz, in which the ERPs
averaged over all trials per condition (correct/incorrect) for each
subject were in turn averaged over all subjects. We observed the
first negativity around 250 ms followed by a positivity between 300
and 500 ms and a further negativity around 600 ms. Here, the ERP
shape (i.e., temporal sequences of ErrPs) is identical to other ErrP
studies (e.g. Chavarriaga et al., 2012). However, the first negativity
was suppressed due to the strong positivity in its minus polarity. As
expected from ERP pattern evoked by interaction errors, the first
and second negativity was smaller at Cz and Pz than at Fz and FCz.

Figure 8 shows the ERP curve averaged across all correct trials
(S48, blue curve) and all incorrect trials (S96, red curve) for each
subject at FCz, in which we expect maximum ErrPs at fronto-
central region (FCz). We observed that Subject 7 showed most
clearly the expected classic ErrP form (first negativity followed by
positivity and second negativity).

Figure 9 shows the ERP curve averaged across all correct trials
(S48, blue curve) and all incorrect trials (S96, red curve) for Subject
1 in comparison for both ButtonPress scenario and NoButtonPress

scenario. The ErrP shape is similar in both scenarios.

4 Discussion

In our study, we developed a scenario in which tactilely
triggered ErrPs were examined for tactilely perceived misbehavior
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TABLE 3 ErrP-classification performance.

Subject bACC TPR TNR F measure Precision

Subject 1 0.987 0.986 0.989 0.971 0.960

Subject 2 0.979 0.967 0.992 0.966 0.971

Subject 3 0.962 0.933 0.992 0.946 0.971

Subject 4 0.998 1.000 0.997 0.993 0.975

Subject 5 0.973 0.955 0.992 0.961 0.973

Subject 6 0.973 0.955 0.992 0.961 0.973

Subject 7 0.991 0.986 0.996 0.984 0.985

Subject 8 0.934 0.889 0.982 0.899 0.918

Mean± SEM 0.975± 0.007 0.959± 0.013 0.992± 0.002 0.960± 0.010 0.966± 0.007

Mean and standard error of mean (SEM) are reported. Note that the positive class stands for erroneous behavior of the orthosis (ErrP label). TPR, true positive rate (called recall); TNR, true

negative rate; bACC, balanced accuracy [(TPR+TNR)/2]).

TABLE 4 ErrP-classification performance for two scenarios.

bACC TPR TNR F measure Precision

(A) Motor response after error detection (ButtonPresss)

Subject 1 0.987 0.986 0.989 0.971 0.960

(B) No motor response after error detection (NoButtonPresss)

Subject 1 0.991 0.986 0.997 0.985 0.987

(A) motor response after error detection (ButtonPresss) and (B) no motor response after error

detection (NoButtonPresss; Subject 1).

Mean and standard error of mean (SEM) are reported. Note that the positive class stands for

erroneous behavior of the orthosis (ErrP label). TPR, true positive rate (called recall); TNR,

true negative rate; bACC, balanced accuracy [(TPR+TNR)/2]).

of an orthosis. The behavioral results showed that interaction
errors mediated by erroneous behavior of the orthosis via the
tactile channel were detected with a high accuracy (98.82%) by all
subjects. Our EEG results showed that it is feasible to detect ErrPs,
which are elicited when interaction errors are detected only via the
tactile channel without visual, auditory, or tactile cues. Thus, our
results revealed that it was also feasible to detect tactile-based ErrPs
without combining them with visual error recognition.

Further, the comparison in ErrP-classification performance
between two scenarios (motor response after error detection
and no motor response after error detection) revealed that ErrP
detection is also feasible without making use of features from
motor activity (Table 5). Note that we performed this evaluation
on one subject (10 datasets recorded from the scenario motor

response after error detection vs. 10 datasets recorded from the
scenario no motor response after error detection) and the results
are therefore preliminary. These results are consistent with our
previous studies (Kim et al., 2017, 2020a,b), in which subjects
observed the robot’s behavior while interacting with the robot
and did not perform a motor response (e.g., press a button) after
detecting erroneous actions of a robot.

Furthermore, reaction-time analysis show that the mean
response time across all subjects was 746 ms. This means that
the motor response occurred very late, which can only affect
the last part of the ERP evoked by errors (i.e., the second
negativity). Moreover, response time is not very strongly time
locked to the error, as reaction-time analysis has shown. For

this reason, we expect that the effect of motor response should
be small. As mentioned in Section 1, in many ErrP studies,
the recognition of errors elicited ErrPs without any motor
response. In most studies, errors were recognized visually while
observing/monitoring errors (visual feedback) without a motor
response, and this visual recognition of errors (error monitoring)
elicited ErrPs. Furthermore, there was an ErrP study (Chavarriaga
et al., 2012) conducted with motor response (KeyPress after error
recognition) and without motor response (error monitoring) using
visuo-tactile stimuli. In this study, ErrPs were evoked under both
conditions, and the ERP shape was similar under both conditions.
Although our study cannot prove that motor activity does not
contribute to the observed ERP curve, the additional experiment
with motor response in subject 1 showed that a similar ERP
shape was observed in case of no motor response. We want to
emphasize that we required motor response to ensure that the
subjects recognized tactile-based errors.

An interesting result is that ErrP-classification performance was
only slightly reduced (91%) when we applied the classifier trained
on the datasets containing interaction errors with motor response
to test the datasets containing interaction errors without motor
response (Table 4A). These results suggest that the features used for
motor potential detection are not very relevant for ErrP detection.
In contrast, the ErrP-classification performance was substantially
reduced (74%) when we used the classifier trained on the datasets
containing interaction errors with motor response to test the
datasets containing interaction errors with delayed motor response
(Table 4B). These findings suggest that features used from motor
related activity could have a negative effect on ErrP detection when
the motor response was artificially delayed by subjects. Again, these
results are preliminary and need further studies. We performed
theses tests to develop more ideas into future possible experiments.

Another interesting preliminary finding is that we observed a
very high true positive rate (100%) and an increased false positive
rate (17%) when we transferred the classifier trained on the datasets
containing interaction errors with motor response to the datasets
containing interaction errors without motor response (Table 4A).
Here, we assumed that the effect of maximizing the positive class
(incorrect class, i.e., ErrP label) during feature extraction (details,
spatial filtering in Section 2.8.2) might become stronger when the
test data did not include features detecting motor potentials. For
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TABLE 5 ErrP-classification performance for scenario transfer (Subject 8).

bACC TPR TNR F measure Precision

(A) Training: motor response after error detection, Test: no motor response after error detection

Subject 8 0.913 1.000 0.827 0.727 0.571

(B) Training: motor response after error detection, Test: delayed response after error detection

Subject 8 0.747 0.533 0.962 0.615 0.727

Mean and standard error of mean (SEM) are reported. Note that the positive class stands for erroneous behavior of the orthosis (ErrP label). TPR, true positive rate (called recall); TNR, true

negative rate; bACC, balanced accuracy [(TPR+TNR)/2]).

FIGURE 7

Grand average ERPs in our main study (ButtonPress scenario) at Fz, FCz, Cz, and Pz. The blue curve stands for the ERPs averaged over all correct

trials (S48), whereas the red curve stands for the ERPs averaged over all incorrect trials (S96). Grand average ERP stands for the ERPs averaged across

all subjects for each condition (correct/incorrect).

this reason, the true positive rates could be increased whereas
the false positive rate could be decreased. On the other hand,
we observed a very low true positive rate (53%) and a low false
positive rate (4%) when we transferred the classifier trained on the
datasets containing interaction errors with motor response into the
datasets containing interaction errors with delayed motor response
(Table 4B). Again, the results suggest that features used for motor
potential detection could have a negative impact on ErrP detection
when the motor response was artificially delayed by subjects.

However, we studied only one subject for transfer learning.
Therefore, the results for transfer learning are preliminary and it
is necessary to investigate this systematically with more subjects
in future work. We have shown with our preliminary results

that our main scenario that allows us to prove that subjects
detect tactilely induced errors, can be adapted to gain more
insight into the correlation between different EEG activities by
making modifications such as those for the NoButtonPress or
DelayedButtonPress conditions. Thus, our preliminary findings
from classifier transfer and adaptation of response situation opens
up interesting research questions for future experiments worth it to
be investigated.

The ERP results (Figure 7) indicates that ErrPs could be also
shown at frontal region (e.g., Fz) when errors were introduced
by tactile stimuli. These results are consistent with the findings of
Chavarriaga et al. (2012), which showed a similar ERP morphology
(first negativity followed positivity and a further negativity) at
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FIGURE 8

ERPs in our main study (ButtonPress scenario) for each subject at FCz. The blue curve stands for the ERPs averaged over all correct trials (S48),

whereas the red curve stands for the ERPs averaged over all incorrect trials (S96).
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FIGURE 9

ERPs for Subject 1 at Fz, FCz, Cz, and Pz in both ButtonPress scenario and NoButtonPress scenario. The blue curve stands for the ERPs averaged over

all correct trials (S48), whereas the red curve stands for the ERPs averaged over all incorrect trials (S96).
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frontal region (Fz) when errors were introduced by visuo-tactile
stimuli. In our study, the positivity was stronger than in other ErrP
studies (review see Chavarriaga et al., 2014). We first assumed that
the task-relevant event (i.e., the button press when recognizing
errors instead of passively observing errors) might induce a
stronger positivity (i.e., P300) in our study. However, the test with
one subject (Subject 1) in the NoButtonPress scenario compared to
the data recorded for this subject in the ButtonPress scenario did
not support this hypothesis. We found no strong differences for
this one subject under the response and the no response condition
(see Figure 9). This interesting preliminary result opens up future
research questions on the processing of tactile stimuli. Further
studies are needed in the future.

In recent years, there has been increased interest and impact
of the human-in-the-loop approach to human-robot interaction
and also to tele-rehabilitation (e.g., therapist-in-the-loop in assisted
as needed approach). Here, tactile feedback (tactile stimulation or
force feedback) has a great importance for a better cooperation
with the users and a better support of the patients. Therefore,
in the future, we want to investigate errors or resistance that are
received via tactile channels from users or patients, which can occur
during human-robot interaction in our robotic supported (tele-)
rehabilitation scenarios.
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