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Using computers to replace pilot seats in air tra�c control (ATC) simulators

is an e�ective way to improve controller training e�ciency and reduce

training costs. To achieve this, we propose a deep reinforcement learning

model, RoBERTa-RL (RoBERTa with Reinforcement Learning), for generating pilot

repetitions. RoBERTa-RL is based on the pre-trained language model RoBERTa

and is optimized through transfer learning and reinforcement learning. Transfer

learning is used to address the issue of scarce data in the ATC domain, while

reinforcement learning algorithms are employed to optimize the RoBERTa model

and overcome the limitations in model generalization caused by transfer learning.

We selected a real-world area control dataset as the target task training and

testing dataset, and a tower control dataset generated based on civil aviation

radio land-air communication rules as the test dataset for evaluating model

generalization. In terms of the ROUGE evaluation metrics, RoBERTa-RL achieved

significant results on the area control dataset with ROUGE-1, ROUGE-2, and

ROUGE-L scores of 0.9962, 0.992, and 0.996, respectively. On the tower control

dataset, the scores were 0.982, 0.954, and 0.982, respectively. To overcome

the limitations of ROUGE in this field, we conducted a detailed evaluation

of the proposed model architecture using keyword-based evaluation criteria

for the generated repetition instructions. This evaluation criterion calculates

various keyword-based metrics based on the segmented results of the repetition

instruction text. In the keyword-based evaluation criteria, the constructed model

achieved an overall accuracy of 98.8% on the area control dataset and 81.8%

on the tower control dataset. In terms of generalization, RoBERTa-RL improved

accuracy by 56% compared to the model before improvement and achieved

a 47.5% improvement compared to various comparative models. These results

indicate that employing reinforcement learning strategies to enhance deep

learning algorithms can e�ectively mitigate the issue of poor generalization in text

generation tasks, and this approach holds promise for future application in other

related domains.

KEYWORDS

controller training, transfer learning, text generation, reinforcement learning,

generalization

1. Introduction

In recent research projects (Holone and Nguyen, 2015) and as indicated by the

International Civil Aviation Organization (ICAO), it is projected that air traffic flow will

continue to grow at an annual rate of 3 to 6% after 2025. Consequently, the demand

for Air Traffic Controllers (ATCOs) will increase year by year. ATCOs communicate
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control instructions to pilots via Very High-Frequency (VHF)

radio to manage air traffic. According to safety and reliability

regulations in Air Traffic Control (ATC), pilots are required to

promptly and accurately repeat control instructions they receive

to ensure the correct understanding of instructions issued by

ATCOs (Lin et al., 2019). ATCOs undergo specific training,

including foundational courses and simulator training, to qualify

for working in actual ATC scenarios. Control training simulators

typically consist of two seats: one for the controller and the

other for the pilot. Completing controller training requires

dedicated personnel to control the pilot seat for the repetition

and response to control instructions, incurring additional training

costs, including equipment and personnel expenses, as illustrated

in Figure 1 (Zhang et al., 2022a). In recent years, artificial

intelligence (AI) technologies have been widely applied in the

ATC domain (Lin, 2015; Srinivasamurthy et al., 2017; Yang

et al., 2019). To alleviate the workload of ATCOs, the European

Union (EU) has introduced Automatic Speech Recognition (ASR)

technology into ATC to reduce their workload (Helmke et al.,

2016) and enhance work efficiency (Helmke et al., 2017). Projects

funded by Horizon 2020 have also constructed ATCO decision

support systems using AI technology to alleviate the workload

of ATCOs (Kleinert et al., 2017). These research endeavors aim

to assist controllers with intelligent systems to reduce error

rates and alleviate workload. Furthermore, enhancing the quality

of ATCO training is another approach to reducing potential

human errors (Yiu et al., 2021). Some scholars have explored

the use of intelligent systems to improve the training efficiency

and professionalism of ATCOs, fundamentally reducing human

errors. For example, Hoekstra and Ellerbroek (2016) developed

an ATC simulator called “BlueSky,” which significantly advanced

research in air traffic management (ATM) despite its lower level

of intelligence. Lin et al. (2021) proposed an AI-based pilot

framework for ATCO training, capable of replacing the pilot seat

with relatively high confidence. This framework covers several

FIGURE 1

ATCOs training process.

core technologies, including speech recognition, Controlling

Instruction Understanding (CIU), Information Extraction (IE),

Pilot Repetition Generation (PRG), Text-to-Speech (TTS), and

human-computer interaction technology, as illustrated in Figure 2.

Zuluaga-Gomez et al. integrated various state-of-the-art AI-based

tools to build an automatic captain system, expediting the training

process for air traffic controllers (ATCo) (Zuluaga-Gomez et al.,

2023). However, the above research primarily focuses on the

entire pilot system, with limited in-depth research on the PRG

module. Building upon the aforementioned research efforts, this

paper delves deeper into the task of PRG and presents novel

advancements.

In Figure 1, Area Control Centers (ACC) are responsible for

managing the airspace within a designated region, coordinating

aircraft flights, and ensuring the orderly flow of air traffic and

the tower primarily oversees the Terminal Control Area (TMA),

which encompasses the airspace including airports and their

surrounding regions. Due to the differences in the scope of

controlled airspace, there are significant variations in the content of

control instructions, leading to disparities in the data distributions

between the two.

The focus of this study is on the PRG, which belongs to the

field of Natural Language Processing (NLP) and falls under the

task of Natural Language Generation (NLG). We achieved PRG

by fine-tuning pre-trained language models based on Transformer

and Seq2Seq architectures. Furthermore, we employed the policy

gradient algorithm from reinforcement learning to further optimize

the model and overcome the issue of poor generalization in

transfer learning. The innovations of this paper are as follows:

(1) Addressing the characteristics of pilot repetition generation

tasks, we transformed the human-machine dialogue problem into

a text summarization problem, providing a new perspective for

related research. (2) By utilizing transfer learning strategies, we

overcame the limitations of insufficient training data in this

field, caused by the difficulty of data collection. (3) We used
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FIGURE 2

Core technologies of automatic pilot seat.

the policy gradient algorithm to optimize the cross-entropy loss

function, overcoming the exposure bias issue associated with using

cross-entropy loss in text generation tasks and enhancing the

generalization of the transfer learning model. (4) We constructed a

control instruction text dictionary based on the structural features

of control instruction texts. This dictionary enables fine-grained

tokenization of control instruction texts, facilitating subsequent

metric evaluations. In addition, based on control instruction

tokenization, we introduced a keyword-based evaluation to

assess the quality of generated pilot repetitions. The introduced

keyword evaluation metrics provide an intuitive reflection of the

model’s performance.

2. Related work

The general characteristics of PRG are as follows: (1) The

length of the repetition instructions is generally shorter than

that of the control instructions, and for mandatory control

instructions, the repetition instructions should be consistent with

the meaning of the control instructions. (2) There are fewer

instances of ongoing dialogues (similar to single-turn dialogues

in human-machine conversations). Based on these characteristics,

PRG can be transformed from a human-machine dialogue

task to a text summarization task for processing. Currently,

text summarization techniques can be classified into extractive

summarization and abstractive summarization based on the

summarization method (Nazari and Mahdavi, 2019). Extractive

summarization extracts keywords based on their importance and

forms a summary. However, it only considers the word frequency

and does not take into account the semantic information of

sentences, resulting in poor coherence of the generated sentences.

On the other hand, abstractive summarization summarizes the

essential information of sentences through paraphrasing and

synonym replacement. Compared to extractive summarization,

abstractive summarization has better representation ability and can

understand the contextual semantics of sentences. In the task of

automatic text summarization, since both the input and output

are text sequences, the model needs to pay more attention to

the relationship between the semantic information of generated

sentences and the coherence of sentences (Liu et al., 2021).

Over the years, the development of automatic text

summarization has been slow due to the limitations of statistical-

based methods in text representation, understanding, and

generation capabilities (Zhang et al., 2019). Recently, with

the continuous improvement of neural network theory and

technology, deep learning has emerged as one of the most

promising approaches and has achieved state-of-the-art results in

many tasks (de Souza et al., 2018; Luo et al., 2019; Mane et al., 2020;

Miao et al., 2020). Among them, the introduction of automatic text

summarization models based on the encoder-decoder architecture

has brought new advancements to deep learning-based automatic

text summarization (Zhang et al., 2022b). In the current context,

with the advancement of sequence-to-sequence frameworks,

generative models tend to outperform extractive models (Alexandr

et al., 2021).

Most of the research on generative summarization focuses

on the encoder-decoder structure of sequence-to-sequence

models, addressing various issues in the summarization process

by incorporating attention mechanisms, pointer-generator

mechanisms, coverage mechanisms, or replacing recurrent neural

networks (RNNs) with convolutional neural networks. Rush et al.

(2015) were the first to use attention mechanisms on the seq2seq

model to address headline generation. To further improve model

performance, Nallapati et al. proposed the pointer generator

model (Nallapati et al., 2016b), which successfully handles out-

of-vocabulary (OOV) words due to limited vocabulary. This

model was later improved with the use of coverage mechanisms

(See et al., 2017). Since the encoder and decoder in the Seq2Seq

architecture are implemented using convolutional neural networks

or RNNs, their feature extraction capabilities are not as powerful

as the Transformer model. The emergence of the Transformer

model based on self-attention architecture has ushered in a new

era in NLP, ensuring that models can learn deeper language
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logic and semantic information of words. Examples of such

models include BERT (Devlin et al., 2018), GPT-2 (Radford et al.,

2019), Bart, and Roberta. BERT predicts words based on their

contextual information, while GPT-2 predicts words based on the

preceding context. Therefore, BERT is suitable for natural language

understanding (NLU) tasks, while GPT-2 is more suitable for NLG

tasks. Inspired by BERT and GPT-2, the Bart model combines

the strengths of both, making it more suitable for text generation

scenarios compared to BERT and achieving better results than

GPT-2 (Lewis et al., 2019). The RoBERTa model (Liu et al., 2019),

compared to BERT, GPT-2, and Bart, has advantages in terms

of pre-training methods, deeper network structure, larger batch

size, and unmasked training, especially for text summarization

tasks. These advantages enable RoBERTa to better understand

semantics, capture language features, and generate more accurate

and coherent text summaries. The proposed deep reinforcement

learning model in this paper is based on RoBERTa.

3. Challenges in PRG and our work

3.1. Challenges in PRG

(1) With the increase in the number of parameters in deep

learning models, training high-performance models in supervised

learning requires a large amount of data. In the field of ATC, data

acquisition is extremely challenging due to the confidentiality of

the data. Additionally, the obtained raw ATC voice data needs

to be professionally annotated, which incurs high annotation

costs. These factors pose significant challenges to the application

and development of deep learning techniques in this domain.

(2) Current NLG models often suffer from poor generalization,

and this issue becomes more pronounced in the case of small

datasets. Improving model generalization is a challenging task

that requires extensive research. (3) Since control instructions are

composed of a series of keywords (Pan et al., 2023), evaluating

the generated pilot repetition instructions using ROUGE-N and

ROUGE-L standards requires the segmentation of the control

instructions. This necessitates the construction of a dictionary,

adding extra workload. Furthermore, the specific nature of pilot

repetition instructions limits the effectiveness of using ROUGE-N

and ROUGE-L for evaluating the quality of generated instructions.

Therefore, a new evaluation metric is needed to assess the quality of

generated pilot repetition instructions.

3.2. Our work

We have conducted in-depth research on text generation.

We found that NLG involves three major tasks: neural machine

translation (NMT), text summarization, and dialogue response

generation (Nallapati et al., 2016a). These tasks share the common

characteristic of having text sequences as inputs and outputs,

but they also have differences. The difference between text

summarization and machine translation lies in the fact that

generated summaries are typically very short and not influenced

by the length of the source text, while the generated summary and

the source text need to be semantically consistent (Zhou, 2012).

Furthermore, text summarization involves compressing the source

text in a lossy manner while retaining key information, which

contradicts the lossless requirement of machine translation (Hastie,

2012). The difference between dialogue response generation and

text summarization is that the generated text in dialogue response

has logical coherence with its preceding and following context.

Currently, there is no unified evaluation criterion for the quality

of dialogue generation results (Song et al., 2019). PRG is a special

NLG task that belongs to both dialogue response generation and

text generation tasks. For certain inquiry instructions (such as

“please respond when received"), the nature of their repetition

belongs to dialogue, with logical relationships between the

preceding and following text. However, most control instructions

are mandatory instructions, and the nature of their repetition

belongs to text summarization, where the meaning should remain

consistent throughout.

Based on the analysis of PRG tasks mentioned above, we

have adopted the following strategies from the perspective of

text summarization to address the challenges faced by repetition

generation. For challenge one, we use transfer learning by

pretraining the model on other domain data and fine-tuning it

on the target domain to achieve the generation of repetition

instructions. For challenge two, we employ the policy gradient

algorithm from reinforcement learning to optimize the cross-

entropy loss in the pre-trained model. The cross-entropy loss relies

on target labels in the training data for parameter optimization.

This leads to a significant decrease in model performance when

applying the fine-tuned model to similar datasets due to differences

in the training label distribution. The core of the policy gradient

algorithm is to optimize the parameters of the policy network by

evaluating the quality of generated summaries. This allows the

model to learn how to generate high-quality summaries rather

than generating text summaries similar to the training sample

labels, greatly improving the generalization performance of the

transfer learning model. Additionally, we compare the effects of

fine-tuning current mainstream pre-trainedmodels to demonstrate

the effectiveness of our proposed model. For challenge three, to

enable a detailed evaluation of model performance and facilitate

model improvement, we use a new evaluation criterion to assess the

quality of generated repetition instructions. This criterion provides

a more accurate reflection of the model’s performance compared

to the ROUGE evaluation criterion. Furthermore, we construct a

control instruction text dictionary based on the control instruction

text dataset. Using the Jieba word segmentation tool, we split

the generated instruction text based on coarse-grained and fine-

grained information, allowing the calculation of various metrics

using computer programs.

4. Methodology

4.1. Proposed framework

Deep Reinforcement Learning (DRL) is a method that

combines deep learning and reinforcement learning to solve

decision-making problems with high-dimensional state and action

spaces. It uses deep neural networks (DNNs) as function

approximators to learn value functions or policy functions,
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enabling end-to-end learning from raw input to action selection.

In text summarization tasks, DRL can be used to train models to

generate high-quality summaries (Keneshloo et al., 2019; Sun et al.,

2021). The application of DRL in text summarization generally

follows the basic framework of reinforcement learning. In this

framework, an agent learns the optimal policy by interacting

with the environment. In this case, the environment consists

of the original text and the generated summary, and the agent

observes the current text state and selects actions to generate

the next word. The reward function provides rewards to the

agent based on the quality evaluation of the generated text, with

higher rewards indicating higher-quality summaries. The key to

applying DRL in text summarization lies in designing appropriate

state representations, action spaces, reward functions, and policy

networks. State representation refers to transforming the original

text into continuous vector representations using word embeddings

or encoder networks to capture the semantic and contextual

information of the text. The action space defines the operations that

the agent can choose, typically selecting the next word to generate

from a vocabulary. The reward function is used to evaluate the

quality of the generated summary. Language model-based metrics

such as ROUGE evaluation can be used as the reward function

to measure the similarity between the generated summary and

the reference summary. The policy network is a DNN that selects

actions to generate the next word based on the current state. RNNs

or attention mechanisms can be used to capture the context of

the text and make sequential word decisions. By applying DRL to

text summarization, the model can learn to generate high-quality

summaries through interactions with the environment. During the

training process, the agent optimizes the parameters of the policy

network to maximize the cumulative reward while generating

summaries. This approach allows for end-to-end training on large-

scale datasets without the need for manual annotations, leveraging

deep learning techniques to extract features from raw input and

generate more accurate and fluent summaries.

In our proposed RoBERTa-RL model, we use Word Piece

embedding as the state representation of the environment. We

use ROUGE-1 as the reward function and RoBERTa as the

policy network. The action generation policy is implemented

using Beam Search, and parameter updates are performed using

the policy gradient algorithm. The architecture of our proposed

deep reinforcement learning model, RoBERTa-RL, is illustrated in

Figure 3.

4.2. Training process of RoBERTa-RL

Figure 3 provides a detailed description of the training process

of the proposed DRL model architecture. Let’s assume S =

{x1, x2, ..., xn} represents the original input text, where x1, x2, ..., xn
are input characters. Firstly, S undergoes RoBERTa encoding

to convert it into the state representation of the environment,

denoted as ht . This process is described by Equation (1), where

RoBERTaembedding() represents the encoding function:

ht = RoBERTaembedding (S) (1)

FIGURE 3

The proposed DRL architecture.

The policy network generates the output text yt based on the

state representation ht of the input environment and the action

policy Beam search. The specific process is described by Equation

(2), where Beamsearch() represents the action policy function:

yt = Beamsearch
(

RoBERTa , ht
)

(2)

The ROUGE function calculates the reward value Rt based on

the generated text yt and the reference summary Treference. The

specific formula is described by Equation (3), where ROUGE − 1()

represents the reward function.

Rt = ROUGE− 1
(

yt ,Treference

)

(3)

The cost functionCOST is composed of the weighted sum of the

negative average reward value and the cross-entropy loss, where λ

is the weight. The specific formula is described by Equation (4).

COST = −λ mean (Rt)+ (1− λ) CrossEntorpyLoss
(

yt ,Treference

)

(4)

The policy update is performed using the policy gradient

algorithm, which updates the policy network parameters θ based on

the gradient of the cost function. The specific formula is described

by Equation (5), where α represents the learning rate.

θ = θ − α∇θ (5)

4.3. Evaluation criteria

ROUGE (recall-oriented understudy for gisting evaluation)

measures the quality of summaries by calculating the overlap
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TABLE 1 Calculation results of ROUGE-1, ROUGE-2, and ROUGE-L for the example.

Evaluation metrics Number of n-grams in the
reference instruction

Number of overlapping n-grams between
the repetition and the reference

Result

ROUGE-1 8 4 0.5

ROUGE-2 7 3 0.429

ROUGE-L 8 4 0.5

units (such as n-grams, word sequences, and word pairs) between

the generated summary and the reference summary (Lin and

Och, 2004; Elmadani et al., 2020). This evaluation criterion has

been widely used for evaluating automatic summarization tasks.

ROUGE-1 and ROUGE-2 are used to assess informativeness, while

ROUGE-L is used to assess fluency. N is typically set to 1 or 2.

The ROUGE-1 and ROUGE-2 scores have been shown to be the

most consistent with human judgments. The calculation method

for ROUGE-N is described by Equation (6).

ROUGE− N =

∑

S∈Ref

∑

gramn∈S
Countmatch(gramn)

∑

S∈Ref

∑

gramn∈S
Count(gramn)

(6)

In Equation (6), n represents the length of n-grams, Ref

is the set of reference summaries. Countmatch(gramn) is the

maximum number of n-grams that appear simultaneously in the

generated summary and the corresponding reference summary,

while Count(gramn) is the number of n-grams in the reference

summary. The calculation formula for ROUGE-L is described by

Equations (7–9).

RLCS =
LCS(C, S)

len(S)
(7)

PLCS =
LCS(C, S)

len(C)
(8)

FLCS =
(1+ β2)RLCSPLCS

RLCS + β2PLCS
(9)

In Equations (7-9), RLCS represents recall, PLCS represents

precision, and FLCS denotes the ROUGE-L value. β is a tunable

parameter, and in this paper, it is set to 0.5, indicating that FLCS
gives equal importance to RLCS and PLCS.

Due to the specificity of the ATC domain, repetition must

be completely accurate to be considered a valid repetition

instruction. Pilot repetition instructions require responding to

the control instructions based on ATC rules without losing

any crucial information. According to ATC rules (Drayton and

Coxhead, 2023), ATCO instructions must start with the aircraft

identification (ACID) to specify the communicating aircraft, while

pilot repetitions should end with their ACID to differentiate

them from ATCO instructions. Based on the characteristics of the

generated repetitions mentioned above, using only the ROUGE

evaluation metric cannot comprehensively assess the model’s

performance. For example, in the control instruction dataset, the

controller issues the Chinese control instruction “MU5424, yi jing

xiang Beijing shen qing, xian zan shi bao chi 7500”, and the

reference repetition instruction is “Yi jing xiang Beijing shen qing,

xian zan shi bao chi 7500, MU5424”. After word segmentation,

the tokens are as follows: “Yi jing/xiang/Beijing/shen qing/zan

shi/bao chi/7500/MU5424”. When the model generates the result

“Zan shi/bao chi/7500/MU5424”, evaluating the result using the

ROUGE-N and ROUGE-L evaluation methods yields the results

shown in Table 1. However, from the perspective of repetition

generation rules, this repetition instruction is correct.

From the results in Table 1, it can be seen that although

the ROUGE metrics can to a large extent reflect the quality

of the generated repetition instructions, there are times when

unreasonable situations may arise. Therefore, considering the

characteristics of ATC instructions and the repetition criteria,

we introduce a new evaluation metric specific to this domain,

based on keyword evaluation. The evaluation metrics include

Call Sign Accuracy (CSA), Action Instruction Accuracy (AIA),

and Parameter Accuracy (PA). Finally, the Total Accuracy (TA)

is calculated. Only when an instruction has all three sub-factors

correctly, it can be considered as a correct repetition instruction.

The definitions and calculation formulas of the specific metrics are

as follows: (1) Call sign is composed of the airline abbreviation

and flight number, and its accuracy is calculated using the

following formula.

CSA =
1

N

N
∑

i=1

g(i) (10)

(2) Action instruction refers to the actions contained in the

ATC instruction, such as climb, descend, maintain, etc., and its

accuracy is calculated using the following formula.

AIA =
1

N

N
∑

i=1

q(i) (11)

(3) Parameter refers to the key supplementary information of

the instruction actions in the ATC instruction, including speed,

altitude, heading, waypoints, etc., and its accuracy is calculated

using the following formula.

PA =
1

N

N
∑

i=1

h(i) (12)

In Equations (10–12), N represents the number of samples to

be tested, and g(i), q(i), and h(i) represent the feature functions

of call sign, action instruction, and parameter of the instruction,

respectively. The specific formulas is described by Equation (13).

g(i), q(i), h(i) =

{

1 if predi = truthi

0 otherwise
(13)

(4) TA represents the total accuracy, which is the sentence-level

accuracy. A generated repetition is considered valid and correct
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TABLE 2 Examples of word entries in the dictionary.

Category Example

Airline abbreviations Air China, Eastern, CA, MU, Sichuan, 3U, etc.

Numbers 0 (“dong”), 1 (“yao”), 2 (“liang”), 7 (“guai”), etc.

Altitude 600, 900, 1,200, 1,500, . . ., 13,700

Speed 250 knots, 180 knots, etc.

Heading Direct flight, offset, flying heading, etc.

Waypoint Dawangzhuang, BUBDA, ANDIN, P23, etc.

Proper noun Indicated airspeed, field pressure, planned route,

instrument flight, etc.

only when the call sign, parameters, and action instructions in

the repetition match the ground truth. The specific formulas are

described by Equations (14, 15).

T(i) =

{

1 if g(i) = q(i) = h(i)

0 otherwise
(14)

TA =
1

N

N
∑

i=1

T(i) (15)

In Equation (15), N represents the number of samples to be

tested, T(i) is the feature function for total accuracy.

4.4. ATC Corpus Segmentation Dictionary

To facilitate the ROUGE evaluation and keyword evaluation

of repetition instructions, we built a Chinese Air-Ground

Communication Segmentation Dictionary based on the training

data and reference the regulation “Radio Communication

Phraseology for Air Traffic Services” (MH/T 4014-2003), as well

as the abbreviation standards. We used the Jieba segmentation

tool to construct the dictionary, which includes aviation company

abbreviations, numbers, letters, altitude levels, speeds, headings,

waypoints, proper nouns, and other relevant terms. The dictionary

consists of a total of 14,756 vocabulary entries. A sample analysis

of the vocabulary is presented in Table 2.

5. Experiments and discussions

5.1. Dataset

The experiment consists of two datasets: the area control

dataset and the tower control dataset. The area control dataset

comprises real air-to-ground communication data in actual

ATC scenarios. The tower control dataset, on the other hand,

is generated by computer based on the standards, and its

User Interface (UI) is shown in Figure 4. You can find this

algorithm in this link https://drive.google.com/drive/folders/

1RN6CEhJXcoru6LyZB8u_Y3XBLjyvlQqd?usp=sharing. To

illustrate the distribution of these two datasets, we utilized Term

Frequency-Inverse Document Frequency (TF-IDF) for data

FIGURE 4

UI Interface of the tower control instruction generator.

vectorization and employed Principal Component Analysis (PCA)

for dimensionality reduction to achieve data visualization. The

dataset distributions are depicted in Figure 5.

In Figure 5, the distribution represented by red stars

corresponds to the area control dataset, while the distribution

denoted by blue stars corresponds to the tower control dataset.

It is evident that the tower control dataset encompasses a

significantly different set of instruction types compared to the

area control dataset, which can be used to assess the model’s

generalization capability.

The dataset for training the area control consists of 11,049 pairs,

with 8,949 pairs used for training, 995 pairs for validation, and

1,105 pairs for testing. The tower control dataset, used for transfer

learning generalization evaluation, contains a total of 1,074 pairs.

Table 3 displays some examples from the dataset.

5.2. Experiment configurations

The experiments were conducted on a Windows operating

system. The computer configuration is as follows: Intel Core

i5-8400 processor, 56 GB of RAM, NVIDIA RTX 4090 24 GB

graphics card, 250 GB SSD, and a 3.6 TB HDD. The deep
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FIGURE 5

Distribution of tower control dataset and area control dataset.

TABLE 3 Dataset example table.

Dataset
name

Control instructions Pilot recitation
instructions

Tower Jinxiu 7443, estimated

departure time 10 min.

Estimated departure time is

10 min, Jinxiu 7443.

Hebei 8554, circling and

waiting over JHG.

Circling and waiting over

JHG, Hebei 8554.

Area Shandong 8896, Xiamen,

radar has been identified.

Radar has identified,

Shandong 8896.

Hainan 7064, cancel offset

return route.

Cancel offset return route,

Hainan 7064.

learning framework used was PyTorch. The hyperparameters for

the RoBERTa-RL model are listed in Table 4.

5.3. Ablation experiment

To demonstrate the effectiveness of the adopted strategies, we

conducted ablation experiments for validation, using ROUGE-N

and ROUGE-L as evaluation metrics. The experimental results are

shown in Table 5.

TABLE 4 Hyperparameters for the RoBERTa model.

Hyperparameter Setting

Dropout 0.1

Max sequence length 256

Learning rate 0.0001

Batch size 32

Number of epochs 20

Optimizer Adam

Beamsearch size 3

Weight decay 0.001

λ 0.5

According to Table 5, it can be observed that RoBERTa-

RL(λ = 0), the unimproved RoBERTa model, achieves good

performance on the area control dataset through transfer

learning. However, it performs poorly on the tower control

dataset, indicating a problem of poor generalization when relying

solely on transfer learning. When λ = 0.3, it can be seen

that the model has overcome the issue of poor generalization

and shows further improvement compared to λ = 0. When

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1285831
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Pan et al. 10.3389/fnbot.2023.1285831

TABLE 5 Experimental results based on ROUGE evaluation metrics.

Model Dataset ROUGE-1 ROUGE-2 ROUGE-L

RoBERTa-RL (λ = 0) Area 0.995 0.990 0.994

Tower 0.885 0.704 0.885

RoBERTa-RL (λ = 0.3) Area 0.996 0.991 0.995

Tower 0.980 0.946 0.980

RoBERTa-RL (λ = 0.5) Area 0.996 0.991 0.995

Tower 0.982 0.954 0.982

RoBERTa-RL (λ = 1.0) Area 0 0 0

Tower 0 0 0

The meaning of the bold values is the optimal values achieved by the RoBERTa-RL (λ = 0.5) model across different datasets and metrics.

TABLE 6 Comparative experimental results based on ROUGE evaluation metrics.

Model Dataset ROUGE-1 ROUGE-2 ROUGE-L

GPT2 Area 0.981 0.973 0.981

Tower 0.779 0.61 0.776

BERT Area 0.991 0.984 0.991

Tower 0.846 0.662 0.846

BART Area 0.992 0.987 0.992

Tower 0.910 0.767 0.910

RoBERTa-RL (λ = 0) Area 0.995 0.990 0.994

Tower 0.885 0.704 0.885

RoBERTa-RL (λ = 0.5) Area 0.996 0.991 0.996

Tower 0.982 0.954 0.982

The meaning of the bold values is the optimal values achieved by the RoBERTa-RL (λ = 0.5) model across different datasets and metrics.

λ = 0.5, the model reaches optimal performance. This is

because choosing a reward weight of 0.3 emphasizes the cross-

entropy loss. On the other hand, a reward weight of 0.5

balances the contribution of the cross-entropy loss and the

reward function. This setting can to some extent balance the

quality and grammatical accuracy of the generated instructions,

leading to better performance. Setting the reward weight λ

to 1, without considering the cross-entropy loss, means only

optimizing the similarity between the generated results and the

reference summaries, without considering grammatical accuracy

and the optimization of the generation strategy. This results in

the model disregarding grammar rules and sentence structure

during the generation process, leading to the generation of

unreasonable instructions.

5.4. Contrastive experiments

To perform a comprehensive analysis of the constructed

model’s performance, we adopted a comparative research approach

tailored to the application domain. Specifically, we evaluated the

performance of the constructed model as well as leading pre-

trained models in the field of text generation, namely GPT-2, BERT,

and BART, in the task of repetition instruction generation. Tests

were conducted separately on the area control dataset and the

tower control dataset, with evaluation metrics including ROUGE-

N, ROUGE-L, and keyword evaluation criteria. The experimental

results are presented in Tables 6, 7. Furthermore, to visualize the

improvements made by the model, we compiled statistics on the

length distribution of repetition instructions generated by the

model before and after enhancements on the tower control test

dataset. The visual results are illustrated in Figures 6–8.

From Table 6, it can be observed that all comparative models

performed well on the area control dataset. The proposed

RoBERTa-RL(λ = 0.5) model only slightly outperformed the

comparative models. However, on the tower control dataset, all

comparative models showed poor generalization performance,

while our proposed model’s performance only slightly decreased.

Table 7 provides a detailed display of the performance of each

transfer learning model based on the Keyword Evaluation Metrics.

From Table 7, it is visually evident that the comparative models

performed poorly on the tower control dataset, indicating a

clear issue of poor generalization. Additionally, the GPT-2 model

performed the worst in the task, possibly due to its use of

masked attention mechanism during prediction, which failed

to incorporate useful information from the context. Finally,

our constructed RoBERTa-RL(λ = 0.5) model achieved the best

performance on the tower control dataset, demonstrating that the

proposed improvement strategies greatly alleviate the issue of poor

generalization in transfer learning.
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TABLE 7 Comparative experimental results based on keyword evaluation metrics.

Model Dataset CSA (%) AIA (%) PA (%) TA (%)

GPT2 Area 99.1 98.0 98.5 96.8

Tower 89.3 81.4 24.5 23.3

BERT Area 99.6 98.8 98.8 97.4

Tower 100.0 99.8 25.6 25.6

BART Area 99.2 98.8 98.2 96.8

Tower 99.0 94.1 35.1 34.3

RoBERTa-RL (λ = 0) Area 99.7 98.2 99.4 97.6

Tower 98.7 94.5 25.8 25.8

RoBERTa-RL (λ = 0.5) Area 100.0 99.1 99.5 98.8

Tower 99.7 98.7 82.5 81.8

The meaning of the bold values is the optimal values achieved by the RoBERTa-RL (λ = 0.5) model across different datasets and metrics.

FIGURE 6

RoBERTa-RL (λ = 0) PRG text length distribution.

In Figures 6–8, the horizontal axis represents the string

length of repetition instructions, while the vertical axis denotes

the total count of repetition instructions of varying lengths.

The red curve illustrates the length distribution of repetition

instructions. By comparing Figures 6, 7, we observe that the

mean length of repetition instructions generated by RoBERTa-

RL (λ = 0) is lower than the mean length of reference labels,

indicating a significant omission of words and poor generalization

for this model. However, by comparing Figures 7, 8, we can

see that the RoBERTa-RL (λ = 0.5) model generates repetition

instructions with a length similar to the mean length of reference

labels, effectively mitigating the omission issue and demonstrating

strong generalization.

In addition, we analyzed the reasons behind the model’s strong

generalization capability. Specifically, due to the disparities in data

distribution between the area control dataset and the tower control

dataset, the baseline model fine-tuned on the area control dataset

performed poorly on the tower control dataset. This generalization

issue is a common challenge faced by most fine-tuned models

at the current stage. However, the introduction of reinforcement

learning strategies effectively mitigates this problem. During the

training process, we incorporated a reward and penalty mechanism

to assess the quality of generated results and provide timely

feedback to the model. This mechanism encourages the model

to prioritize the quality of the generated text over similarity to

the target labels, thereby preventing overfitting to the training
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FIGURE 7

Reference label length distribution.

FIGURE 8

RoBERTa-RL (λ=0.5) PRG text length distribution.

data distribution. Furthermore, the introduction of the reward

and penalty mechanism essentially transforms the model into a

multitask learning problem, where one task is to generate repetition

instructions, and the other task is to learn how to generate

high-quality instructions to maximize rewards. As a result, the

model’s generated results exhibit strong performance on datasets
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with different distributions. Finally, setting the weights of both

the reinforcement learning loss and the original cross-entropy

loss to 0.5 ensures that the model does not overly rely on either

aspect during optimization but strikes a balance between the two

objectives, thereby enhancing the overall model performance. In

summary, reinforcement learning strategies are advantageous in

enabling the model to learn deep features of the dataset, allowing

the model to excel on similar yet differently distributed datasets.

This approach is highly effective and can be applied to many similar

problems to improve model generalization capabilities.

6. Conclusions

Our research focuses on addressing the problem of generating

high-quality pilot recitations in the ATC field based on small-scale

training data. To tackle this challenge, we propose a DRL model

that optimizes the cross-entropy loss using the policy gradient

algorithm to overcome exposure bias and poor generalization in

transfer learning. Through a series of experiments, we demonstrate

that our proposed model outperforms the comparison models on

the training dataset andmaintains excellent performance on similar

distribution datasets. To expedite model training, we employ a

pretraining method based on cross-entropy loss and a training

strategy that combines the policy gradient algorithm with cross-

entropy loss. This strategy allows the model to converge faster

and reduces resource consumption. In addition to the commonly

used ROUGE evaluation metric, we introduce a keyword-based

evaluation metric to assess the model’s performance. The results

show that the keyword-based evaluation metric provides a more

accurate reflection of the model’s performance. On the tower

control dataset, our proposed model achieves an overall accuracy

of 81.8%, which is a 56% improvement compared to the pre-

improved model and a 47.5% improvement compared to the other

comparable models.

However, it is essential to consider some potential safety

implications that themodelmay introduce in practical applications.

At the current stage, since the model’s input is limited to textual

information alone, it lacks sufficient contextual information to

assess the reasonableness of the control instructions it receives.

As a result, it cannot generate queries or doubts about control

instructions that could lead to flight conflicts. To facilitate the

deployment of the model in real-world scenarios, it is imperative

that the model, in addition to processing text data, can also

incorporate navigation and monitoring data. In our future work,

we will integrate these multimodal data sources as inputs to the

repetition generation model, enabling it to scrutinize and question

conflicting or unreasonable control instructions, thereby further

mitigating safety risks.
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