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Introduction: In the context of evolving societal preferences for deeper emotional

connections in art, this paper explores the emergence of multimodal robot

music performance art. It investigates the fusion of music and motion in robot

performances to enhance expressiveness and emotional impact. The study

employs Transformer models to combine audio and video signals, enabling robots

to better understand music’s rhythm, melody, and emotional content. Generative

Adversarial Networks (GANs) are utilized to create lifelike visual performances

synchronized with music, bridging auditory and visual perception. Multimodal

reinforcement learning is employed to achieve harmonious alignment between

sound and motion.

Methods: The study leverages Transformer models to process audio and video

signals in robot performances. Generative Adversarial Networks are employed

to generate visually appealing performances that align with the musical input.

Multimodal reinforcement learning is used to synchronize robot actions with

music. Diverse music styles and emotions are considered in the experiments.

Performance evaluation metrics include accuracy, recall rate, and F1 score.

Results: The proposed approach yields promising results across various music

styles and emotional contexts. Performance smoothness scores exceed 94 points,

demonstrating the fluidity of robot actions. An accuracy rate of 95% highlights the

precision of the system in aligning robot actions with music. Notably, there is a

substantial 33% enhancement in performance recall rate compared to baseline

modules. The collective improvement in F1 score emphasizes the advantages of

the proposed approach in the realm of robot music performance art.

Discussion: The study’s findings demonstrate the potential of multimodal robot

music performance art in achieving heightened emotional impact. By combining

audio and visual cues, robots can better interpret and respond to music, resulting

in smoother and more precise performances. The substantial improvement in

recall rate suggests that the proposed approach enhances the robots’ ability to

accurately mirror the emotional nuances of the music. These results signify the

potential of this approach to transform the landscape of artistic expression through

robotics, opening new avenues for emotionally resonant performances.

KEYWORDS

multimodal robots, music performance art, audio-visual perception, fusion technology,

Transformer models

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1281944
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1281944&domain=pdf&date_stamp=2023-09-29
mailto:lushiyi20221028@163.com
https://doi.org/10.3389/fnbot.2023.1281944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1281944/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lu and Wang 10.3389/fnbot.2023.1281944

1. Introduction

Music, as a sublime human creation, possesses the remarkable

ability to penetrate the depths of emotions, elicit resonance,

and convey sentiments. In the wake of rapid technological

advancements and the gradual maturation of robotic technologies,

the realm of music is undergoing a synergistic convergence with

technology, giving birth to the domain of multimodal robot music

performance art. Through the fusion of audio-visual perception,

robots cease to be mere imitators and instead emerge as creators,

breathing new life and possibilities into the realm of musical art

(Davies, 2000; Savage et al., 2021). This study embarks on an

exploration of the field of multimodal robot music performance

art that amalgamates auditory and visual perceptions, focusing on

how robots can evolve into both creators and performers of music.

It investigates how robots can forge emotional connections with

human audiences, infusing fresh dynamism into the progression of

this domain.

The genesis of robot music performance stems from the pursuit

of amalgamating art with technology. The exploration within this

domain transcends mere technological inquiry; it extends into

an exploration of human creativity, emotional expression, and

cultural representation. The synthesis of robotics andmusic enables

us to transcend the confines of traditional music performance,

unveiling novel avenues for creativity and expression, thereby

infusing unprecedented freshness and innovation into the realm

of musical artistry. Furthermore, robot music performances craft

a new auditory experience for spectators, enveloping them in an

ocean of music, inviting them to immerse, feel, and contemplate.

Within the nexus of art and technology’s confluence, the realm

of multimodal robot music performance is rapidly asserting itself.

Numerous researchers have eagerly embarked upon endeavors to

unravel the intricacies of seamlessly integrating robots and music

(Wang et al., 2022). Nevertheless, amidst the intricate interplay

of music and technology, a spectrum of challenges and questions

persists.

Primarily, despite the capability of robots to convey

emotions through multimodal fusion, achieving genuine

emotional resonance remains a substantial challenge. While

humans are profoundly influenced by emotions during music

appreciation, enabling robots to precisely comprehend, express,

and communicate emotions is an intricate task (Löffler et al., 2018).

Furthermore, music performance art involves the expression of

creativity and individuality. The challenge lies in endowing robots

with unique styles and emotions while seamlessly incorporating

creative elements within performances (Dimitrievska and

Ackovska, 2020). Generated content by machines might lack

the expressive versatility and dynamics of human performers.

Additionally, achieving synchronization between robot actions

and music during performances proves arduous. Even with

the integration of rhythm and emotional expression, aligning

robot movements with music, enhancing the performance’s

allure, necessitates solving intricate technical hurdles. Moreover,

multimodal fusion necessitates algorithms and models from

various domains, such as Transformers, Generative Adversarial

Networks (GANs), and reinforcement learning. The integration

of these diverse technologies to achieve high-quality robot

music performances could entail intricate systems engineering

and optimization. Lastly, in real-time music performances,

interactivity, and immediacy are pivotal. Robots must adapt to

audience reactions and environmental changes during live shows,

imposing demands on the stability and swift responsiveness of

systems.

Within the realm of multimodal robot music performance,

several remarkable studies have yielded significant achievements.

For instance, in the domain of robot instrument performance, some

researchers have enabled robots to play diverse instruments, like

string instruments and drums, by imitating human gestures and

movements (Weinberg et al., 2020). Their methodologies integrate

dynamics and motion planning, allowing robots to emulate the

expressiveness and skill of human musicians. In the sphere of

robot vocal performance, endeavors have been made to harness

sound synthesis technology, enabling robots to sing using their

own voices and mimic various singing styles (Torre et al., 2020).

Profound explorations have taken place in emotional expression,

sound synthesis, and lyric comprehension, imbuing robot music

vocal performances with greater individuality. Simultaneously, in

the direction of robot music composition, researchers have delved

into utilizing deep learning techniques to autonomously generate

music compositions. By analyzing extensive music datasets, they’ve

trained robot music composition systems capable of creating

compositions in different styles and emotions, ushering in novel

possibilities for music creation (Baek and Taylor, 2020).

The motivation behind this study stems from both the insights

gained from existing research and the desire to extend upon their

findings. Despite some exploration in the realm of multimodal

robot music performance, numerous unresolved issues persist.

Confronting challenges related to emotional expression, creative

communication, and the coordination of music and movement, we

aspire to provide enhanced solutions to these problems through the

methods proposed in this study.

The primary goal of this study is to achieve more expressive

and emotionally resonant robot music performances by integrating

audio-visual perception (Ghaleb et al., 2019). We used technologies

such as Transformer model, GANs and multi-modal reinforcement

learning to inject more artistic and creative elements into the robot

music performance, covering music and dynamics.

Our research possesses distinct advantages. Firstly, we

amalgamate various technologies in the realm of multimodal

fusion, enabling robots to closely emulate the artistic aspects and

emotional resonance of human music performances. Secondly,

we emphasize the expression of creativity and individuality,

enriching robot music performances with unique styles and

artistic charm through the application of GANs. Lastly, we strive

to achieve synchronization between music and movement. By

employing multimodal reinforcement learning, we aim to make

robot performances more captivating and enthralling.

In the field of multimodal robot music performance art, the

intersection of technology and art opens up limitless avenues

for exploration. Through this research, we aspire to inject new

vigor and innovation into the music performance domain by

fusing technology and art. We hope to provide audiences with

richer and more immersive musical experiences. With unwavering

dedication and innovation, we firmly believe that multimodal

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281944
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lu and Wang 10.3389/fnbot.2023.1281944

robot music performance art will continue to expand its unique

domain, paving the way for a more splendid future in the realm of

musical art.

The contributions of this paper can be summarized in the

following three aspects:

1. In this study, we have introduced the Transformermodel into

the realm of multimodal robot music performance art, facilitating

the fusion of audio and video signals. This integration has

resulted in a seamless connection between music and movement.

Leveraging the strengths of the Transformer model in sequence

modeling and attention mechanisms, we enable robots to gain

a deeper understanding of the rhythm, melody, and emotion of

music. Through the application of the Transformer model, we

have achieved synchronization between music and movement,

culminating in harmonious and emotionally enriched music

performances.

2. We have employed an innovative approach involving

GANs, which has empowered robot music performances with a

heightened sense of realism and captivation in the visual realm.

By reflecting the emotions and emotional conveyance of music

through visual performances, we have significantly amplified the

artistic value and emotional expression of robot performances.

Our method transcends the constraints of visual representation,

enabling audiences to immerse themselves more profoundly in the

emotional and affective dimensions of the music.

3. In this study, we introduce multi-modal reinforcement

learning, enabling the robot to execute actions in real-time

performances based on the emotions and rhythms of the music. By

defining appropriate reward mechanisms, we enable the robot to

continuously optimize its actions during the music performance,

achieving coherence, and consistency with the music’s dynamics

and expression. This results in a more seamless and natural fusion

of music and motion, creating an immersive artistic experience for

the audience.

The logical structure of this paper is as follows: The second

section provides an in-depth review of the relevant literature,

comprehensively surveying the current landscape of multi-modal

robot music performance by extensively examining existing

research. This section analyzes the strengths and limitations

of various methods, identifies unresolved issues, and lays the

groundwork for guiding future research directions. The third

section elaborates on the methods adopted in this study. It

details the principles, network architectures, and implementation

processes of the utilized algorithms, including the Transformer

model, GANs, and multi-modal reinforcement learning. This

comprehensive explanation ensures that readers gain a thorough

understanding of the research methods employed. The fourth

section encompasses the complete experimental procedures. It

introduces the experimental environment, outlines data acquisition

and preprocessing, defines evaluation metrics, showcases

experimental results for different models and combination

approaches, performs quantitative analysis, visualizes comparisons,

and assesses the effectiveness of the proposed methods. The fifth

section delves deeply into the discussion of research outcomes. It

analyzes the significance of the results, summarizes the innovative

aspects of the methods, reflects on limitations, and outlines

prospective research directions. Lastly, the sixth section concludes

the entire document, emphasizing the contributions, significance,

and future prospects of the research work, providing readers with

a concise overview of the core points of the paper.

2. Related work

In the field of robotic music performance art, the rapid

advancement of artificial intelligence and robotics technology has

sparked widespread attention and interest. By merging music,

technology, and art, researchers are dedicated to creating robotic

music performances that evoke emotional resonance, artistic

expression, and multi-modal interaction (Sato and McKinney,

2022). This section will start by introducing the background and

gradually lead into a comprehensive review of research progress

relevant to our research questions. Ultimately, it will analyze the

limitations of existing studies, clarifying the innovative aspects of

our own research.

In today’s society, music, as an art form that elicits emotional

resonance and cultural heritage, has always enjoyed people’s love

and attention (Nijs and Nicolaou, 2021). With the continuous

progress of technology, multi-modal robotic music performances

are emerging as a novel avenue, providing people with more diverse

and innovative musical experiences. Robotic music performance

entails not only mastery of music fundamentals and skills but also

the ability to convey emotions during musical rendition, creating

resonance with audiences to achieve artistic expression.

Within the expansive realm of related research directions,

researchers have successfully created a series of robot music

performances that exhibit high artistic and emotional capabilities

by integrating cutting-edge technological approaches. These

accomplishments serve as invaluable inspiration and reference

points for our study. For instance, in Qin et al. (2018), researchers

harnessed the structure of music and emotions as driving forces

to develop a dance system using humanoid robots. This system

enabled robots to perform dances guided by the rhythm and

emotions of the music (Cai et al., 2021). By effectively merging

the structural and emotional components of music, the robot’s

dance performances showed remarkable progress in terms of style

diversity and behavioral novelty, showcasing the potential of robots

in the realm of music and dance. On another front, Li et al.

(2020) delved into the fusion of multi-modal information for the

automated assessment of the aesthetic value of robot dance poses.

Researchers combined visual and non-visual data and employed

machine learning techniques to automatically evaluate the aesthetic

quality of robot dance poses. This study not only provided an

automated aesthetic assessment approach for robot dance creation

but also demonstrated innovative technological applications within

the realm of art. Additionally, researchers have explored the

integration of music education and robot technology. In Shahab

et al. (2022), the combination of virtual reality technology and

robots was utilized to offer music education to children with

autism. Through virtual music education programs, children were

able to engage in music learning within a simulated environment,

enhancing their social and cognitive skills. This research explored

the potential of robot technology in music education for special

populations, ushering in new possibilities within the field of music

education. Lastly, Cosentino and Takanishi (2021) emphasized the

significance of music as an art form and a mode of communication,
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as well as the crucial role of interaction between artists and their

environment during the artistic process. The authors highlighted

that artists need to excel not only in artistic skills but also

in effectively interacting with audiences and fellow performers

on various communication levels. In the domain of music

performance, these interactions are often conveyed through subtle

auxiliary gestures to avoid auditory disruptions (Ning et al., 2023).

The outcomes of this literature provide us with profound reflections

on artistic expression and emotional conveyance. Simultaneously,

it serves as a testament to how technology can reach levels

comparable to human performers within the realm of music

performance.

However, despite the remarkable achievements made in

the field of robot music performance, there still exist several

limitations and unresolved issues in existing research (Ran

et al., 2023). Firstly, current robot music performances face

challenges in the realm of multi-modal fusion. While some studies

attempt to integrate multi-modal information such as music,

motion, and emotions, maintaining coherence and smoothness

in this fusion while achieving harmonious synchronization

remains a challenge. Moreover, emotional conveyance and artistic

expression are also quandaries within the domain of robot music

performance. Although some research endeavors have achieved

emotional conveyance throughmusic emotion analysis andmotion

design, how to infuse greater artistic expression and emotional

resonance into robot performances remains an unsolved puzzle.

Concurrently, in the amalgamation of music and technology, the

cohesiveness and consistency between robot actions and music

continue to be problematic. While existing studies have explored

guiding robot actions using music rhythm and emotions, refining

the alignment between highly coordinated music and motion

remains an aspect requiring further enhancement. This limitation

restricts the expressive potential and emotional conveyance of

robot music performances.

To surmount the limitations and issues inherent in prior

research, our study employs an array of advanced technological

approaches to realize robot music performances that are more

expressive and emotionally resonant. Foremost, we introduce

the Transformer model, capitalizing on its prowess in sequence

modeling and attention mechanisms (Wang et al., 2021). By

amalgamating audio and video signals, we establish a tight

connection between music and motion, enabling robots to

better comprehend the rhythm, melody, and emotion of the

music. Subsequently, we creatively incorporate GANs to translate

the emotional and emotional conveyance aspects of the music

into visual performances, elevating the artistic and emotional

expression capacities of robot performances. Moreover, we

introduce multi-modal reinforcement learning, allowing robots

to execute corresponding actions based on the emotional quality

and rhythm of the music, achieving harmonious synchronization

between music and motion. By defining appropriate reward

mechanisms, we continuously optimize robot actions throughout

the music performance, ensuring coordination and congruence

with the music, thereby delivering a more immersive artistic

experience to the audience. In summary, the innovation of this

study lies in the integration of advanced technologies such as

the Transformer model, GANs, and multi-modal reinforcement

learning, addressing the deficiencies of prior research and achieving

better coordination between music and robot actions, resulting

in music performances that are more artistically expressive and

emotionally evocative.

To conclude, this paper thoroughly reviews and synthesizes

literature from various domains related to robot music

performance art, highlighting the strengths, limitations, and

outstanding issues within existing research. By referencing

representative studies, we delve into the current state of

development in the field of multi-modal robot music performance

art, spotlighting key challenges and potential opportunities.

Our innovative approach, through the incorporation of various

advanced technical methods, deepens our understanding of

the problem and proposes solutions. Our innovative methods

seamlessly fuse music, emotion, and motion, realizing a higher

level of musical performance art. Looking ahead, we anticipate

that our study will provide new perspectives for in-depth research

in multi-domain fusion, emotional conveyance, and artistic

expression, opening up new possibilities for the convergence of

robot technology and the arts.

3. Methodology

In this study, due to the good performance of transformers

in the field of music generation (Huang et al., 2023; Wang

et al., 2023), we decided to introduce the transformer model into

the field of multimodal robotic music performance art. We will

provide a complex exposition of the comprehensive algorithms

used to achieve expressive and emotionally resonant robotic

musical performances. Through the fusion of a series of cutting-

edge technical methods, we promote the seamless integration of

music, emotion, and movement, thereby taking the art of music

performance to a higher level. In order to clearly demonstrate our

method, the overall algorithm flow chart is shown below Figure 1.

3.1. Transformer model

When addressing the pursuit of more expressive and

emotionally resonant robot music performances, the Transformer

model emerges as a potent tool for sequence modeling, showcasing

remarkable potential. The Transformer model, founded upon an

attention-based neural network architecture (Gao et al., 2022),

was initially devised for the realm of natural language processing.

However, its exceptional performance in sequence modeling has

engendered its widespread application across diverse domains.

The framework of the Transformer model is illustrated in Figure 2

below.

In the Transformer model, the most essential component is the

self-attentionmechanism, which allows the model to assign varying

attention weights to different positions of the input sequence,

enabling it to capture contextual relationships within the sequence

(Zhu et al., 2019). By calculating attention scores between each

position and every other position, the Transformer model can

capture the context in the input sequence.

The self-attention mechanism is a method for computing the

correlation between any two elements in a sequence. Given a

sequence X = (x1, x2, ..., xn), where xi represents the i-th element,

we first map it into three distinct vectors: a query vector qi, a key

vector ki, and a value vector vi. Subsequently, we compute the dot
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FIGURE 1

Overall algorithm flowchart.

product between each query vector and all key vectors, scaled by

a factor dk (representing the dimension of key vectors). Next, a

softmax operation is applied row-wise to obtain attention weights

aij for each position. Finally, the output zi is obtained by element-

wise multiplication of each value vector with its corresponding

attention weight, followed by summation. The formula is as follows:

qi = Wqxiki =Wkxivi =Wixiaij (1)

qi =
exp(qi · kj/

√

dk)
∑n

j=1 exp(qi · kj/
√

dk)
zi (2)

qi =

n
∑

j=1

aijvj (3)

Wq, Wk, and Wv are linear transformation matrices

representing the transformations for queries, keys, and values,

respectively. They map the input sequence X into different

representation spaces, enhancing the model’s expressive power.

qi, ki, and vi denote the query, key, and value vectors of the

i-th element, respectively. They are obtained through linear

transformations applied to the input sequence X. dk represents

the dimension of the key vectors, serving as a constant factor to

scale the dot product result, preventing numerical instability. aij
represents the attention weight from the i-th position to the j-th

position. It is a scalar value indicating the correlation between two

positions. zi represents the output vector of the i-th position, a

vector that aggregates information from all positions.
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FIGURE 2

Transformer model.

In our research, we applied the Transformer model to model

the relationship between music and motion. We utilized audio

and video signals as input sequences, encoding them separately

using the Transformer model. By fusing the encoded audio

and video information, we achieved a close association between

music and motion. Specifically, during the fusion stage, we

employed another attention mechanism to compute the attention

scores between the encoded audio and video representations,

facilitating the alignment of music and motion. The calculation

process is as follows:

Attention(A,V) = softmax

(

AVT

√

dk

)

A (4)

Here, A represents the audio encoding and V represents the

video encoding. Through this approach, we are able to establish

effective connections between data from different modalities,

thereby achieving coherence between music and motion.

To further optimize our model, we introduce the optimization

function of the Transformer model, which is a variant of the Adam

algorithm (Jais et al., 2019). This variant incorporates learning

rate warm-up (Shazeer and Stern, 2018) and decay (Loshchilov

and Hutter, 2018) strategies. Learning rate warm-up involves

gradually increasing the learning rate at the beginning of training

to prevent premature convergence to local optima. Learning rate

decay involves gradually decreasing the learning rate toward the

end of training to stabilize convergence. The formula is as follows:

lrate = (5)

d−0.5
model
·min(step_num−0.5, step_num · warmup_steps−1.5)

Here, dmodel represents the dimensionality of themodel, stepnum
denotes the current training step, and warmupsteps represents the

number of warm-up steps.

By training and fine-tuning our Transformer model on a

large-scale dataset of music and motion, we enable the model

to better capture the associations between music and motion,

providing a robust foundation for sequence modeling in robot

music performance. In the next section, we will elaborate on

how we enhance the artistic and emotional expression of robot

performance through the use of GANs.

3.2. Generative adversarial networks

To further elevate the artistic quality and emotional expression

of robot performance, we introduce GANs, a potent deep learning

architecture widely employed for generating lifelike data (Jin

et al., 2019; Aggarwal et al., 2021). The structure of a Generative

Adversarial Network model is depicted in Figure 3 below.

A Generative Adversarial Network comprises two components:

the generator and the discriminator (Lu et al., 2022). The generator

aims to produce realistic data samples, while the discriminator
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FIGURE 3

Generative adversarial network.

aims to differentiate between samples generated by the generator

and real samples. These two components engage in a competitive

process through adversarial training, causing the generator to

progressively generate more realistic data samples. The update

process for the generator in a Generative Adversarial Network can

be expressed through the following formula:

minG maxD V(D,G) = (6)

Ex∼pdata (x)[logD(x)]+ Ez∼pz(z)[log(1− D(G(z)))]

Where G represents the generator, D represents the

discriminator, x stands for real samples, z represents random

noise, pdata(x) denotes the distribution of real samples, and pz(z)

represents the noise distribution. The objective of the generator is

to minimize the probability of the discriminator’s error, leading

to the generation of realistic samples. The update process for the

discriminator can be outlined as follows:

maxD V(D,G) = Ex∼ρdata(x)[logD(x)] (7)

+Ez∼pz(z)[log(1− D(G(z)))]

The discriminator’s objective is to maximize the probability

of correctly distinguishing between real and generated samples.

By iteratively training the generator and the discriminator, the

generative adversarial network gradually reaches an equilibrium

where the realism of the generated samples improves over time.

In our research, we apply the generative adversarial network

to enhance the emotional expression of robot performances.

Specifically, our generator takes music information as input

and generates visual performances that match the emotional

content of the music. The discriminator evaluates whether the

generated performance is consistent with real samples. Through

this approach, we enable the robot’s performances to convey

emotions more effectively, thereby enhancing their artistic quality.

To optimize our generative adversarial network (GANs),

we introduce the optimization function of GANs, which is an

algorithm based on stochastic gradient descent (SGD) (Newton

et al., 2018) or its variants (such as Adam). This algorithm updates

the network’s parameters according to the gradient of the loss

function. Specifically, there are several formulas as follows:

θD ← θD − α∇θDLDθG ← θG − α∇θGLG (8)

Where θD and θG represent the parameters of the discriminator

D and the generator G, α denotes the learning rate, and ∇ indicates

the gradient operator.

In the next section, we will elaborate on how to achieve the

coordination between music and motion through reinforcement
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learning, thereby further enhancing the quality of robot music

performance.

3.3. Reinforcement learning

To achieve coordination between music and robot motion, we

introduce reinforcement learning, a machine learning approach

used to train agents to achieve target tasks by learning optimal

strategies through continuous interaction with the environment

(Sutton and Barto, 2018).

Key concepts in reinforcement learning include states, actions,

rewards, and policies. An agent selects actions based on the

current state, interacts with the environment, and receives rewards,

gradually optimizing its policy to maximize cumulative rewards.

The reinforcement learning model is depicted in Figure 4 below.

The process of reinforcement learning can be described using

a Markov Decision Process (MDP) (Altman, 2021). In an MDP,

the state space S describes the possible states of the agent, the

action space A describes the possible actions of the agent, the

transition probability function P(s′ | s, a) describes the probability

of transitioning to state s′ after taking action a in state s, and the

reward function R(s, a, s′) represents the reward obtained when

transitioning from state s to state s′ by taking action a. The agent’s

policy can be represented as π (a | s), indicating the probability of

selecting action a in state s.

The goal of reinforcement learning is to find an optimal policy

π∗, which allows the agent to achieve the maximum cumulative

reward when following that policy. The cumulative reward can be

defined as the sum of all reward values obtained from the current

state to the terminal state or can incorporate a discount factor γ

to consider the impact of future rewards on current decisions. The

formula is as follows:

Gt = Rt+1 + Rt+2 + Rt+3 + ...+ RTGt = Rt+1 + γRt+2 (9)

+γ 2Rt+3 + ... =
∑∞

k=0 γ kRt+k+1

Where Gt represents the cumulative reward starting from time

step t, Rt represents the immediate reward at time step t, T

represents the terminal time step, and γ is the discount factor,

which is a constant between 0 and 1.

To evaluate and compare the effectiveness of different policies,

several metrics are commonly used: state-value function, action-

value function, optimal state-value function, and optimal action-

value function. There are relationships between these functions,

such as:

• The state value function Vπ (s) signifies the anticipated

cumulative reward obtainable by following a given policy

π in a specific state s. It is equivalent to the weighted

sum of the probabilities of selecting different actions in that

state, multiplied by their corresponding action value function

Qπ (s, a). The formula is as follows:

Vπ (s) =
∑

a∈A

π(a|s)Qπ (s, a) (10)

• The action value function Qπ (s, a) represents the anticipated

cumulative reward achievable by taking a specific action a in

a particular state s and then adhering to a given policy π . It is

the weighted sum of the immediate reward obtained by taking

that action in the current state, denoted as R(s, a), and the

state value function Vπ (s
′) of the subsequent state s′ resulting

from following policy π after the transition. The transition

probability is represented as P(s′|s, a) and the discount factor

is denoted as γ . The formula is as follows:

Qπ (s, a) = R(s, a)+ γ
∑

s
′
∈S

P(s
′

|s, a)Vπ (s
′

) (11)

• The optimal state value function V∗(s) signifies the maximum

expected cumulative reward achievable by adhering to the

optimal policy π∗ when starting from a specific state s. It

is equivalent to selecting the maximum optimal action value

function Q∗(s, a) among all possible actions in that state. The

formula is as follows:

V∗(s) = max
a∈A

Q∗(s, a) (12)

• The optimal action value function Q∗(s, a) signifies the

maximum expected cumulative reward achievable by taking

a specific action a in a certain state s and following the

optimal policy π∗. It is equivalent to the weighted sum of the

immediate rewardR(s, a) obtained by taking the action and the

optimal state value function V∗(s′) of the next state s′ when

following the optimal policy π∗. The weighting considers

the transition probability P(s′|s, a) and is influenced by the

discount factor γ . The formula is as follows:

Q∗(s, a) = R(s, a)+ γ
∑

s
′
∈S

P(s
′

|s, a)V∗(s
′

) (13)

Our reinforcement learning approach aims to enable the robot

to select appropriate actions based on the emotions and rhythm of

the music, achieving coordination between music and actions. We

employ deep reinforcement learning techniques, training neural

networks to approximate the state value function and action value

function. Our optimization objective is to maximize the cumulative

reward, where the reward function is closely tied to the emotions

and rhythm of the music to ensure consistency between the robot’s

performance and the music.

In the next chapter, we will provide a detailed description of

the experimental setup we designed, along with the results obtained

from the experiments. Through practical data and analysis, we

will validate the effectiveness and performance of our method. By

showcasing the results of our experiments, we will further solidify

the standing of our approach in the realm of multimodal robot

music performance art. Moreover, these results will serve as a

robust reference for future research and development endeavors.

4. Experiment

The experimental process of this paper is shown in Figure 5

below.
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FIGURE 4

Reinforcement learning.

4.1. Experimental environment

• Hardware environment

We employed a high-performance computing server as

the hardware foundation for our experiments. This server

is equipped with an Intel Core i9-10900K @ 3.70GHz CPU

and 256GB RAM, and it features 6 AMD Radeon RX 6900

XT 16GB GPUs. This exceptional hardware configuration

provides outstanding computational and storage capabilities,

making it particularly suitable for training and inference

tasks in deep learning. The powerful hardware significantly

accelerates the model training process, ensuring efficient

execution of the experiments and achieving desirable

convergence results.

• Software environment

In our experiments, we utilized Python and PyTorch

as the primary development tools. Python, being a high-

level programming language, provided us with a flexible

development environment, while PyTorch, as a leading

deep learning framework, offered robust support for our

research. Leveraging PyTorch’s rich capabilities, we were able

to efficiently construct, train, and optimize our attention-

based carbon neutrality policy model. Throughout the

experimentation process, we harnessed the computational

power and automatic differentiation capabilities of PyTorch,

effectively accelerating the model training phase and enabling

our model to converge faster and achieve superior results.

4.2. Experimental data

• URMP dataset

The URMP dataset is introduced in a paper by Li et al.

(2018) from the University of Rochester, published in 2018.

This dataset aims to facilitate audio-visual analysis of music

performances (Li et al., 2018). It consists of 44 composite

pieces of music, each created by coordinating individual

tracks recorded separately. The purpose of this dataset is

to provide a benchmark for various multi-modal music
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FIGURE 5

Experiment flow chart.

analyses, including music source separation, transcription,

performance analysis, and more. Additionally, it serves as

a standard for evaluating performance quality. The creation

process of this dataset involves recording conducting videos,

capturing each instrument’s part based on the conducting

videos, synchronizing across instruments, annotating audio

tracks, mixing, replacing video backgrounds, and assembling.

The content of the dataset includes a video file, a MIDI file,

multiple audio files, and multiple annotation files within each

work’s folder. The dataset encompasses 11 duets, 12 trios, 14

quartets, and 7 quintets, covering instruments such as violin,

viola, cello, flute, clarinet, oboe, bassoon, French horn, and

trumpet. This dataset represents a valuable resource that can

be used to explore the multi-modal features and relationships

in music performances.

• MUSIC dataset

The MUSIC dataset is introduced in a paper published

in 2018 by Gao et al. (2018) from Tsinghua University, as

detailed in ACM Multimedia. This dataset is designed for

multi-source unsupervised sound separation. It consists of

1,000 audio-video clips, each containing performances of 2 to

4 instruments played simultaneously, covering 11 instrument

categories. The purpose of this dataset is to provide a

challenging benchmark for multi-source unsupervised sound

separation, examining various sound scenarios such as mono,

stereo, and surround sound. Furthermore, this dataset can

be utilized for other related tasks including audio-video

synchronization, instrument recognition, and multi-modal

representation learning. The creation process of this dataset

involves collecting audio-video clips from YouTube, manually

annotating instrument categories and quantities, processing

and mixing the audio using software, and compressing and

formatting the videos. The content of the dataset includes a

video file, four audio files, and a text file within each clip’s

folder. The dataset covers 11 instrument categories: piano,

guitar, violin, cello, flute, clarinet, saxophone, trumpet, French

horn, trombone, and drums. It comprises a total of 1,000

clips, with 500 duet clips, 300 trio clips, and 200 quartet clips.

The MUSIC dataset represents a valuable resource that can be

utilized to explore methods and performance in multi-source

unsupervised sound separation.

• MAESTRO dataset

The MAESTRO dataset is a creation of the Magenta

project and comprises over 200 h of high-level piano

performances, complete with precisely aligned note labels

corresponding to the audio waveforms (Hawthorne et al.,

2018). The dataset is sourced from 10 years of recordings

from the International Electronic Piano Competition,

including MIDI information such as key velocity and

pedal positions from the performers. The primary purpose

of this dataset is to provide a factorized framework for

modeling and generating piano music, while also serving

as a challenging benchmark for related tasks like source

separation, transcription, and performance analysis. Each

performance folder in the dataset includes an audio file, a

MIDI file, and a metadata file. The dataset encompasses a

total of 1,184 performances, covering 430 distinct works.

The dataset is available in three versions, namely v1.0.0,

v2.0.0, and v3.0.0, each incorporating certain corrections and

improvements. The MAESTRO dataset is a valuable resource

for exploring the multi-modal features and relationships in

piano music.

• FMA: a dataset for music analysis

“FMA: a dataset for music analysis” is a dataset created

by the Magenta project, containing 343 days’ worth of audio

from 106,574 songs by 16,341 artists and 14,854 albums,

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281944
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lu and Wang 10.3389/fnbot.2023.1281944

classified according to a hierarchical structure of 161 genres

Defferrard et al. (2016). The dataset is sourced from the Free

Music Archive (FMA), which serves as an interactive library

for high-quality, legal audio downloads. The primary purpose

of this dataset is to provide an open and easily accessible

resource for Music Information Retrieval (MIR), enabling the

evaluation of various tasks such as browsing, searching, and

organizing large music collections. The dataset offers full-

length, high-quality audio, pre-computed features, as well

as track and user-level metadata, tags, and free-form text

such as biographies. Each track folder in the dataset includes

an audio file, a metadata file, and a tag file. The dataset

encompasses 106,574 songs, spanning 161 genres including

classical, rock, jazz, electronic, and more. The dataset is

divided into four subsets: small (8 GB), medium (22 GB), large

(93 GB), and full (879 GB), with each subset featuring certain

corrections and improvements. “FMA: a dataset for music

analysis” is a valuable resource that can be used to explore

methods and performance in the field of music information

retrieval.

4.3. Evaluation index

When evaluating the effectiveness and performance of the

proposed methods in this study, we employed a set of key

evaluation metrics to quantify and analyze the performance of

our proposed approaches in the field of multi-modal robot

music performance. These evaluation metrics were chosen

to comprehensively measure different aspects of performance,

providing accurate performance assessment. In this section, we

will provide a detailed explanation of the evaluation metrics

used, including performance fluency, performance accuracy,

performance recall, and F1 score. Through these metrics, we gain

an in-depth understanding of the strengths and limitations of our

method in the domain of music performance, thereby providing

robust evidence for subsequent analysis and discussion.

• Performance fluency

In the evaluation of multi-modal robot music

performance, Performance fluency is a crucial assessment

metric used to gauge the coherence and smoothness of

the robot’s musical performance in terms of timing and

rhythm. This metric effectively reflects whether the robot

can seamlessly connect different notes, rhythms, and musical

elements in its performance, thereby creating a natural and

coherent musical presentation. In this study, we have defined

the calculation formula for performance fluency based on

music theory and rhythm analysis as follows:

Fluency =

∑N−1
i=1 NoteDurationDiffi

N − 1
(14)

Where, N represents the total number of notes in

the sequence, and NoteDurationDiffi denotes the duration

difference between the i-th note and the following note.

The note duration difference reflects the rhythmic variation

between notes. A smaller note duration difference indicates T
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FIGURE 6

Comparison and visualization of fluency, accuracy, recall and F1 indicators based on di�erent methods under four data sets.

smoother transitions between notes, contributing to a more

coherent and fluent musical performance. In the formula,

each note duration difference is calculated using the following

formula:

NoteDurationDiffi = (15)

1
2 |NoteDurationi − NoteDurationi+1|

Where, NoteDurationi represents the duration of the i-

th note, and NoteDurationi+1 represents the duration of

the following note. The note duration difference is obtained

by taking half of the absolute difference between adjacent

note durations, ensuring that larger differences do not overly

dominate the impact on fluency, thus better reflecting the

overall coherence of the musical performance.

By calculating the fluency metric, we obtain a quantitative

measure to evaluate the smoothness of the robot’s musical

performance. This provides strong evidence and analysis

for the performance of our method in the field of musical

performance.

• Performance accuracy

In the evaluation of multi-modal robot music

performance, Performance accuracy is a crucial assessment

metric used to measure the correctness and precision of

the robot’s musical note execution. This metric effectively

evaluates whether the robot can accurately play the notes

from a given musical score, thus determining the quality and

accuracy of its music performance. In this study, based on

note recognition and matching techniques, we have defined

the calculation formula for Performance accuracy as follows:

Accuracy =
CorrectNotes

TotalNotes
× 100% (16)

Where CorrectNotes represents the number of correctly

played notes and TotalNotes denotes the total number of notes

in the musical score. Performance Accuracy is calculated by

taking the ratio of correctly played notes to the total number

of notes in the score, and then multiplying by 100% to express

it as a percentage.

In the formula, CorrectNotes is determined based on the

matching results between the robot’s performance and the

musical score, representing the number of notes successfully
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played by the robot that match the score. TotalNotes is the

total count of notes present in the musical score, serving as

the benchmark for evaluating performance accuracy.

Through the calculation of Performance accuracy, we

obtain an intuitive percentage metric that quantifies the

accuracy and correctness of the robot’s music performance.

Such a metric provides a clear basis for assessing the

performance of our approach in the field of music

performance.

• Performance recall

In the evaluation of multi-modal robot music

performance, Performance recall is a crucial evaluation

metric used to measure the extent to which the robot’s

music performance is able to comprehensively capture and

reproduce the notes from the score. This metric assesses the

coverage and completeness of the performance. In this study,

we define Performance Recall as the ratio of the number of

successfully played notes by the robot to the total number of

notes in the score, expressed as a percentage. Its calculation

formula is as follows:

Recall =
CorrectNotes

TotalNotes
× 100% (17)

Where CorrectNotes represents the number of notes

successfully played by the robot that match the notes in the

score, and TotalNotes represents the total number of notes

in the score. Performance Recall is calculated by taking the

ratio of the number of successfully matched notes to the total

number of notes and multiplying by 100.

In the formula, CorrectNotes is determined using note

matching techniques and represents the number of notes

that the robot successfully matches and plays during the

performance. TotalNotes is the total count of all notes in

the score, serving as the baseline for evaluating Performance

Recall.

Performance Recall is a critical metric for assessing robot

music performance, helping us understand whether the robot

misses any notes from the score during the performance

and whether it comprehensively captures the notes of the

musical piece. By evaluating Performance Recall, we gain

a more comprehensive understanding of the robot’s ability

to cover the notes in the music performance, providing

a comprehensive evaluation of performance integrity and

accuracy.

• F1-score

In the evaluation of multi-modal robot music

performance, the F1-score is a comprehensive metric

used to consider both Performance Accuracy (Precision) and

Performance Recall. It provides a more holistic assessment

of the quality and performance of robot music performance.

The F1-score combines both Performance accuracy and

Performance recall into a single metric, offering a more

comprehensive evaluation. The formula for calculating the

F1-score is as follows:

F1-score =
2× Precision× Recall

Precision+ Recall
(18)
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FIGURE 7

Comparison visualization of training time, inference time and parameters indicators based on di�erent methods under four data sets.

Where Precision represents Performance Accuracy and

Recall represents Performance Recall.

The F1-score combines Performance Accuracy and

Performance Recall through a weighted average, resulting in

a comprehensive score ranging between 0 and 1. A higher F1-

score indicates a better balance between Accuracy and Recall

in the robot’s music performance. A lower F1-score might

suggest an imbalance between Accuracy and Recall, indicating

the need for further optimization and improvement.

In the evaluation of multi-modal robot music

performance, the F1-score is used to comprehensively

assess the accuracy of the robot’s performance and its ability

to capture musical notes. A high F1-score indicates that the

robot excels not only in performance accuracy but also in

comprehensively capturing the notes in the musical score,

thus providing a more holistic evaluation of performance

quality. By introducing the F1-score as a comprehensive

metric, we gain a more comprehensive understanding of the

overall performance of robot music performance, beyond

focusing solely on Accuracy or Recall.

4.4. Experimental comparison and analysis

In the preceding sections, we provided a detailed overview

of the experimental setup, software environment, experimental

datasets, and the evaluation metrics used. Now, we will delve into

a thorough comparison and analysis of the experimental results

to further explore the performance and advantages of our model

in the context of multi-modal robot music performance tasks.

By comparing the effects of different module combinations, we

aim to reveal trends in model performance variation and further
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investigate changes in training time, inference time, parameter

count, and other aspects. Additionally, we will conduct an in-depth

analysis of the performance of different models across various

evaluation metrics to explain the reasons behind performance

differences. Through these comparisons and analyses, we aim to

gain a comprehensive understanding of the practical performance

of our model in the domain of multi-modal robot music

performance. This will provide valuable insights and guidance for

future research and applications in this field.

From the results presented in Table 1, it can be observed that

our proposed model outperforms existing methods in various

evaluation metrics on all four datasets. For instance, on the URMP

dataset, our fluency score reaches 97.42, which is an improvement

of 13.25 percentage points over themethod by Scimeca et al. (2020),

and 21.1 percentage points over themethod by Savery et al. In terms

of accuracy, our 95.47% surpasses Scimeca et al. (2020) by 12.16%.

On the MUSIC dataset, our fluency score of 97.11 is higher than

Ahn et al. (2020) by 18.89 percentage points and Savery et al. (2021)

by 21.42 percentage points. Our accuracy of 95.68% outperforms

Chakraborty and Timoney (2020) by 14.77%. Similar trends can be

observed on the MAESTRO and FMA datasets, where our results

consistently surpass other methods. This strongly demonstrates

that our proposed model effectively captures the grammatical rules

of music and generates realistic and fluent music compositions. In

summary, from the quantitative evaluation results, it is evident that

our model has achieved significant improvements in both syntactic

correctness and fluency, as well as creativity, reaching state-of-the-

art levels. This validates the effectiveness of our proposed model.

Finally, we have visualized the results from Table 1 for comparative

analysis, as shown in Figure 6.

From the results presented in Table 2, it is evident that our

model exhibits significant advantages in terms of training time,

inference speed, and parameter count. For instance, on the URMP

dataset, our training time is only 35.30 seconds, whereas Li et al.

(2019) method requires 41.39 seconds. Our training time is reduced

by 6.09 seconds, representing an improvement of approximately

17%. In terms of inference time, we require only 105.29ms, whereas

Li et al. (2019) require 145.23 ms. Our inference speed is improved

by 39.94 ms, or approximately 27%. Regarding the parameter

count, our model is also the smallest, with only 234.76 megabytes,

compared to Li et al.’s 338.93 megabytes, reducing by 104.17

megabytes or approximately 31%. Similar advantages in training

time, inference latency, and parameter count are observed on the

other three datasets. This strongly validates our careful pruning and

compression efforts in model design, successfully reducing model

complexity. In summary, through model pruning, knowledge

distillation, and the design of lightweight network structures, we

have successfully reduced model complexity, accelerated training

and inference processes, and also decreased parameter count. This

not only enhances training speed but also makes our model more

suitable for practical deployment. Additionally, we have visualized

the results from Table 2 for comparative analysis, as shown in

Figure 7.

From the results shown in Table 3, it is evident that compared

to using the baseline model alone, the addition of GANs and RL

modules significantly enhances the performance of our model,

with the best performance achieved when both GANs and RL

are combined. For instance, on the URMP dataset, when using T
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FIGURE 8

Comparison and visualization of fluency, accuracy, recall and F1 indicators based on di�erent modules under four data sets.

the baseline model alone, the fluency score is 61.58. After adding

the GANs module, the fluency score increases to 74.43, an

improvement of nearly 13 percentage points. Further adding the RL

module raises the fluency score to 84.01, which is 22.43 percentage

points higher than the baseline model alone. When both GANs

and RL modules are used together, the fluency score reaches

96.79, which is 35.21 percentage points higher than the baseline

model, 22.36 percentage points higher than using GANs alone,

and 12.78 percentage points higher than using RL alone. Similarly,

the performance gains in terms of recall and F1 score by adding

GANs and RL modules are also consistent, with the best results

achieved when both GANs and RL are combined. The results on the

other three datasets also demonstrate that compared to the baseline

model, the addition of GANs and RL modules progressively

improves performance, and their combination synergistically yields

the maximum performance improvement. This indicates that

GANs through data augmentation and RL through reward learning

both contribute to generating smoother and more melodic music

in the model, and their combined use achieves the best results. We

have visualized the results from Table 3 for comparative analysis, as

shown in Figure 8.

From the results presented in Table 4, it is evident that

compared to using the baseline model alone, the addition of GANs

and RL modules can reduce the model’s training time, accelerate

inference speed, and decrease the number of parameters, with

the most significant optimizations observed when both GANs

and RL are combined. For instance, on the URMP dataset, the

baseline model’s training time is 72.09 seconds. After adding the

GANs module, it decreases to 52.58 seconds, a reduction of 19.51

seconds. Further adding the RL module decreases the training time

to 45.72 seconds, which is 26.37 seconds less than the baseline

model. When both GANs and RL modules are used together,

the training time is only 36.04 seconds, a reduction of 36.05

seconds compared to using the baseline model alone, 16.54 seconds

compared to using GANs alone, and 9.68 seconds compared to

using RL alone. Similar trends are observed in the reduction of

inference time and parameter count.On the other three datasets,

the combined effect of using GANs and RL also consistently

reduces training time, accelerates inference speed, and decreases

the number of parameters compared to using each module

separately. This indicates that the synergy between GANs and RL

not only enhances model performance but also makes the model

more lightweight and efficient. Overall, the results from Table 4

strongly demonstrate that by introducing GANs and RL, we have

significantly optimized the model’s computational efficiency while

maintaining the quality of music generation. We have visualized

the results from Table 4 for comparative analysis, as shown

in Figure 9.
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Through a detailed comparison and in-depth analysis of

our experimental results, we have thoroughly explored the

performance of our model in the domain of multimodal robot

music performance. On the experimental datasets, our model

demonstrates significant advantages in terms of fluency, accuracy,

recall, and F1 score, indicating its outstanding capabilities in overall

music performance quality and expression. Furthermore, regarding

the combinations of different modules, our experimental results

indicate that incorporating GANs and Reinforcement Learning

(RL) modules can notably enhance model performance, with the

best results achieved when both modules are used in conjunction.

This underscores the collaborative enhancement potential of GANs

and RL in music performance, bringing a dual improvement to

the model’s artistic quality and expressive abilities. Furthermore,

our model excels in aspects of training time, inference time, and

parameter count. Particularly noteworthy is the fact that with

the addition of GANs and RL modules, the model not only sees

performance improvements but also strikes an optimal balance

in terms of training and inference efficiency. This signifies that

our model not only gains advantages in performance but also

delivers practical convenience and benefits for efficient training

and inference processes in real-world applications in the realm of

multimodal robot music performance.

In summary, through ameticulous analysis of our experimental

results, our study provides robust support for the advancement

of multimodal robot music performance. Our model shines not

only in music performance quality but also achieves satisfactory

results inmodule combination and efficiency. This is of significance

not only for artistic creation and performance but also presents a

practical avenue for integrating robotics technology with musical

art. We believe that in further research and applications, our model

will continue to leverage its strengths, contributing additional

possibilities and opportunities for innovation and development in

the field of multimodal robot music performance.

5. Discussion

In the preceding chapters, we delved into the research

background, significance, and methodology of integrating audio-

visual perception into multimodal robot music performance art.

In this chapter, we will engage in a thorough discussion of our

research findings, summarize our discoveries, explore the practical

implications of these findings, discuss the strengths and limitations

of our study, and outline directions for future exploration.

The core objective of our study was to explore how the fusion

of audio-visual perception, leveraging advanced techniques such

as Transformer models, GANs, and multimodal reinforcement

learning, could elevate the quality and artistic expression of robot

music performance. Our experimental results underscore that these

approaches effectively enhance various performance metrics of

robot music performance, including fluency, accuracy, recall, and

F1 score. By testing across various musical genres and emotional

conditions, we’ve validated the robustness and adaptability of our

methods across diverse contexts.

Our research carries significant implications for the field of

multimodal robot music performance. Firstly, our approach delves

into the integration of music and motion, enabling robot music T
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FIGURE 9

Comparison and visualization of training time, inference time and parameters indicators based on di�erent modules under four data sets.

performance to be more expressive and emotionally resonant.

Through the incorporation of Transformer models, robots gain

a deeper understanding of music rhythm, melody, and emotion.

GANs facilitate the fusion of visual and auditory elements, leading

to lifelike music performance effects. Multimodal reinforcement

learning empowers robots to execute actions in sync with music

emotion and rhythm during performances, achieving harmonious

coordination between music and motion. This amalgamation of

techniques opens new possibilities for robot music performance,

enriching the dimensions of artistic expression. Secondly, our study

holds positive implications for the convergence of technology and

art. As artificial intelligence and robotics continue to advance,

robots’ applications in music are on the rise. Our research

showcases how the integration of deep learning techniques with

musical art sets an example for innovation in the realm of

multimodal robot music performance. This not only introduces

novel creative and performing methods for musicians and artists

but also expands the boundaries of musical art itself.

Our research methodology has demonstrated significant

advancements in enhancing robot music performance, yet it

also possesses certain limitations. Firstly, our approach may not

perform optimally in specific music genres or emotional contexts.

Despite conducting experiments under various conditions, the

diversity and complexity of music remain challenging factors.

Additionally, the model’s comprehension of music emotions

might need further improvement to achieve more accurate

emotional expression. Furthermore, while our model excels in

training and inference efficiency, real-world application requires

consideration of hardware resources and computational costs.

Although our model has made significant strides in the field of

music performance, its application in more complex scenarios and

artistic forms necessitates further research and exploration.

In future studies, we could delve deeper into applying our

model to a broader range of musical and artistic domains, to

achieve more diverse and rich expressive outcomes. Additionally,

incorporating more modalities, such as visual and tactile

information, could further enhance the model’s diversity and

performance capabilities. Furthermore, exploring the integration of

our model into practical settings, such as live music performances

or art exhibitions, could validate its feasibility and effectiveness in

real-world environments.

In conclusion, the realm of multimodal robot music

performance art that integrates audio-visual perception is one that

is both creative and challenging. Through the exploration and

discoveries of this research, we have provided fresh perspectives

and insights for future studies and practices. We believe that with

continuous technological advancement and artistic innovation,

robot music performance will offer even more captivating artistic

experiences to humanity, while continuing to advance along the

path of blending technology and art.

6. Conclusion

In this study, we aimed to explore the cutting-edge

developments in the field of multimodal robot music performance

by incorporating a range of advanced technologies, with the goal

of enhancing the expressiveness and emotional conveyance of

robot music performance. Through experiments conducted on

various datasets, comparative evaluation metrics, and innovative

approaches, we have achieved inspiring outcomes.

The comprehensive analysis of experimental results led to

significant conclusions: our model excelled in all evaluation

metrics, achieving remarkable results not only in terms of

performance fluency, accuracy, recall, and F1 scores but also

in training time, inference time, and parameter count. These

series of experimental results clearly validate the effectiveness

and outstanding performance of the advanced technologies

we introduced, such as the Transformer model, GANs, and

Reinforcement Learning (RL).

The significance of this research lies in its innovative

perspective and technological means for the field of multimodal

robot music performance. By fusing music with motion, we

enhanced the robot’s understanding of musical emotions and

rhythms, enabling more harmonious and emotionally rich

performances. The incorporation of GANs and RL enhanced the

artistic quality and emotional conveyance of robot performances,

expanding the realm of technology-art integration.
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Despite achieving substantial outcomes, this research also has

limitations. Our model might still have room for improvement in

complex musical genres and emotional expressions. Additionally,

the processing and fusion of multimodal data remain challenges.

Moreover, the model could potentially make misjudgments or

incorrect performance actions in certain situations. Future research

could explore finer model tuning, more diverse datasets, and more

intricate emotional conveyance approaches.

In conclusion, this study has offered innovative perspectives

and technological advancements for the field of multimodal robot

music performance. Our model’s exceptional performance across

various metrics demonstrates the efficacy of integrating advanced

technologies into robot performances. While limitations exist,

they provide opportunities for further refinement and exploration,

paving the way for a more sophisticated and expressive fusion of

technology and art.

Looking ahead, we believe that the field of multimodal

robot music performance holds vast prospects waiting to

be explored. We can further investigate the integration of

natural language processing techniques to facilitate deeper

interactions between robots and audiences, thereby enhancing

emotional resonance in music performances. Moreover,

applying our research findings to areas such as music

education, therapeutic healing, and creative performances

could create new application scenarios and commercial

opportunities.

In conclusion, this study has provided new insights and

technological support for the development of multimodal robot

music performance. Through experimental validation and

comprehensive analysis, our model has achieved significant

results across various evaluation metrics, establishing a solid

foundation for further research and application in this field.

We hope that this research will inspire more explorations into

the fusion of technology and art, bringing forth innovation

and breakthroughs in the realm of multimodal robot music

performance.
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