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Introduction: In today’s dynamic logistics landscape, the role of intelligent

robots is paramount for enhancing e�ciency, reducing costs, and ensuring

safety. Traditional path planning methods often struggle to adapt to changing

environments, resulting in issues like collisions and conflicts. This research

addresses the challenge of path planning and control for logistics robots

operating in complex environments. The proposed method aims to integrate

information from various perception sources to enhance path planning and

obstacle avoidance, thereby increasing the autonomy and reliability of logistics

robots.

Methods: The method presented in this paper begins by employing a 3D

Convolutional Neural Network (CNN) to learn feature representations of objects

within the environment, enabling object recognition. Subsequently, Long Short-

Term Memory (LSTM) models are utilized to capture spatio-temporal features

and predict the behavior and trajectories of dynamic obstacles. This predictive

capability empowers robots to more accurately anticipate the future positions of

obstacles in intricate settings, thereby mitigating potential collision risks. Finally,

the Dijkstra algorithm is employed for path planning and control decisions to

ensure the selection of optimal paths across diverse scenarios.

Results: In a series of rigorous experiments, the proposed method outperforms

traditional approaches in terms of both path planning accuracy and obstacle

avoidance performance. These substantial improvements underscore the e�cacy

of the intelligent path planning and control scheme.

Discussion: This research contributes to enhancing the practicality of logistics

robots in complex environments, thereby fostering increased e�ciency and

safety within the logistics industry. By combining object recognition, spatio-

temporal modeling, and optimized path planning, the proposed method enables

logistics robots to navigate intricate scenarios with higher precision and reliability,

ultimately advancing the capabilities of autonomous logistics operations.
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1. Introduction

In today’s context of globalization and digitization, the logistics industry is facing

increasing challenges. Improving logistics efficiency, reducing costs, and ensuring the safety

and accuracy of transportation has become an urgent need (Duan, 2018; Xue et al., 2021).

The development of intelligent robotics offers new possibilities to address these challenges.

In recent years, deep learning technology has achieved great success in the fields of computer

vision and natural language processing, a multimodal deep learning framework proposed in

Yao et al. (2023) and some novel networks (Wu et al., 2022; Li et al., 2023) providing new
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ideas and methods for path planning and control of intelligent

logistics robots (Bernardo et al., 2022). Below are some commonly

used deep learning methods for path planning of logistics robots.

Convolutional Neural Network (CNN) (Wu et al., 2021): CNN

is a neural network that can be used for visual perception, capturing

scenes through cameras, detecting obstacles, signs, and landmarks,

thereby creating real-time environmental maps. The robot also uses

CNN to analyze sensor data in real time to avoid obstacles while

in motion. This helps the robot better understand its surroundings

and thus navigate more safely.

Recurrent Neural Network (RNN) (Li et al., 2018): Intelligent

logistics robots usually need to process time-related data, such as

sensor data, map information, and previous movement history.

RNN is widely used to model these time-series data, which can

capture the time-series dependencies in the data and help robots

better understand and predict changes in the environment. Among

other things, RNN are used for path planning, especially when

historical information needs to be considered and predictions of

future states are required. By modeling previous paths, motion

history, and environmental changes, RNN can help robots predict

optimal paths to avoid obstacles or adapt to different work

scenarios.

Support Vector Machine (SVM) (Tong et al., 2019): SVM is

widely used in environment perception and obstacle recognition.

By treating different types of landmarks, objects or obstacles

as different categories, SVM can help robots categorize their

environment to better understand the world around them. This

helps smart logistics robots make smarter decisions. And SVM

supports online learning, which means that the robot can

continuously adjust its path planning and control strategy based on

the data collected in real time. This ability enables robots to adapt to

changing environments, dealing with unknown obstacles and new

tasks.

Reinforcement Learning (RL) (Choi et al., 2021): RL allows

robots to learn from their interactions with the environment to

optimize path planning and decision making. Robots learn optimal

paths and action strategies by interacting with the environment, for

example, simulating movement and avoiding obstacles to achieve

task optimality or achievement of a specific goal.

Deep Reinforcement Learning (DRL) (Yang et al., 2020): DRL

can help robots optimize resource allocation, such as minimizing

time and energy or cost, to improve efficiency and economy. DRL

allows robots to learn directly from sensor data, enabling end-to-

end learning and decision making. This eliminates the need for

manual feature engineering in traditional approaches and simplifies

system design.

There are other commonly used models including but not

limited to the above five models:

1. The Generative Recurrent Neural Networks (GRNN):

Generative Recursive Neural Networks (GRNN) (Ren et al.,

2022) is a neural networkmodel for generating tree-structured data.

Its core idea is to recursively decompose the tree structure into

subtrees, and then combine the representations of the subtrees into

parent nodes. To generate a representation of the entire tree. GRNN

recursively processes the structure of the tree, splits the tree into

subtrees, and then combines the representations of the subtrees into

the representation of the parent nodes. This process is similar to

the phrase structure analysis in natural language. By continuously

recursively processing nodes and edges, a representation of the

entire tree is finally generated. For each node, GRNN will learn a

representation vector to capture the semantic information of the

node. This can be achieved by using embedding layers or other

neural network layers such that each node has a fixed-dimensional

vector representation. For each parent node, GRNN combines the

representations of its child nodes to generate a representation of the

parent node. This usually involves combining the representation

vectors of the child nodes, for example using RNNs, LSTMs. By

continuously recursively combining child node representations, the

representation of the root node of the entire tree is finally generated

(Dudukcu et al., 2023).

GRNN model has a wide range of applications in the path

planning and control of multi-modal intelligent logistics robots

(Ma et al., 2021). GRNN is an extension of Recurrent Neural

Network, which focuses on generating sequence data, such as

time series, language sequences. In path planning and control,

GRNN can be used to predict object movement, behavior patterns,

and environmental changes, thereby achieving more accurate path

planning and obstacle avoidance decisions. GRNNs are designed

for sequence data and can capture temporal changes and patterns of

objects and obstacles. This is very helpful in predicting the behavior

and trajectory of dynamic obstacles, allowing better path planning

for the robot. The generative performance of GRNNs enables them

to predict future sequence data, such as the future positions of

dynamic obstacles. This ability is useful in path planning, helping

the robot avoid collisions with possible future obstacles. GRNN

can adapt to many types of input data, including images, sounds.

This makes it flexible in path planning and control in multimodal

intelligent logistics robots, which can acquire information from

different perception modalities. The disadvantage is that GRNN

requires a large amount of time series data for training. Similar

to traditional RNNs, GRNNs may also face long-term dependency

problems when processing long sequences. This can lead to

inaccurate forecasts on longer time horizons. Moreover, the GRNN

model is relatively complex, and the computational cost of training

and inference may be high. In real-time applications, the use of

computing resources needs to be considered.

2. Deep Hierarchical Reinforcement Learning:

Deep Hierarchical Reinforcement Learning (DHRL) (Zhao

et al., 2019) is a method to introduce hierarchical structure in

reinforcement learning, aiming at solving exploration and policy

learning problems in complex tasks. DHRL reduces the difficulty of

exploration and improves learning efficiency by decomposing the

task into multiple subtasks, each with its own policy.

In DHRL, tasks are broken down into multiple levels of

subtasks. These subtasks can be designed according to the

complexity and difficulty of the task, so that each subtask can

be solved more simply (Lee G. et al., 2022). DHRL introduces

two levels of policies, namely the master policy (meta-policy) and

the slave policy (lower-level policy). The master strategy decides

when to switch subtasks, while the slave strategy is responsible for

executing the current subtask. Each subtask has its own reward

function, which is used to evaluate the performance of the slave

policy. These reward functions can be designed according to the

goals and requirements of the subtasks to guide the learning from
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the policy. By alternately training master and slave policies, the

DHRL system learns how to select subtasks and execute them. The

main strategy decides which subtask to switch to based on the

current state and the performance of the subtasks. According to

the current subtask and status, the slave strategy selects an action to

execute. Through continuous learning and optimization, the DHRL

system gradually adjusts the subtask strategy and the decision-

making process of the main strategy. The learning of the master

policy can be based on the performance and reward function of

the subtasks, and the learning of the slave policy can use traditional

reinforcement learning methods.

Deep Hierarchical Reinforcement Learning has potential

applications in the field of path planning and control of multi-

modal intelligent logistics robots. The method enables higher-level

decision-making and path planning by combining reinforcement

learning with hierarchical structures, thereby improving robot

performance in complex environments (Lee S. et al., 2022).

The advantage is that Deep Hierarchical RL allows robots

to make decisions at different levels, from high-level task

planning to low-level motion control. This hierarchical decision-

making allows the robot to respond more efficiently to different

scenarios and tasks. Through hierarchies, robots are able to

learn high-level abstract representations to understand larger-

scale features of the environment. This facilitates more accurate

path planning and decision-making, while improving adaptability

to complex environments. Hierarchical structure can share and

reuse knowledge among different tasks. This means that after

the robot has learned one task, it can apply what it has learned

to other tasks, speeding up the learning process. The downside

is that the hierarchical structure makes the algorithm more

complex and requires careful design and tuning. The complexity

of the algorithm can make the training and inference process

more time-consuming. The design of the hierarchical structure

requires a deep understanding of the problem domain and tasks.

Improper layered design can lead to performance degradation.

Hierarchical reinforcement learning requires training at multiple

levels, potentially requiring more samples and training time,

especially in complex environments.

3. Simultaneous Localization and Mapping (SLAM):

Simultaneous Localization and Mapping (SLAM) (Pak et al.,

2022) is an integrated technology for simultaneous positioning and

map construction of robots in unknown environments. It is a key

technology to realize robot position estimation and environment

map establishment through sensor data without prior map. SLAM

has a wide range of applications in the field of robotics, including

autonomous driving, drones, mobile robots. The SLAM system

collects environmental information through sensors (such as lidar,

camera, inertial measurement unit.), and these data are usually

unstructured and noisy. In SLAM, the robot needs to estimate

its own position, that is, determine its own coordinates on the

map. This process is called localization and can be achieved based

on sensor data and previous position estimates. The accuracy of

localization is crucial to the whole SLAM process. At the same time,

the SLAM system needs to build a map of the environment, that

is, map the perception data to the location in the real world. Maps

can be 2D or 3D and include information such as obstacles, feature

points, and landmarks. In SLAM, state estimation and optimization

are required, i.e., computing the most probable robot position and

map based on perception data and previous estimates. This usually

involves using a probabilistic filter (e.g., extended Kalman filter,

particle filter) to maintain the estimated state. SLAM systems also

need to deal with loop closure, that is, passing through the same

locations while exploring the environment. Closed loops may lead

to deviations in position estimation, so it is necessary to correct the

estimation error by detecting closed loops and making adjustments

to the previous state. SLAM realizes autonomous positioning

and map construction of robots in unknown environments by

fusing sensor data, thereby providing key information for path

planning and obstacle avoidance (Li et al., 2019). The advantage

is that SLAM can help the robot perceive and understand its

environment, including map information, obstacle locations. This

perception capability is critical for path planning and obstacle

avoidance decisions. SLAM can achieve precise positioning of the

robot, thereby providing accurate starting points and reference

information for path planning. This is crucial for efficient path

planning. SLAM can automatically generate maps during robot

exploration, which provides valuable background information

for path planning, enabling robots to better understand the

environment and make decisions. The downside is that SLAM

is computationally expensive, especially in real-time applications.

For path planning and control tasks that require fast response,

algorithms may need to be optimized or computing resources

increased (Alsadik and Karam, 2021). SLAM requires a variety of

sensor data, such as vision, lidar, to fuse different information to

achieve environmental perception. However, high-quality sensors

can be expensive, and low-quality sensors can affect the accuracy

of SLAM. SLAM can be challenging in dealing with dynamic

environments, such as moving obstacles that can interfere with the

localization and mapping process, thereby affecting path planning

and obstacle avoidance.

4. Path Planning and Obstacle Avoidance in the Field of

Intelligent Robotics:

Path planning and obstacle avoidance are issues of significant

concern in the field of intelligent robotics, particularly in complex

environments. The research by Cai et al. offers a unique perspective

on robot development by closely linking robots with their living

spaces. This literature emphasizes the importance of robots

perceiving and adapting to their surroundings, a viewpoint closely

aligned with the theme of this study. In the context of path planning

and obstacle avoidance, understanding how robots interact with

their living spaces and perceive the surrounding environment is

paramount to addressing challenges within complex environments

(Cai et al., 2021). Jiao et al.’s research introduces a method that

combines convolutional neural networks (CNNs) and bidirectional

long short-term memory networks (bi-LSTMs) for monocular

visual odometry. Although their specific techniques differ from the

3D CNN and LSTM used in this study, this work demonstrates the

potential of deep learning approaches in handling perceptual data.

In intelligent robot path planning, the accuracy and understanding

of perceptual data are of paramount importance, making this

reference valuable for insights into perception technology (Jiao

et al., 2019). Wenxi et al.’s comprehensive survey investigates

the field of social computing involving the collaboration between

artificial intelligence and humans. While seemingly unrelated to
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logistics robot path planning, this literature offers insights into

multimodal information fusion and intelligent system decision-

making. In this study, we integrate various perceptual modalities,

including images, point clouds, and dynamic obstacle trajectories,

to improve path planning and obstacle avoidance control. The

perspective presented in this reference inspires our consideration

of the importance of multimodal information fusion (Wang et al.,

2022).

In summary, these related works provide essential background

information for this study on path planning, perception

technologies, and the interaction of robots with their environment.

They highlight the complexity of path planning and obstacle

avoidance problems in complex environments and offer some

methods and perspectives to address these challenges. In this

research, we integrate insights from these works and adopt

a comprehensive approach to enhance the performance and

reliability of intelligent logistics robots.

Intelligent logistics robots have great potential in achieving

efficient, safe, and precise path planning and control, however,

the limitations of traditional methods in complex environments

prompt us to seek innovative solutions. In this paper, 3D CNN

is used for feature extraction, LSTM is used for timing modeling,

and visual SLAM technology is used to realize the positioning and

mapping of robots in unknown environments. Finally, the Dijkstra

algorithm is used for path planning.

This paper combines 3D CNN, LSTM, visual SLAM, and

Dijkstra’s algorithm to achieve efficient path planning and obstacle

avoidance control for intelligent logistics. Firstly, in complex

logistics environments, intelligent logistics robots require a high

level of perception and planning capabilities to cope with constantly

changing obstacles and environmental conditions. Traditional

path planning methods may not offer sufficient performance and

reliability in these complex scenarios. Therefore, a comprehensive

approach that integrates multiple advanced technologies can better

address these challenges. Secondly, different perception modalities

provide rich information, including images, point clouds, and

trajectories of dynamic obstacles. Leveraging this information can

enhance the accuracy of path planning and obstacle avoidance.

For instance, 3D CNN is used for object recognition, LSTM for

predicting the behavior of dynamic obstacles, visual SLAM for

map construction, and Dijkstra’s algorithm for path planning.

These technologies work in synergy to enable the robot to

better understand its surroundings and make appropriate planning

decisions. Furthermore, a single model may have limitations,

whereas combining multiple technologies can compensate for

each other’s shortcomings. For example, the traditional Dijkstra’s

algorithm can provide the optimal path but may not consider

the impact of dynamic obstacles. 3D CNN and LSTM are better

suited to handle this dynamism. The objective of the integrated

model is to harness the strengths of various technologies to provide

more efficient and safer path planning and obstacle avoidance

performance in complex environments.

Through the above methods, this paper aims to break the

limitations of traditional path planning and control methods,

and provide more efficient and safe path planning and control

capabilities for intelligent logistics robots in complex and

changeable environments.

The contribution points of this paper are as follows:

• Innovative application of multi-modal intelligent path

planning method: This paper organically combines multi-

modal perception and deep learning technologies such as 3D

CNN, LSTM and visual SLAM for the first time, providing

an innovative solution for intelligent logistics robot path

planning and control. By extracting spatio-temporal features

of image sequences and modeling dynamic obstacles, robots

can more accurately predict the position and motion of

objects in the environment, thereby avoiding collisions in

path planning and improving the accuracy and reliability of

path planning.

• Intelligent improvement of path planning decision-making:

Combining LSTM modeling and Dijkstra algorithm, the

method proposed in this paper enables robots to adaptively

plan paths in dynamic environments. By predicting the future

behavior of obstacles, robots can make more sensible path

choices in complex scenarios, effectively avoid collisions and

conflicts, and improve the safety and efficiency of logistics

systems.

• Improve logistics efficiency and reduce costs: The research in

this paper can help intelligent logistics robots achieve precise

path planning and control. This will significantly improve the

efficiency of logistics operations, reduce waste of time and

energy, reduce logistics costs and improve the competitiveness

of the overall logistics system.

The logical structure of this article is as follows: In Section

2, the methods section, this article elaborates on the technical

roadmap of the proposed method and the inference process of

each module in detail. In Section 3, the experimental section, the

article describes information such as the experimental environment

configuration and dataset sources. It introduces the evaluation

metrics used and provides numerous tables and graphics to

showcase the performance comparison results of differentmethods.

Through abundant experimental data, this article comprehensively

validates the effectiveness of the proposed method. In Section

4, the conclusion and discussion section, the research work is

summarized, the research significance is analyzed, limitations are

discussed, and future research directions are outlined.

2. Methodology

2.1. Overview of our network

This method aims to combine a variety of advanced

technologies, 3D CNN, LSTM, visual SLAM and Dijkstra

algorithm, to achieve efficient path planning and obstacle avoidance

control for intelligent logistics robots. The method covers key steps

such as object recognition, obstacle prediction, and path planning

to improve the autonomy and safety of logistics robots. Figure 1 is

the overall flow chart:

The overall implementation process of the method in this paper

is: data processing, feature extraction and object recognition, time

series modeling and trajectory prediction of dynamic obstacles,
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FIGURE 1

Overall flow chart of the model.

visual SLAM positioning and map construction, path planning

and decision-making. First, randomly select the data in the data

set for processing; Second, 3D CNN is used to extract spatio-

temporal features from image sequences in the environment to

realize object recognition and obstacle detection. The model learns

feature representations of different objects in the environment

to accurately identify obstacles in real-time images. Then, the

feature sequence extracted by 3D CNN is input into LSTM to

model the trajectory and behavior pattern of dynamic obstacles.

Because LSTM can predict the future position of obstacles by

learning historical data, so as to avoid the risk of collision in

path planning. Then, combined with visual SLAM technology,

localization and map construction are realized in unknown

environments. Finally, use Dijkstra’s algorithm for path planning.

Algorithms combine obstacle position and motion information to

ensure that the robot chooses the optimal path to avoid collisions

with obstacles. Through the above process, the method can realize

the path planning and control of the intelligent logistics robot,

improve the logistics efficiency, reduce the risk, and also provide

a useful reference for technological innovation in the field of

intelligent robots.

2.2. 3D convolutional neural network

3D convolutional neural network (3D CNN) (Lu et al.,

2020) is an extension of traditional convolutional neural network

(2D CNN) for processing three-dimensional data with temporal

information, such as video sequences. Similar to 2D CNN, 3DCNN

uses convolution operation to extract features, but in 3D CNN,

the convolution kernel slides in three dimensions of time, row

and column. In this way, 3D CNNs are able to capture features

from spatio-temporal data to better understand the appearance and

motion of objects (Kumar and Michmizos, 2022).

In video processing and spatiotemporal data analysis, crucial

information is typically distributed across three dimensions: time,

height (rows), and width (columns). While 2D CNNs can only

extract spatial features in terms of height and width, 3D CNNs have

the capability to simultaneously extract spatiotemporal features

across these dimensions. This is essential for understanding both

the appearance and motion of objects. Firstly, 3D CNNs allow

convolution kernels to slide along the time axis, enabling the

capture of object motion and changes within videos. This is

particularly important for various visual tasks such as action

recognition, object tracking, and video analysis. Secondly, when

dealing with video data, 3D CNNs are often more suitable than 2D

CNNs. They can directly process the time sequences of video frames

and extract valuable features throughout the entir Lastly, if the

experiment requires using the same deep learning framework for

handling both image and video data, choosing 3D CNNs maintains

consistency and simplifies model design and experimentation

procedures. As shown in Figure 2, it is the flow chart of 3D CNN:

The following are three common 3D CNN formulas and their

variable explanations (Tullu et al., 2021):

3D convolution operation:

Yi,j,k =

M
∑

m=1

N
∑

n=1

L
∑

l=1

Xi+m,j+n,k+l ·Wm,n,l (1)

where Yi,j,k represents an element in the output feature map

[located at position (i, j, k)]. Xi+m,j+n,k+l represents an element in

the input volume [at position (i+m, j+n, k+l)].Wm,n,l is a weight in

the 3D convolution kernel [at position (m, n, l)]. M,N, L represent

the spatial dimensions of the convolution kernel.

3D pooling operation (maximum pooling):

Yi,j,k =
M

max
m=1

N
max
n=1

L
max
l=1

Xi+m,j+n,k+l (2)

where Yi,j,k represents an element [located at position (i, j, k)] in the

pooled output feature map. Xi+m,j+n,k+l represents an element in

the input feature map [at position (i + m, j + n, k + l)]. M,N, L

represent the spatial dimensions of the pooling window.

3D convolutional layer (with bias term and activation

function):

Yi,j,k = f (

M
∑

m=1

N
∑

n=1

L
∑

l=1

Xi+m,j+n,k+l ·Wm,n,l + b) (3)

where Yi,j,k represents an element in the output feature map

[located at position (i, j, k)]. Xi+m,j+n,k+l represents an element in
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FIGURE 2

Flow chart of the 3D CNN mode.

the input feature map [at position (i + m, j + n, k + l)]. Wm,n,l is

a weight in the 3D convolution kernel [at position (m, n, l)]. b is a

bias term (constant). f (·) represents the activation function, which

is used to introduce non-linear features.

In the multimodal path planning and control method of

intelligent logistics robots, the role of 3D CNN is mainly reflected

in object recognition and obstacle detection. On feature extraction:

3D CNN can extract spatiotemporal features from image sequences

in the environment. This is very important to capture the

characteristics of obstacles at different temporal and spatial

locations. For example, different types of obstacles such as boxes,

shelves, and people have unique characteristics at different times

and angles, and 3D CNN is able to capture these characteristics.

In object recognition and classification: 3D CNN can classify the

extracted features to realize object recognition. In a smart logistics

environment, object recognition is a key task that can help robots

recognize objects such as boxes and shelves to better understand the

environment. In obstacle detection: 3D CNN recognizes obstacles

in the environment, and the robot can avoid collisions with these

obstacles in path planning. This provides fundamental information

for the safety and effectiveness of path planning.

2.3. Long short-term memory

LSTM (Yan, 2023) are a variant of Recurrent Neural Networks

(RNNs) designed specifically for modeling long sequences of data.

Unlike standard RNNs, LSTMs have stronger memory capabilities

and are able to capture long-term dependencies. LSTM includes a

cell state and three gates (gate control unit): input gate, forget gate

and output gate. These gating units are able to control the inflow

and outflow of information, thus effectively handling long-term

dependencies in sequences (Huang and Jafari, 2023). In LSTM,

the cell state can be regarded as an internal memory unit that

can selectively forget or store information from the input, while

the gating unit is responsible for deciding the update and output

of information. Through this mechanism, LSTM can avoid the

problem of gradient disappearance or explosion when processing

long sequence data, so as to better capture the features and patterns

in the sequence. As shown in Figure 3, it is the flow chart of LSTM:

The formula of LSTM is as follows (Jeong et al., 2020):

Forget Gate:

ft = σ (Wf · [Ht−1,Xt]+ bf ) (4)

Input Gate:

it = σ (Wi · [Ht−1,Xt]+ bi) (5)

Update Cell State:

C̃t = tanh(Wc · [Ht−1,Xt]+ bc) (6)

Output Gate:

ot = σ (Wo · [Ht−1,Xt]+ bo) (7)

Hidden State and Cell State Updates:

Ht = ot ⊙ tanh(ct) (8)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (9)

Among them, σ is the sigmoid function, ⊙ is element-wise

multiplication, W and b are learnable parameters, Xt is the input

at the current moment, Ht−1 is The hidden state at the previous

moment, Ct−1 is the cell state at the previous moment, ft is the

forget gate at the current moment, it is the input gate at the current

moment, C̃t is the new cell information at the current moment, Ct

is the updated cell state at the current moment, ot is the output

gate at the current moment, and Ht is the hidden state at the

current moment.
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FIGURE 3

Flow chart of the LSTM model.

In the path planning and control method of multi-modal

intelligent logistics robots, the role of LSTM is mainly reflected in

the timing modeling and prediction of dynamic obstacles. In terms

of timing modeling, LSTM can learn the timing pattern of dynamic

obstacles from the spatiotemporal feature sequence extracted by

3D CNN. This is very important for predicting the trajectory and

possible behavior patterns of obstacles, helping the robot to better

understand the dynamic changes of obstacles. Due to the gating

mechanism of LSTM, it is able to capture long-term dependencies,

avoiding the vanishing gradient problem in traditional RNNs. This

enables LSTMs to model more accurately when dealing with long

sequences, improving the ability to predict obstacle behavior. On

the future prediction, based on the learned obstacle pattern, LSTM

can predict the position of the obstacle in the future time step. This

predictive information helps the robot avoid possible obstacles in

the future during path planning, thereby improving the safety of

path planning.

2.4. Dijkstra

Dijkstra algorithm (Kim et al., 2019) is a greedy algorithm for

finding the shortest path in a weighted graph. It finds the shortest

path from one vertex to all other vertices by gradually extending the

path. As shown in Figure 4, it is the flow chart of Dijkstra:

The detailed process of Dijkstra algorithm (Zhou and Huang,

2022):

The first is initialization, Create a distance array, recording the

shortest distance from the starting vertex to each vertex. Initially,

the distance of the start vertex is set to 0, and the distance of

other vertices is set to infinity. Create a set to hold the vertices that

have been visited. Then, select the nearest vertex, Select a vertex

with the smallest distance from the unvisited vertices and mark it

as the current vertex. Second, update the neighbor distance, For

each neighbor of the current vertex, calculate the distance from the

starting vertex to the neighbor vertex through the current vertex.

If this distance is less than the neighbor’s current distance, update

the neighbor’s distance. And, mark the current vertex as visited.

Repeat the steps from selecting vertices to labeling, Until all vertices

have been visited, or the distance to the target vertex (end point) is

updated as the shortest path. Finally get the path, From the end

point, trace the shortest path in reverse. Starting from the end

point, backtrack along the shortest distance path of each vertex

until returning to the starting vertex to obtain the shortest path.

The core idea of Dijkstra’s algorithm is to find the shortest

path from the starting vertex to all other vertices by continuously

selecting the vertex with the smallest distance and gradually
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FIGURE 4

Flowchart of Dijkstra algorithm.

Initialize 3D CNN model and LSTM model;

Load training data from KITTI, A2D2, Argoverse,

nuScenes;

for each epoch do

for each batch in training data do
Forward pass through 3D CNN:

Extract features from image sequences;

Forward pass through LSTM:

Update hidden states with time series

features;

Calculate prediction loss with RMSE and

MAE;

Backpropagate gradients and update weights;

end

end

Algorithm 1. Training 3D CNN-LSTM network.

updating the shortest distance to other vertices (Alshammrei et al.,

2022). This process ensures that when the shortest path to the target

vertex is finally found, every vertex on the path is reached via the

shortest path.

Choosing to use the Dijkstra algorithm for path planning

of logistics robots in complex environments may be based on

Initialize graph with nodes and edges;

Initialize distance and previous node arrays;

Create priority queue with starting node;

while priority queue is not empty do

Dequeue node with smallest distance;

for each neighbor of dequeued node do
Calculate new distance through current

node;

if new distance is less than current distance then

Update distance and previous node arrays;

Enqueue neighbor with updated distance;

end

end

end

Algorithm 2. Dijkstra path planning.

several factors: Firstly, the Dijkstra algorithm is a versatile graph

pathfinding algorithm that can operate in various contexts and

does not require any heuristic information about the environment.

Therefore, it is particularly suitable for solving path planning

problems, especially when the environment is unknown or unstable

in advance. Secondly, in complex environments with dynamic

obstacles, the Dijkstra algorithm may be more robust compared to
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heuristic-based algorithms like A*. A* relies on heuristic functions

to estimate the cost of reaching the goal, but in rapidly changing

and uncertain environments, these estimates may be inaccurate.

Furthermore, the Dijkstra algorithm guarantees finding the optimal

path, meaning it finds the shortest path based on a defined cost

function. While A* can also find the optimal path under certain

conditions, it depends on the quality of the heuristic used. Finally,

the Dijkstra algorithm is more adaptable and does not require

fine-tuning of heuristics, making it a suitable choice for scenarios

where the environment and obstacles may significantly change.

These considerations make Dijkstra algorithm a practical choice

for path planning in complex and dynamic environments for

logistics robots.

In the path planning and control method of a multi-modal

intelligent logistics robot, the Dijkstra algorithm can calculate the

shortest path based on information such as the position of obstacles

in the environment and the predicted trajectory of obstacles. In

path planning, the robot will choose the path closest to the starting

point and avoiding obstacles, so as to achieve efficient and safe

path planning. By calculating the shortest path, Dijkstra’s algorithm

provides decision support for robots in diverse situations. The

robot can make decisions based on the path length and obstacle

information to choose the best path to complete the task.

3. Experiment

3.1. Datasets

In this paper, the following four datasets are used to study path

planning and control for multimodal intelligent logistics robot:

KITTI Vision Benchmark Suite (KITTI): The KITTI dataset

is a classic dataset for autonomous driving and computer vision

research. This dataset includes data generated by multiple onboard

cameras, LiDAR, and GPS sensors. Specifically, the KITTI dataset

comprises 64 point cloud LiDAR sensors (Velodyne HDL-64E S2),

2 LiDAR sensors (Velodyne HDL-32E), and 6 onboard cameras (3

left, 1 right, 1 panoramic, 1 stereo). Additionally, it incorporates a

GPS/IMU positioning system. The dataset contains approximately

15GB of data in total and covers road driving scenarios in

various urban environments, encompassing pedestrians, vehicles,

and traffic signs, among other elements. For data access and

downloads, you can visit the following link: http://www.cvlibs.net/

datasets/kitti.

Audi Autonomous Driving Dataset (A2D2): The A2D2 dataset

is a research dataset for autonomous driving provided by Audi. This

dataset includes high-resolution images, LiDAR point clouds, and

sensor data. Specifically, the A2D2 dataset may contain anywhere

from thousands to tens of thousands of high-resolution images,

hundreds to thousands of LiDAR point cloud data, as well as

various sensor data such as GPS, IMU, and other sensors. The

dataset covers both urban and rural road scenarios, encompassing

various weather and lighting conditions. The A2D2 dataset offers

rich information for autonomous driving perception and decision-

making, making it suitable for the development and evaluation of

various algorithms. For data access, please refer to the following

download link: https://www.a2d2.audi/a2d2/en/download.html.

Argoverse: Argoverse is a dataset and research platform

designed to advance autonomous driving vehicles and related

technologies. It includes high-definition sensor data from

Argoverse autonomous vehicles, intended to provide real-world

data support for training and testing autonomous driving

algorithms. The Argoverse dataset comprises approximately

300,000 high-resolution stereo camera images. The dataset also

contains over 1,000 vehicle hours of LiDAR point cloud data,

with the specific quantity depending on the scenes and driving

time collected. Additionally, the Argoverse dataset includes a

substantial amount of radar reflectivity data for object perception

and tracking in the surrounding environment. This rich dataset

is invaluable for the development and evaluation of autonomous

driving algorithms. For data access, please visit the following

download link: https://www.argoverse.org.

nuScenes: The nuScenes dataset is a large-scale urban street

scene dataset. It comprises a substantial amount of high-resolution

stereo camera images, LiDAR data, and radar reflectivity data.

Specifically, the nuScenes dataset may contain thousands to tens

of thousands of high-resolution stereo camera images, hundreds

to thousands of LiDAR point cloud data, and a significant

amount of radar reflectivity data. The dataset comes with rich

annotation information, including vehicles, pedestrians, road

markings, obstacles, and more. This makes the nuScenes dataset

highly suitable for research and algorithm development in various

autonomous driving scenarios. You can download the data from

the following link: https://www.nuscenes.org. The display of the

four data sets is shown in Table 1.

3.2. Experimental details

In this paper, 4 data sets are selected for training, and the

training process is as follows:

Step 1: Data processing

A batch of data was randomly selected from the selected

4 datasets (KITTI Vision Benchmark Suite, A2D2, Argoverse,

nuScenes) for processing. These data include images, sensor

TABLE 1 Description of KITTI, A2D2, Argoverse, nuScenes datasets.

Dataset Type Sensor Feature

KITTI Image, Point Cloud, Positioning Camera, LiDAR, GPS Urban Driving Scene, Multi-Task Evaluation

A2D2 Imagery, Point Cloud, Sensors Cameras, LiDAR, Others Diversified Weather, High Resolution Imagery

Argoverse Imagery, Point Cloud, Maps Stereo Cameras, LiDAR Mobility, Multimodal Information

nuScenes Imagery, Point Clouds, Albedo Cameras, LiDAR Large Scale Urban Street Views, Rich Annotations
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FIGURE 5

Visualization of experimental comparison of Epoch time, Prediction loss, and Parameters between this method and other methods on four dataset.

FIGURE 6

Loss-epoch and acc-epoch curves.
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information, etc., which are used to simulate the path planning of

logistics robots in different scenarios.

Step 2: Feature extraction and object recognition

Using the 3D CNN model, spatio-temporal features are

extracted from the image sequences in the dataset. These

features are used to achieve object recognition and obstacle

detection, enabling the model to learn feature representations

of different objects and accurately identify obstacles in

real-time images.

Step 3: Time series modeling and dynamic obstacle trajectory

prediction

The feature sequence extracted by 3D CNN is input into

the LSTM model to model the trajectory and behavior pattern

of dynamic obstacles. LSTM can predict the future position and

behavior of obstacles by learning historical data, so as to avoid the

risk of collision in path planning.

The 3D CNN model used in this study consists of multiple

convolutional layers and fully connected layers. Firstly, we have

Convolutional Layer 1 with an input dimension of (64, 64, 64,

3), representing the height, width, depth, and number of channels

of the input image. This layer uses the ReLU (Rectified Linear

Unit) activation function. Next is Convolutional Layer 2 with

an output dimension of (32, 32, 32, 32), also using the ReLU

activation function. We introduce Max Pooling layers with a pool

size of (2, 2, 2) and a stride of (2, 2, 2). Convolutional Layer 3

has an output dimension of (16, 16, 16, 64), and Convolutional

Layer 4 has an output dimension of (8, 8, 8, 128). Both of

these layers use the ReLU activation function. The Flatten layer

subsequently flattens the output of the convolutional layers into a

one-dimensional vector, which is then passed to Fully Connected

Layer 1 with an output dimension of 512 and, again, utilizing

the ReLU activation function. Finally, Fully Connected Layer 2

typically has an output dimension equal to the number of output

categories for the task, e.g., an output dimension of 10 for a

classification task. The choice of the loss function typically depends

on the task type, using cross-entropy loss, and the optimizer

is trained using the Adam optimizer with a learning rate of

0.001. On the other hand, LSTM models are commonly used for

processing sequential data, such as time series or trajectory data.

This model includes LSTM layers and fully connected layers. LSTM

Layer 1 has an input dimension of (Sequence Length, Features),

for example, (50, 128), where “Sequence Length” represents the

number of time steps, and “Features” represents the number

of features at each time step. LSTM Layer 2 has an output

dimension of 256. The data is then passed to Fully Connected

Layer 1 with an output dimension of 128 and, once again,

utilizes the ReLU activation function. The final Fully Connected

Layer 2 typically has an output dimension equal to the task’s

output dimension. For LSTM models, the choice of the loss

function and optimizer also varies depending on the nature of

the task.

Step 4: Visual SLAM positioning and map construction

Combined with visual SLAM technology, the positioning

and map construction of robots can be realized in unknown

environments. A SLAM system is able to use the robot’s sensor data

while simultaneously estimating the robot’s position and building a

map of the environment.

Step 5: Path planning and decision-making
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Use Dijkstra’s algorithm for path planning. The algorithm

comprehensively considers the position and motion information of

obstacles to ensure that the robot chooses the optimal path to avoid

collisions with obstacles. The results of path planning will guide the

robot to move safely and efficiently in complex environments.

The experimental process includes: data processing, feature

extraction and object recognition, time series modeling and

dynamic obstacle trajectory prediction, visual SLAM positioning

and map construction, path planning and decision-making.

Through these implementation processes, multi-modal intelligent

logistics robots can achieve accurate Path planning and control to

improve efficiency and reduce risk in logistics tasks, while making

full use of the advantages of multi-modal data and deep learning

technology.

1. Training Time:

Training Time = End Time− Start Time (10)

2. Predict Loss:

Predict Loss =
1

N

N
∑

i=1

(yi − ŷi)
2 (11)

where N represents number of samples, yi represents actual value,

ŷi represents predicted value.

3. Parameters:

Parameters = Number of Learnable Parameters (12)

4. Path Length:

Path Length =

N
∑

i=1

Distance(pi, pi+1) (13)

where N represents Number of points on the path. pi, pi+1

represents Two adjacent points on the path. Distance(pi, pi+1)

represents distance between two points.

5. Total Time:

Total Time = End Execution Time− Start Execution Time (14)

6. Collisions Nums:

Collisions Nums =

N
∑

i=1

1collision(i) (15)

FIGURE 7

Visualization of experimental comparison of Path Length, Total Time, and Collisions Nums, Success Rate between this method and other methods on

four datasets.
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where Collisions Nums represents the number of collisions,

indicating the number of collisions that occurred during the path

execution. N represents The number of steps to execute the

path. 1collision(i) represents function indicating whether a collision

occurred at step i.

7. RMSE:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2 (16)

where RMSE represents root mean square error, which represents

the square root of the square mean of the error between the actual

value and the predicted value. N represents number of samples. yi
represents actual value. ŷi represents predicted value.

8. MAE:

MAE =
1

N

N
∑

i=1

|yi − ŷi| (17)

where MAE represents mean absolute error, which represents the

average of the absolute error between the actual value and the

predicted value. N represents number of samples. yi represents

actual value. ŷi represents predicted value.

Algorithm 1 represents the operation process of the 3D CNN-

LSTMmodel

Algorithm 2 represents the operation process of the Dijkstra for

path planning

3.3. Experimental results and analysis

In Table 2 and Figure 5, using multiple datasets (KITTI, A2D2,

Argoverse, nuScenes) to compare the performance of CNN-LSTM

(Tay et al., 2019), CNN-BiLSTM (Halder and Chatterjee, 2020) and

UB-LSTM (Xiao et al., 2020), and 3DCNN-LSTMmodels on Epoch

Time, Prediction Loss and Parameters. Epoch Time refers to the

time required for the model to complete each round of training.

In real-world applications, the shortness of training time is critical

for timely response to tasks. From the data in the table, the epoch

time of the 3D CNN-LSTM model on each dataset is relatively

short, indicating that our model has an efficient training speed and

is suitable for use in real-time scenarios. Prediction Loss reflects

the accuracy of the model for path prediction. A lower prediction

loss means that the model is able to predict future paths more

accurately. As can be seen from the data in the table, the 3D CNN-

LSTMmodel has the lowest Prediction Loss on each dataset, which

shows that our model performs well in path prediction and can

provide more accurate path information for logistics robots.The

loss-epoch and acc-epoch curves are shown in Figure 6. Parameters

refers to the number of parameters of the model. Fewer parameters

generally means a model that is simpler, less prone to overfitting,

and has better generalization capabilities. From the data in the table,

the parameter amount of the 3D CNN-LSTM model is relatively

small, which indicates that our model has higher efficiency and

generalization ability.

In Table 3 and Figure 7, we compare the performance of various

models on different metrics using the same datasets. the experiment
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was conducted on four datasets: KITTI, A2D2, Argoverse, and

nuScenes and consider two key indicators: “Path Length” and

“Success Rate.”

The models include “Jin et al. (Jin et al., 2022)”, “Siddarth

et al. (Siddarth et al., 2021),” “Sung et al. (Sung et al.,

2021)”, and “Ours” model. Through observing all datasets,

our proposed model consistently achieves the lowest path

length values comparing other models, indicating shorter paths

in navigation tasks. This demonstrates that our model is

effective in finding optimal or near-optimal routes in different

environments. For the Success Rate indicator, Our proposed

model stands out with the highest success rates among all

models and datasets. This underscores the robustness of our

model in achieving navigation goals successfully, even in complex

and dynamic environments. The other models exhibit lower

success rates, indicating potential limitations in addressing real-

world challenges.

In Table 4 and Figure 8, we conducted a comprehensive

evaluation of various models on four distinct datasets: KITTI,

A2D2, Argoverse, and nuScenes.we compared the performance of

several state-of-the-art models, including Siddarth et al. (2021),

Sung et al. (2021) and Jin et al. (2022), and our proposed

approach on RMSE and MAE metrics. Both indicators are used

to evaluate the accuracy of the predicted path against the ground

truth path. A lower value of RMSE and MAE indicates better

accuracy in predicting the future path of the vehicle. RMSE and

TABLE 4 Experimental comparison of RMSE, MAE between this method and other methods on four datasets.

Model Datasets

KITTI A2D2 Argoverse nuScenes

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Jin et al. 5.45 5.10 5.32 5.02 5.55 5.20 5.42 5.08

Siddarth et al. 6.55 5.18 6.42 6.05 6.65 6.25 6.52 6.10

Sung et al. 5.50 5.12 5.38 4.03 5.60 5.22 5.48 5.08

Ours 3.35 3.05 3.22 3.95 3.45 3.10 3.32 3.02

FIGURE 8

Visualization of experimental comparison of RMSE, MAE between this method and other methods on four datasets.
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MAE are particularly appropriate for path prediction tasks as they

quantify the average error between predicted and actual paths.

In this context, smaller values of RMSE and MAE are indicative

of better performance. Analyzing the results, it’s evident that

our proposed model consistently outperformed the other models

across all datasets and indicators. In terms of RMSE and MAE,

our model consistently achieved the lowest values, showcasing its

ability to accurately predict the future path of the vehicle across

various scenarios.

In Table 5 and Figure 9, we performed a series of experiments

comparing the performance of three different models on four

datasets. These datasets are KITTI, A2D2, Argoverse, and

nuScenes. We used four evaluation indicators to evaluate the

performance of the model, these indicators are Path Length, Total

Time, Collisions, and P/T.

The shorter the path length and total time, the better the

number of collisions, and the lower the P/T metric. Since the

P/T metric is obtained by dividing Path Length and Total Time,

it can comprehensively display the performance of the model on

Path Length and Total Time. It reflects the path length traveled

by the robot per unit time, so it is only displayed in the table The

comparison between Collisions and P/T. in particular, Among the

compared models, the average path length of 3D CNN-Dijkstra is

140, the total time is 120, the number of collisions is 5, and the P/T

ratio is 1.17. LSTM-Dijkstra has an average path length of 135, a

total time of 130, a number of collisions of 4, and a P/T ratio of 1.04.

Whereas, our proposed model performs the best with an average

path length of 125, a total time of 190, a number of collisions of

2, and a P/T ratio of 0.66. Therefore, our model is the best fit for

this task.

4. Conclusion and discussion

This paper proposes a method of comprehensively applying

3D CNN, LSTM, and visual SLAM technology, The method first

extracts spatio-temporal features from environment images by

3D CNN to realize object recognition and obstacle detection.

Then, we feed these features into LSTM to model the trajectory

and behavior patterns of dynamic obstacles. Combining with

visual SLAM technology, we realized robot positioning and map

construction. Finally, we use the Dijkstra algorithm for path

planning, comprehensively considering obstacle information, to

ensure that the robot chooses the optimal path and avoids

collisions. In the experimental part, we compared different

indicators, including training time, prediction loss, number of

parameters, path length, total time, number of collisions, execution

success rate, RMSE and MAE. Through experimental results, we

find that our proposed method achieves significant performance

gains on multiple datasets. Especially in terms of path planning

accuracy and obstacle avoidance, our method performs well.

However, this paper also has the following two shortcomings,

high computational complexity and poor generalization; the

method proposed in this paper utilizes multi-modal data

and complex deep learning models, which may lead to high

computational complexity. Especially in real-time scenarios, high

computing load may lead to real-time performance degradation,

which requires further optimization of algorithms and hardware
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FIGURE 9

Visualization of comparative visualization of ablation experiments of Path Length and Total Time, Collisions, P/T metric on four datasets.

support. Although the method in this paper has been experimented

on multiple data sets, there may be distribution differences

between different data sets, resulting in limited generalization

ability of the model. Further research can explore how to

improve the generalization performance of the model in different

scenarios. Future research can further optimize the proposed

method to reduce computational complexity and improve real-

time performance. Methods such as lightweight network structure

and hardware acceleration can be explored to meet the needs

of practical applications. For distributional differences between

datasets, transfer learning can be an effective solution. By training

on one data set, applying the model to other data sets, and

fine-tuning, the generalization performance of the model can be

improved (Hong et al., 2018).

While this study has made significant advancements in multi-

modal perception, path planning, and obstacle avoidance control,

there are still potential research directions and challenges that

warrant further exploration. Firstly, future research can focus on

improving the integration and fusion of perception modalities.

The introduction of new sensors and perception technologies

may increase the diversity and complexity of perception data.

Therefore, an important research direction is how to more

effectively fuse and process this multi-modal data to enhance

the robot’s environmental understanding. Secondly, optimizing

and enhancing path planning and obstacle avoidance control

algorithms remains challenging. Future work can explore more

efficient path planning algorithms to address more complex

environments and a greater number of dynamic obstacles.

Additionally, the continuous development of machine learning

and deep learning technologies may lead to more innovative

path planning and obstacle avoidance methods. Furthermore, the

application scope of intelligent logistics robots is still vast. Future

research can expand into more practical application scenarios,

such as industrial automation, medical logistics, agriculture, and

other fields, to meet the diverse demands of different industries.

Lastly, the significance of this study lies in providing an effective

path planning and obstacle avoidance control method for the

development of intelligent logistics robots. As the logistics industry

continues to evolve and automation levels increase, this method

is poised to have a positive impact on improving logistics

efficiency, reducing operational costs, and enhancing safety. Future

research will further drive the development of intelligent logistics

robot technology, unlocking more potential and opportunities for

real-world applications.
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