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A review of rigid point cloud
registration based on deep
learning

Lei Chen*, Changzhou Feng, Yunpeng Ma, Yikai Zhao and

Chaorong Wang

School of Information Engineering, Tianjin University of Commerce, Tianjin, China

With the development of 3D scanning devices, point cloud registration is gradually

being applied in various fields. Traditional point cloud registration methods

face challenges in noise, low overlap, uneven density, and large data scale,

which limits the further application of point cloud registration in actual scenes.

With the above deficiency, point cloud registration methods based on deep

learning technology gradually emerged. This review summarizes the point cloud

registration technology based on deep learning. Firstly, point cloud registration

based on deep learning can be categorized into two types: complete overlap

point cloud registration and partially overlapping point cloud registration. And the

characteristics of the two kinds ofmethods are classified and summarized in detail.

The characteristics of the partially overlapping point cloud registrationmethod are

introduced and compared with the completely overlapping method to provide

further research insight. Secondly, the review delves into network performance

improvement summarizes how to accelerate the point cloud registration method

of deep learning from the hardware and software. Then, this review discusses point

cloud registration applications in various domains. Finally, this review summarizes

and outlooks the current challenges and future research directions of deep

learning-based point cloud registration.

KEYWORDS

point cloud registration, deep learning, partial overlap, network acceleration, neural

networks

1 Introduction

With the rapid development of modern information technology and scanning
equipment, point cloud data (PCD) has become the primary data format to represent the 3D
world. Point cloud has numerous applications in different areas, including robotics (Fioraio
and Konolige, 2011; Pomerleau et al., 2015), biomedical imaging (Min et al., 2018), road and
architectural mapping (Chen et al., 2013), urban modeling (Chen et al., 2020), autonomous
driving (Nagy and Benedek, 2018), and augmented reality (Tâche et al., 2009; Liu et al., 2020).
3D point cloud registration is a crucial and complex issue in point cloud data processing. In
general, point cloud registration takes a pair of unregistered point clouds as input: source
point cloud and target point cloud. The objective of point cloud registration is to determine
a rigid transformation that aligning two point clouds Through registration, we can combine
the point cloud data in the same scene or partial scanning the target data to generate a
complete 3D point cloud.
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Traditional point cloud registration methods such as ICP
(iterative closest point) (Besl and McKay, 1992), NDT (normal
transform) (Biber and Straßer, 2003), 4PCS (4-points congruent)
(Aiger et al., 2008), and Random Sample Consensus (RANSAC)
(Fischler and Bolles, 1981) etc., have found extensive applications
in diverse fields. However, the majority of these methods are
sensitive to noise, outliers, low overlap, and initial pose. The
widespread adoption of deep learning in various domains,
including computer vision, has garnered significant attention
from researchers. Through consulting the current literature on
point cloud registration based on deep learning, this article uses
VOSviewer (A literature visualization analysis software) to do a
visual analysis, and the data comes from the Web of Science
(WOS) database. As shown in Figure 1, the size of each node
represents the frequency of occurrence of the corresponding
evidence in the relevant literature. It can be seen from the figure
that point cloud registration based on deep learning involves many
disciplines such as image segmentation, neural network, etc. Recent
research focuses on feature extraction, attitude estimation, surface
measurement, etc.

This article aims to provide a comprehensive and novel review
of deep learning-based point cloud registration. To the best of
my knowledge, only a few review articles have analyzed and
summarized the point cloud registration of deep learning. Huang
et al. (2021b) divided point cloud registration into homologous
registration and cross-source registration, and discussed traditional
methods and deep learning-based methods. Zhang et al. (2020)
distinguished the popular deep learning-based methods according
to correspondence and non-correspondence and analyzed of the
principles of the various methods. Bello et al. (2020) analyzed and
summarized the existing deep learning-based methods based on
raw point clouds and also introduce the popular 3D point cloud
benchmark datasets.

Compared with previous articles, the main contribution of
this article is as follows: Firstly, the deep learning-based point
cloud registration is divided into complete overlapping point
cloud registration methods and partial overlapping point cloud
registration methods. Complete overlap registration is valuable in
scenarios where the captured point clouds cover the same scene
from different perspectives or at different times. It enables the
generation of a comprehensive and detailed representation of the
scene by merging multiple scans. Incomplete overlap registration is
particularly relevant when dealing with challenging scenarios such
as fragmented or sparse point clouds, occlusions, or when there are
limitations in data acquisition. Partial overlap registration allows
for the integration of different data sources or incomplete scans
to create a more complete and informative representation of the
scene. This article focuses on the advantages and disadvantages
of different methods, the development trend, and data processing
methods. Secondly, the acceleration of registration methods is
introduced in detail from the aspects of software and hardware to
adapt to the increasingly large-scale point cloud data. And then, the
application of point cloud registration based on deep learning in
various areas is also summarized and commented in detail. Finally,
we discuss directions of future research.

The remaining portion of the article is organized as follows:
In Section 2, the basic principles of point cloud registration are
briefly described, and the development of registration methods is

introduced. In Section 3, the point cloud registration technology
for complete overlap is discussed comprehensively. In Section 4,
the state-of-the-art approach to partial overlap is discussed. Section
5 discusses how to accelerate the point cloud registration method
based on deep learning from the hardware and software, so as to
adapt to more and more large-scale point cloud data. In Section
6, the practical application and future directions of point cloud
registration and a number of deep learning in various areas are
summarized and commented. And then section 7 summarizes the
work of this review, discusses the vigorous development of point
cloud registration technology based on the deep learning, and
makes specific prospects for future research. Finally, Section 8 gives
a brief conclusion of the work in this article.

2 Preliminary knowledges

It is often challenging to obtain a complete point cloud of a
target object simultaneously using 3D scanning devices and similar
equipment. It is frequently required to scan frommultiple angles to
get the complete point cloud of the target object. And these point
clouds may not be in the same coordinate system, there is a spatial
rotation and translation relationship.

Given two point clouds: source point cloud X =
{

xi ∈ R3
}

, i =
1, 2, ...,N and target point cloud Y =

{

yj ∈ R3
}

, j = 1, 2, ...,M.
Where,N andM respectively represent the number of points in the
source point cloud and the target point. Point cloud registration
aims to solve the relative transformation from source point cloud
X to target point cloud Y in the coordinate system, including
the rotation matrix R ∈ SO and the translation vector t ∈ R3.
Where, SO is the three-dimensional rotation group. Point cloud
registration can be regarded as the least mean square error problem:

argmin
R,t

1

N

N
∑

i=1

∥

∥Rxi + t − ym
∥

∥

2
(1)

where, ym represents the corresponding point of any point xi ∈ X

in the source point cloud in the target point cloud. Equation (1)
allows R and t to be solved by singular value decomposition (SVD).
However, the corresponding point ym is usually unknown, so before
solving the transformation, the corresponding relationship between
the starting point pairs needs to be established:

m = argmin
j∈{1,...,M}

∥

∥Rxi + t − yj
∥

∥ (2)

From the relationship between Equations (1), (2), we can see
that the solution of Equation (2) depends on the known R and t,
which is precisely the solution objective of Equation (1). Therefore,
the conventional approaches such as ICP assumes initial R = I

and t = 0. First, the nearest neighbor is used in Euclidean space to
establish the correspondence m, then Equation (1) is used to solve
the rigid transformation, and the above two processes are cycled
until convergence. As a result, the method is sensitive to the initial
pose and easily falls into local optimal and is difficult to continue
optimization.

With the aim of enhancing the registration effectiveness of
conventional algorithms, Gold et al. proposed a robust point-
matching method (Gold et al., 1998), using annealing parameters
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FIGURE 1

Visualization analysis of deep learning-based point cloud registration and related fields. The data are from the database of Web of Science.

to determine the minimum distance between points. The issue
of ICP being susceptible to getting trapped in local optima
is mitigated to some extent. Yang et al. (2013) proposed an
iterative nearest point method (Globally Optimal ICP, Go-ICP)
based on ICP. Through the alternate use of the branch definition
method and ICP, the branch definition method is used to find
a better solution when ICP falls into the local optimal, and
obtain the better optimization results. However, this method
improves the registration accuracy, but also significantly increases
the registration time. To improve the running speed of the
method and save the consumption time of Random Sample
Con-sensus (RANSAC) (Fischler and Bolles, 1981), Zhou et al.
(2016) proposed Fast Global Registration (FGR), using iterative
optimization techniques to speed up the iterative process of the
method.

Compared with traditional optimization methods, the
point cloud registration method based on deep learning has
significant advantages. It provides better robustness in dealing
with challenges such as noise, low overlap, and large-scale
data. In addition, it supports automation and end-to-end

learning, eliminating the need for manual parameter tuning
and feature engineering. Deep learning-based approaches can
learn meaningful features directly from raw point cloud data (Li
et al., 2020b; Spezialetti et al., 2020; Marcon et al., 2021), going
beyond the limitations of manual features used in traditional
approaches. In addition, deep learning models have better
generalization capabilities, enabling them to adapt to a variety
of scenarios (Zhao et al., 2019). Overall, deep learning-based
point cloud registration methods provide more accurate, efficient,
and adaptable solutions that drive advances in a variety of
applications.

In conclusion, the above conventional approaches need to
be more robust to solve the local optimal problem, so they
are only suitable for the rough registration process. At the
same time, there needs to be more effective countermeasures
for the partial overlapping point cloud registration. With the
application of deep learning in the field of point cloud registration,
a number of methods have emerged to solve the problem of
low overlap point cloud registration. As shown in Figure 2,
it can be seen that since 2016, the relevant literatures about
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FIGURE 2

Analysis of publications and frequency of citations (Source: Web of science database).

deep learning point cloud registration have shown a blowout
growth and are still increasing. According to the overlap of point
clouds, considering that the point clouds will partially overlap
in practical applications. This article divides the deep learning-
based point cloud registration methods into complete overlapping
point cloud registration and incomplete overlapping point cloud
registration.

3 Complete overlap point cloud
registration

In order to address the challenges posed by the intricate
topology of point cloud surface, large scale of point clouds
data and high robustness requirements, researchers have drawn
inspiration from traditional methods and integrated deep learning
techniques to decompose point cloud registration into several
essential technologies. The most mainstream method is based on
matching the relation of corresponding points and global feature-
based methods.

Many researchers split point cloud registration on real data
into multiple sub-problems are studied, as shown in Figure 3.
In the synthesis data, most of the existing studies have adopted
the end-to-end method. This section will discuss the complete
overlapping point cloud registration technology based on deep
learning. This article categorizes existing research on deep point
cloud registration into two main approaches: correspondence-
basedmethods and global feature-basedmethods. Furthermore, the
end-to-end networks are also classified.

3.1 Model based on matching relationship

In order to facilitate comparison, this article classifies
each method according to its main functions, feature
extraction, key point detection, outlier rejection, and motion
estimation.

3.1.1 Feature extraction
The main idea of feature extraction method is

to use deep learning to extract features to estimate
accurate correspondence. A one-step optimization
(SVD, RANSAC) can then be used to estimate the
transformation without iterating between the corresponding
estimate and the transformation estimate. Since point
cloud contains abundant spatial geometry information,
organizing point cloud reasonably and extracting more
recognizable information is the most concerning in feature
extraction.

Qi et al. (2017) proposed PointNet, which was the first
deep learn-based network model that extracted features
directly from the input point cloud. The method applies
deep learning to point clouds in a simple way and solves the
disordered permutation problem with symmetric functions.
The model generates descriptors for the global features of
each point or the whole point cloud, and solves the problems
of disorder, permutation invariance, and rotation invariance
of the point cloud. At the same time, features are extracted
from each point by multilayer perceptron (MLP), and the
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FIGURE 3

Model based on matching relationship.

purpose of displacement invariance is achieved by symmetric
function. Finally, T-net (trans-formation network) was used
to predict the rigid transformation to satisfy the rotation
invariance.

However, the PointNet ignores the relevance between points
in the learning process, and the pooling operation is accompanied
by a certain degree of information loss, which restricts the
scene understanding ability of the network. In view of the
above shortcomings, PointNet++ network [20] constructs a feature
learning model of “sampling + neighborhood clustering.” PointNet
++ introduces a hierarchical structure consisting of the farthest
sampling layer, the packet layer, and the PointNet layer to capture
contextual information at different scales.

In general, PointNet and PointNet++, as a local feature
extraction module, proves to be an effective learning structure,
but it lacks the acquisition and learning of the relationship
between point pairs, which limits the overall learning ability of the
network. In order to solve the problem of limited learning ability
of PointNet structures and extract more discernable information
from unorganized point clouds, some researchers have proposed a
feature extraction method based on convolution.

In order to solve the problem of limited learning ability of
PointNet structures, different local region learning structures were
designed based on deep convolutional networks. Wang et al. (2019)
designed dynamic graph convolutional neural network DGCNN
based on GNN. The EdgeConv structure is designed as the learning
module of the local features of point cloud in the idea of fusion
graph convolution. The neighborhood points are aggregated in
the feature space, and the local features are learned through the
graph convolution form. In DGCNN, the graph nodes will be
dynamically updated at each layer of the network, whichmeans that
the nearest neighbors of a point will change layer by layer as the
number of network layers increases. This feature makes EdgeConv

very flexible and helps to obtain local topology information. But
again, the increase of point nearest neighbor also brings additional
K-nearest neighbor calculation loss.

Zeng et al. (2017) proposed a data-driven method 3DMatch.
Geometric descriptors of local regions were learned using
3D convolutional neural networks (3DConvNet) to establish
correspondence between partial 3D point clouds. In order to
optimize the descriptor based on 3DConvNet, a large amount of
training data is required. For this purpose, corresponding tags in
the existing RGB-D scene reconstruction are used to collect the
training data. For real data registration, the two corresponding
key features are usually registered on different scales. In order to
obtain multi-scale features and avoid the loss of corresponding
points caused by random sampling and downsampling, Socher
et al. (2011) proposed a point cloud registration network based
on multi-scale features, MSP-NET. In this method, Siamese multi-
scale structure is used to downsample and upsample point clouds
in layers to obtain multi-scale characteristics of key points.
Meanwhile, the local similarity estimation module (LSEM) is used
to locate the key points. In addition, in order to deal with the low
overlap, the global estimation module (GSEM) is introduced to
make the downsampling more concentrated in the overlap area.
This module can find the corresponding points well with the two-
sided outlier removal mechanism based on multi-scale features.
This method can extract and utilize the features of multi-scale point
clouds well and avoid the interference of outliers. However, when
the central region of the point cloud to be registered is difficult to
distinguish, the registration accuracy of this method is faster.

Full convolutional geometry learning in 2D data has been
proven to be an effective method for feature extraction (Long
et al., 2015). Based on this, Choy et al. (2019) have proposed
fully convolutional geometric features (FCGF), which use sparse
convolutions to replace the traditional 3D convolution. In this
method, all the fully connected layers of the multi-layer perceptron
are converted into a series of convolution layers with kernel
1*1*1, and negative mining is applied to the contrast and triple
loss functions. The feature dimension of FCGF output is only
32 dimensions, which improves the operation efficiency of the
method and can be applied to real scenarios. However, FCGF
has the disadvantage of data sampling overfitting, resulting in
poor generalization ability. Based on this, Horache et al. (2021)
proposed multi-scale architecture and self-supervised fine-tuning
(MS-SVConv) convolutional neural network. Methods A 3D sparse
voxel convolutional network was used to compute the features on
different scale point clouds, and then the features were fused by
fully connected layers. The MS-SVConv inherits the advantages
of FCGF’s fast running speed, but also dramatically enhances the
generalization capability.

Thomas et al. (2019) proposed kernel point convolution
(KPConv) in order to deal with the sparse and disordered structural
characteristics of point clouds. KPConv, inspired by image-based
convolution, uses a set of kernel points to define the region
where the weight of each kernel is applied. The number of
kernel points is unlimited. KPConv produces different offsets at
each convolution location, which means that it can adjust the
shape of the kernel according to different regions of the input
cloud. However, because the combination weight is artificially
set, the optimal result cannot be guaranteed. At the same time,
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in the face of different point clouds, different nuclear point
Spaces need to be customized, limiting the network’s generalization
ability. Therefore, Xu et al. (2021b) proposed position adaptive
convolution (PAConv). The coefficients of the weight matrix in the
network are learned adaptively from the point position by Score-
Net, and the convolution kernel is constructed by dynamically
combining the basic weight matrix stored in the weight library. In
practical applications, PAConv can replace MLP modules without
changing the network structure and parameters, which makes the
network more flexible.

To solve the unorganized problem of point clouds, researchers
use grid (Yi et al., 2017) [22], voxel (Maturana and Scherer,
2015), and K-nearest neighbor to organize point clouds, so as to
extract richer geometric features. Khoury et al. (2017) proposed
an accurate and compact deep network of geometric features
(CGF), which optimizes high-dimensional histograms to low-
dimensional Euclidean Spaces. To get a series of more compact
and accurate feature descriptors parameterized by dimension. Deng
et al. (2018b) proposed PPFNet, the model can integrate local
features and global features at different scales. Unlike voxel, the
method makes full use of the sparsity of source point clouds and
uses a new n-tuple loss function and architecture to inject global
information into local descriptors naturally, improving the rotation
invariance of features and robustness to noise. However, since the
input features come from the point pair feature PPF (Rusu et al.,
2008), it strongly depends on normal vector estimation. To improve
the shortcomings of PPFNet, Deng et al. (2018a) further proposed
PPF-FoldNet for unsupervised learning of 3D local descriptors in
point clouds. In this network, the source point cloud and normal
vector are not included in the coding, but the point cloud features
are sent to the automatic encoder (AE) like FoldingNet (Hinton and
Zemel, 1993; Yang et al., 2018; Liu et al., 2019a). After training, the
set distance can be used to reconstruct the point pair features. This
method does not need to sample more than three sets of point pairs
from the pre-annotated data set for singular value decomposition,
so the network training is more accessible and can still achieve good
results under the condition of noise, but it is more sensitive to the
density change of point cloud.

Yew and Lee (2018) use Siamese neural network architecture
to propose a weakly supervised form of 3DFeatNet. Methods 3D
feature detectors and descriptors are learned from GPS/INS tagged
3D point clouds as a whole, and Siamese architecture (Varior et al.,
2016) is used to learn to recognize whether a given point cloud
is taken from the same location. Weights are learned through the
introduced attention mechanism to measure the contribution of
each input symbol to the triplet loss function. Finally, the network
is trained by minimizing the triplet loss function.

Although features can be extracted directly from the point
cloud using the Point-Net structure, this model restricts the
further operation of the convolutional network. For this purpose,
Gojcic et al. (2019) proposed 3DSmoothNet, which used voxelized
smoothing density value (SDV) to match 3D point clouds with
Siamese neural network deep learning architecture and complete
convolutional layers. The full convolution layer computes the
points of interest and aligns with the local reference frame (LRF)
to achieve rotational invariance. The method can generate low-
dimensional, highly descriptive features and intercommunicate
these features between different sensors and indoor and outdoor

scenes. This undoubtedly enhances the generalization ability of the
network. At the same time, the low dimensional feature descriptors
generated by the method (only 16 or 32 output dimensions) greatly
speed up the corresponding search, which makes the realtime
application of the method possible.

The local feature extraction method to ensure the input
network’s rotation invariance brings additional computing
consumption. At the same time, it is sensitive to the initial pose
of the source point cloud and noise anomalies. For this reason,
researchers use convolution operation to make the model more
efficient and obtain more significant local topological information,
thus improving the visibility of features. The relevant methods in
this section are summarized in Table 1 (Guo et al., 2021; Zhao et al.,
2021; Yu et al., 2022b).

3.1.2 Key point detection
Only more than three pairs of effective solution points

are needed for point cloud registration to solve the rigid
transformation. But random sampling of the point on the
inevitable received noise, point cloud density impact. Therefore, the
researchers developed a method designed to sample the point pairs
that significantly impact the registration task.

Generally speaking, the detection of key points needs to predict
the significance of points. Lu et al. (2020) proposed a key point
detector and descriptor network (RSKDD-Net) based on random
sampling. The model uses random sample to quickly collect
key points in the scene and learn the features of local regional
structure information. To solve the problem of information loss
in random sampling, a new random expansion clustering strategy
is used to enlarge the receiving field of each sampling point. The
network contains a neighborhood point aggregation module based
on an attention mechanism to dynamically sample key points by
sensing neighborhood structure. Finally, the distance and point-
to-point loss functions based on probability chamfer are used to
supervise the training network. The network performs well in
registration accuracy and is robust to point cloud noise and local
sparse inequality. Ghorbani et al. (2022) proposed a Uniform and
Competency standards-based 3D Keypoint Detection (UCKD). In
this method, key points were first extracted by 3DSIFT or 3DISS
detector, and different criteria were used to evaluate the quality
of key points, and the final key points were selected according to
the capability criteria. Then the octree structure is used to create a
uniform spatial distribution in the point cloud, and the key points
are extracted proportionally. Finally, the model uses orientation
histogram (SHOT) descriptor to describe key points to complete
registration. This method is robust for the registration of point
clouds with appropriate distribution and low overlap. However, this
method is only applicable to point clouds with uniform structure,
and it is also a crude registration method, which needs to be
combined with acceptable registration method to improve the
registration accuracy.

Bai et al. (2020) proposed D3feat by utilizing 3D complete
convolutional network and combining with a brandnew learning
mechanism that can intensively predict detection scores and
descriptive features of each 3D point. To overcome the inherent
density variation of 3D point clouds, the model evaluates the
relationship between a point and its local neighborhood through
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TABLE 1 Feature extraction methods.

Model Overview Reference

PointNet First to use deep learning directly to extract features directly on a point cloud Qi et al. (2017)

PointNet++ Uniform sampling with segmented local areas on top of PointNet Qi et al. (2017)

DGCNN Combining graph convolution with Edge-Conv for local feature extraction Wang et al. (2019)

3DMatch Learning local area geometric descriptors using 3DConvNet Zeng et al. (2017)

FCGF Replacing traditional 3D convolution with sparse convolution Choy et al. (2019)

MS-SVConv Using 3D sparse voxel convolution networks on different scales point clouds Horache et al. (2021)

KPConv Using kernel point convolution to define the weights of different regions Thomas et al. (2019)

PAConv Adaptive learning weight matrix coefficients Xu et al. (2021a)

CGF Mapping high-dimensional histograms to low-dimensional Euclidean spaces Khoury et al. (2017)

PPFNet Fusion of local and global features at different scales Deng et al. (2018a)

PPF-FoldingNet Adding the self-encoder AE from the Folding network to PPFNet Deng et al. (2018b)

3DFeatNet Learning point cloud features using Siamese neural networks Yew and Lee (2018)

3DSmoothNet Matching Siamese neural network with full convolutional layers by SDV Gojcic et al. (2019)

MSPR-Net Multiscale features and stratified sampling Yu et al. (2022a)

PointTrans The self-attention mechanism is applied to the point cloud Zhao et al. (2021)

PCT Improve point cloud Transformer with optimized offset-attention module Guo et al. (2021)

Point-BERT Using Bert to build a Transformer pre-training organization for point clouds Yu et al. (2022b)

the significance fraction of constant density. The key point score
is calculated by combining the significance score of the point
pair and the score at the end of the channel. Xu et al. (2021b)
introduced the convolutional layer PAConv into the network and
proposed a new point cloud registration network model PACNet
(Ko et al., 2018) based on deep learning. The model can learn
the weight coefficient according to the position relation between
each point and its adjacent points, and adaptively construct
the convolution kernel with the weight matrix. By integrating
the local correlation and global information of key points, the
information of local areas can be captured flexibly, which improves
the understanding ability of the method for different scenarios.
Chen et al. (2021) proposed a neural network VK-Net to discover
a set of category-specific key points from a single point cloud
in an unsupervised manner. VK-Net can generate semantically
consistent and rotationally invariant key points between objects
of the same category and different views. In general, the key
point detection module requires additional structures to learn
the location of virtual key points, resulting in many network
parameters and computation. Therefore, it is only applicable to
small-scale point cloud computing.

Usually, key point detection needs to be used together with
feature extraction and other modules. Therefore, the key point
detection module is embedded in many end-to-end registration
methods. The relevant models including key point detection are
summarized in Table 2.

3.1.3 Outlier rejection
Outlier pairs are inevitable in the actual registration process.

Even in the most advanced registration methods, the removal

of outlier pairs is a critical task. The existence of outliers will
significantly reduce the performance of registration. The reasons
for this are as follows: noise, outliers, partial overlap of point clouds
and insufficient local features of point clouds. Removing outliers
before solving rigid transformation for point cloud registration
methods based on deep learning is often necessary.

In 3DResNet (Pais et al., 2020), researchers used a residual
neural network to divide noise points into internal points
and external points. In this way, the network acceleration can
be realized without affecting the registration accuracy when
outliers exist. However, 3D point cloud data has rich topological
information and geometric features, so it is difficult to obtain
more accurate registration results simply by dualizing it. Similar
to 3DResNet, Yang et al. use compatibility features (CF) (Yang
et al., 2021) to classify point pairs. The network first uses different
points to check the compatibility of angles, lengths, etc., so as
to obtain the compatibility scores of different points. Then, the
information is aggregated to obtain compatibility characteristics.
Finally, the feature number is input into the MLPs for intensive
binary processing, which is still divided into inner points and
outliers. Therefore, it does not break out of the shackles of the
binary point of no use to enrich the information.

Spatial consistency due to Euclidean transformation between
point clouds has received little separate attention in previous
deep point cloud registration techniques. Therefore, Bai et al.
(2021) proposed PointDSC to prune outliers by combining
spatial consistency. First, a nonlocal feature aggregation module
weighted by feature and spatial coherence is proposed for
embedding corresponding features into the input. Secondly, the
model is trained under paired space compatibility supervision.
A differentiable spectral matching module is built to estimate
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TABLE 2 Key point detection methods.

Model Overview Reference

RSKDD-Net Random sampling and random expansion clustering are adopted Lu et al. (2020)

D3Feat Combining salience and feature channel scoring to get key points Bai et al. (2020)

PACNet Learning weights through point nearest neighbor learning Ko et al. (2018)

VK-Net Generating key points in point clouds with different views of the same category Chen et al. (2021)

DeepVCP Predicting point saliency using a multilayer perceptron Lu et al. (2019b)

PRNet Two-parameter for features Number distance defines the significance of point Wang et al. (2019)

IDAM Predicting point saliency using a multilayer perceptron Li et al. (2020a)

UCKD Select the final key points according to the competency criteria Ghorbani et al. (2022)

the inner confidence of each correspondence relationship from
embedded features. Finally, KNN is used to find the set of point
pairs satisfying spatial consistency to solve the rigid transformation.
Compared with the method of directly classifying point pairs, the
outlier pair removal performance of PointDSC is greatly improved.
In addition, the outlier pair removal module is embedded in many
end-to-end models. The methods for removing outlier pairs are
summarized as shown in Table 3.

3.1.4 Motion estimation
In point cloud registration based on correspondence

relationships, rigid motion attitude estimation is generally
the last stage of point cloud registration. Motion parameters
have different expressions, such as quaternion, angular axis,
etc. The most common ones are undoubtedly rotation matrix
and shift-vector. This method can be optimized by SVD based
on correspondence relation, so it is widely used in point cloud
registration methods of deep learning. At the same time, based on
the end-to-end learning strategy, some motion estimation methods
using regression strategy are also proposed. Since most of the
methods differ in the way they use SVDS, this section summarizes
and discusses existing methods only from the perspective of use.

PointDSC (Bai et al., 2021) divides network registration into
training and testing stages. The weighted SVD is used in the
training of the network, and the weighted estimated rigid transform
based on least squares is used in the measurement. PRNet (Wang
and Solomon, 2019b) uses confidence ranking for points, and
selects point pairs with high confidence for SVD solution. Deep
closest point (DCP) DCP (Wang and Solomon, 2019a) and
DeepVCP (Lu et al., 2019b), the closest virtual point of depth, are
calculated using the weighted confidence and the position of the
point to solve the relative attitude. DGR (Choy et al., 2020) uses
the weighted SVD to solve the rigid transform after passing the
confidence selection point pair and retaining the confidence as the
weight.

If only the point pair is entered into the solver module of
the SVD, this usually means giving up the confidence of the
point pair. This also causes the need to use coordinate values for
network backpropagation. The coordinate values of point pairs are
generally constant, which may hinder the propagation of gradient
information in the network. While the reserved confidence allows
the gradient propagation of the network’s right to use weight

value, and the right to use weight means the processing of the
pair of points that do not exist in the target point cloud, which
undoubtedlymakes the networkmore dependent on the confidence
estimation. The retained confidence of DGR model selection and
the weighting method adopted by PointNetDSC certainly provide
a new way to use SVDS. How to choose the confidence degree is
worth thinking about in the future.

3.2 End-to-end

This type of network is referred to as an “end-to-end” network
because it is trained to directly solve the registration problem
by taking two point clouds or preprocessed point cloud data as
input and generating motion parameters as output. The end-to-
end network can preprocess the point cloud by integrating modules
such as feature extraction, key point matching and outlier removal
to obtain excellent correspondence relationships, and directly
summarize all registration processes on the net-work. This section
provides a detailed summary and discussion of the end-to-end
net-work models that have been published as of this writing.

Lu was equal to the deep virtual counterpart DeepVCP (Lu
et al., 2019b) proposed in 2019. In this network, a matching
point generation mechanism is designed and feature descriptors
of the mini-PointNet structure are used to extract the matching
points to solve the problem of sparse point cloud. After the key
points of the scene are extracted, the weights can be generated
dynamically through the local features of the point neighborhood,
and the positions of the key points can be fine-tuned. The weight
of key points is combined in the network and the SVD operator
newly introduced in TensorFlow is used to perform a single
optimization iteration to construct another corresponding point.
The distance between the newly generated corresponding point and
the key point is taken as an additional loss function to conduct
training supervision on the network. Moreover, global geometric
constraints are added to the loss function to ensure its validity.
This model can avoid the interference of dynamic objects and
obtain high precision registration results. It is an effective deep
learning improvement over ICP method. However, it still requires
approximately accurate initial position between the target point
cloud and the source point cloud, which belongs to the acceptable
registration method.
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TABLE 3 Outliers rejection methods.

Model Overview Reference

3DRegNet Predicting point pair weights using binary classification networks Pais et al. (2020)

CF Dichotomous classification using MLP Yang et al. (2021)

PointDSC Combining spatial consistency to prune anomaly pairs Bai et al. (2021)

DGR Predicting point pair weights using binary classification networks Choy et al. (2020)

IDAM Calculating weights for predicting confidence in point pairs Li et al. (2020a)

RPMNet Using iterative normalization to obtain a double random matrix Yew and Lee (2020)

Cattaneo et al. (2022) proposed a new LCDNet. This model
extracts features through the point voxel neural network (PV-
RCNN) (Shi et al., 2020), which ensures that the model can process
the point cloud data of large-scale scenes. At the same time, the
Sink-horn method (Sinkhorn, 1964) is adopted in this model to
realize unbalanced optimal transmission (UOT) in a differentiable
way (Hori, 2002). UOT guarantees that the method can effectively
match features extracted from the two point clouds, reject outliers,
and handle occlusion points, while still being able to train the
network end-to-end.

Based on the robust point matching method (RPM), Yew and
Lee (2020) proposed an improved RPMNet method combined
with deep learning. The model adopts the same feature extraction
module as PPFNet, and adds 3D coordinates to obtain mixed
features. By constructing Sinkhore structure combined with
annealing method, virtual feature points are learned from mixed
features containing spatial location and local structure information.
The soft matching relationship is constructed based on thismethod,
which significantly improves the registration accuracy under the
condition of noise and low overlap. However, as an iteratively
optimized network, the model needs to calculate the mixed features
repeatedly in each iteration, which undoubtedly increases the
computational cost of the method.

Considering that outliers may cause the network to fail to close
the loop, the self-supervised network model with consistent cycle
loss function may not be able to solve the registration problem
of partially overlapping point clouds well. For this reason, Jiang
et al. (2021) proposed CEMNet, an unsupervised sampling network
guided cross-entropy point cloud registration method. The model
consists of sampling network module and differentiable cross
entropy (CEM) module. The registration task is transformed into
a Markov decision process (MDP). The prior Gaussian distribution
on space is learned through a sampling network, and initial data
is provided for subsequent CEM modules. In the CEM module,
each sampling transform is evaluated by combining the current
and future new fusion reward score functions. At the end of the
network, the future reward function is estimated by performing ICP
methods on the transformed source and target point clouds. In this
model, the differentiability of CEM is realized by top-k selection
based on ranking. The loss function (Barron, 2019) based on scaling
Geman-Mcclure estimation is used to train the network, and the
sublinear convergence rate of outliers is used to reduce the negative
impact of outliers on registration accuracy.

DWC (depth weighted consistent global registration
Network) is also adopted in an unsupervised way

(Ginzburg and Raviv, 2022). DWC first extracts the rotation
invariant descriptor (RI) from the source point cloud through the
factor extraction network, and then uses two variants of DGCNN,
namely classification network DGCNNglob and segmentation
network DGCNNloc, respectively to achieve feature extraction.
Then cosine similarity is used to define a soft sampling map,
sample K pairs of points with corresponding relationships and
calculate the rigid transformation, and then select the rigid
transformation of the internal points with the highest confidence.
Finally, the weighted consistency loss function is used to train the
optimal network. Compared with the supervised approach, the
unsupervised approach avoids the large amount of annotated data
required for the training process and the associated computational
costs required for the training, making the model significantly
faster.

Inspired by traditional point cloud registration methods,
many methods choose to construct deep convolutional networks
as key point detectors or local feature descriptors of point
clouds. For example, DCP constructs key point matching in the
scene by learning the features of the point cloud neighborhood
and combining the attention mechanism. PR-Net (Wang and
Solomon, 2019b), on the basis of DCP, adopts the actor-
critic model and uses the feature of global aggregation point
by point to obtain the global feature. Furthermore, Gumbel-
softmax (Jang et al., 2016) method was combined to improve
the registration accuracy of the model in the low-overlap
scenario. Unlike the above two methods of constructing key
points in the point cloud, DeepGMR (Yuan et al., 2020), a
deep Gaussian mixture model registration method, adopted a
registration method based on global features. In this model, the
postural invariant correspondence between source point cloud
and Gaussian mixture model (GMM) parameters is extracted
by neural network, and the registration formula is modeled
into the minimum divergence of Gaussian mixture probability
distribution by maximum likelihood framework. GMM parameters
are calculated using differentiable computing module and the
optimal transformation is recovered. The model has strong
resistance to the initial pose and noise of the point cloud, and does
not require iterative optimization. To overcome the insufficient
information caused by the direct aggregation feature of deep
learning point cloud registration based on PointNet, Kurobe
et al. (2020) proposed the Communication network (CorsNet). By
connecting the global feature with each point feature, the model
feeds back to the local feature of each point to return the point
cloud correspondence.

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281332
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen et al. 10.3389/fnbot.2023.1281332

Different from the way of voxelizing point cloud, Ali et al.
(2021) proposed RPSRNet, which used the tree representation
based on Barnes Hut (BH) (Barnes and Hut, 1986) for the input
point cloud data. First, the model recursively subdivides the
normalized boundary space of the input point cloud to the limit
depth to construct the BH tree. With the help of the established
index of the tree and the hash graph (Bader, 2012), the network can
retrieve the neighborhood portion of a given node. Secondly, the
layered feature extraction (HFE) module is embedded in the model
for global feature extraction. Finally, differentiable SVD is used to
solve the rigid transformation. Themodel has achieved good results
in processing speed and accuracy. However, there are limitations in
the registration of partially overlapping point clouds.

To register real data, Choy et al. (2019) proposed an end-to-
end network for deep global registration (DGR). Firstly, the FCGF
(Choy et al., 2019) structure is used in the feature extraction stage.
Still, the 6D convolutional network of the Minkowski engine is
used to predict the confidence when the pair of outliers is removed.
At the same time, the micro-weighted Procrustes method (Gower,
1975) and the robust gradient-based optimizer (Zhou et al., 2019)
are used in this model. As an end-to-end network, the model allows
users to replace the registration parts with existing plugin modules.
This is one of the great benefits of an end-to-end network.

In the registration method based on point matching relation,
the most important is to obtain reliable correspondence. Usually,
the results obtained by feature extraction and matching are only
sometimes reliable. Therefore, detecting key points and removing
additional outlier pairs is necessary. This makes end-to-end
networks that integrate various functional modules increasingly
popularly. The integration of multiple modules brings not only the
improvement of registration performance, but also the scale and
complexity of the network. As a result, the model has higher and
higher requirements on hardware, and it is tough to process point
cloud data in large-scale scenarios.

3.3 Registration method based on global
feature

Currently, the mainstream complete overlapping point cloud
registration is generally based on the corresponding point matching
relationship. But in addition, the researchers also explored another
uncorrelated point cloud registration method based on global
features. The main component of this method is to search the
difference of global features between two input point clouds and
process the extracted point cloud features by a pooling layer.
The influence of the sequence of point pairs on subsequent
registration is removed while preserving the global features.
Finally, the global features of source point cloud and target point
cloud are spliced, and then the parameters required for rigid
transformation are solved by MLP regression or other methods.
The registration solution method based on global features is shown
in Figure 4.

Aoki et al. (2019) first proposed a global registration method
PointNetLK based on PointNet coding rules. In this method, global
features of point cloud are extracted by PointNet and Jacobian

matrix of global features of point cloud is calculated by inverse
synthesis formula. The Lucas & Kanade (LK) method is used
to solve the rigid transformation from global features. Sarode
et al. (2019) proposed an unsupervised method PCR-Net based on
PointNetLK using MLP regression rigid transformation to solve
the problem that PointNetLK is sensitive to noise. The model
represents the three-dimensional rotation as a quaternion and uses
Siamese-like network architecture to predict motion parameters.
Meanwhile, Chamfer distance loss function is used to constrain
network training. Higher accuracy is achieved in the complete
overlapping point cloud registration. At the same time, it also
has good robustness in noisy scenes. AlignNet3D network (Groß
et al., 2019) through the design of the CanonicalNet module. The
input point cloud is transformed into another attitude in advance,
then the global characteristics of the point cloud are learned and
output through MLP structure, and the network structure similar
to PCRNet is utilized to learn and output attitude transformation.

Deng et al., inspired by PPFNet, have put forward a data-driven
point cloud registration network PPF-FoldNet by incorporating
the self-coding module of Folding structure into the network. The
network can learn to arrange features independent of rotation
unsupervised. On this basis, a RelativeNet module is designed to
predict relative attitude directly for registration. Thismethod shows
a high recall rate in real data sets. However, because there is almost
no accurate matching relationship in the actual point cloud, this
method shows low registration accuracy due to the problems such
as noise and low overlap. In order to deal with the influence of non-
overlapping points, Xu et al. (2021a) proposed OMNet. In each
network iteration, the overlap mask between source point cloud
and target point cloud is predicted respectively to mask the non-
overlap area, the partial overlap problem is transformed into a
complete overlap problem, and themotion parameters between two
point clouds are predicted by MLP module, which has achieved the
most advanced effect at present.

The feature measure registration method (FMR) proposed by
Huang et al. (2020) uses the cod-decoding model to supervise the
global feature registration. The coordinate information of the input
point cloud is restored through the decoder region to achieve the
effect of eliminating redundancy of extracted global features and
ensuring that the information is not lost. RANSAC is not required
for global feature registration by this method, and the registration
speed is improved to some extent compared with the method of
removing outlier pairs. At the same time, this method achieves
excellent results in real data sets and cross-source point cloud
registration. Unlike the form of establishing key point matching
relationship, the deep learning point cloud registration network
based on global features starts from the overall structure and
directly perceives and codes the attitude information of the point
cloud without establishing key point matching. Therefore, this
kind of method runs faster. However, such methods have received
less attention, mainly because such methods perceive features
based on the overall form of point clouds. When the degree of
overlap between input point clouds is low, the information of non-
overlapping areas will significantly interfere with the perceived pose
information. Therefore, the registration method based on global
features is more sensitive to the overlap degree of point clouds.
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FIGURE 4

Flow chart of the global feature-based registration method.

4 Incomplete point cloud registration

The performance of complete overlapping point cloud
registration is approaching saturation levels under current
evaluation criteria and existing datasets with the introduction of
increasingly sophisticated techniques. However, the sparsity, low
overlap rate and random distribution of real data make it difficult
to establish accurate and stable correspondence relationships
with fully overlapping deep point cloud registration methods. In
particular, when point cloud registration is actually applied to
various fields, it is inevitable to encounter low overlap degree
of point cloud to be registered. This creates new challenges for
existing networks and methods. This article summarizes and
reviews the existing deep learning partial overlapping point cloud
registration methods in detail. According to the processing method
of non-overlapping point cloud, the registration method of partial
overlapping point cloud based on deep learning is divided into
the method for non-overlapping region, without considering the
method of non-overlapping region.

4.1 Regard overlapping regions

Point cloud data frequently can only describe the part of
the object/scene that is visible to the sensor and not covered
by occlusion. In addition, sensor noise, reflective surfaces, or
artifacts can sometimes create points in the point cloud that do
not correspond to any surface in the object or scene. Missing
data and irrelevant points in point cloud pose new challenges to
point cloud registration methods. The method of removing outlier
pairs mentioned above cannot cope well with the registration of
point clouds with low overlap rate. Moreover, the calculation cost
of the specialized outlier removal module is high, so it cannot
be applied to real scenes in real-time. To this end, researchers
have proposed a series of new methods for partially overlapping
point clouds.

4.1.1 Reject non-overlapping regions
Sarode et al. (2020) proposed a full convolutional neural

network MaskNet. Perform learn-based inner estimation based on
the PointNet structure. The network is trained to identify which
points in the target point cloud are internal by calculating masks,
so that these points and the source point cloud closely describe
the same part of the object/scene geometry. Then the network can
“shield” the outlier area from the target point cloud. This method

can deal with partial overlapping point clouds and outliers well,
and also has a specific effect on noise suppression. But MaskNet is
currently limited to removing points from a cloud of input points,
which limits its practical application to scene reconstruction. Also,
because the network uses PointNet coding, a large amount of
labeled data is required for training.

Shotton et al. (2013) proposed Overlapping Mask Network-
OMNet, an iterative end-to-end network based on global features,
aiming at the overlapping area point cloud. In each iteration of
the network, the overlapping mask of two input point clouds is
predicted respectively. Given an exact overlap mask, non-overlap
points are rejected during the aggregation of global features.
This converts the part-to-part assignment to the same shape
registration. This method removes the non-overlapping regions to
obtain the global features without interference, which makes the
regression rigid transformation easier. It reduces the sensitivity
of the registration method to the initial position of the input
point cloud. The robustness of the method to noise and pose
deflection is also enhanced. In addition, the data used for the
previously proposed network model is sampled only once from
the CAD model of each object, resulting in the same source
and reference point clouds. OMNet proposes a more practical
approach to data generation in which the CAD model is sampled
twice as a source and reference, avoiding the overfitting problem
that was prevalent previously. However, this model does not
consider the impact of the amount of point cloud data, and
can only be applied to the scene or object with a small amount
of data.

Since most network models usually use the inner product of
features or the norm distance of features to express the matching
degree between two points, this method undoubtedly ignores the
differences of features in each channel. To this end, Li et al. (2020a)
proposed the iterative range-aware similarity matrix convolutional
network (IDAM). The model combines geometric features and
distance features into the iterative matching process to solve the
problem of fuzziness. A two-stage point elimination technique
is used simultaneously, filtering out points that are unlikely to
match the confidence level in the first step, and eliminating point
pairs rather than single points in the second step by mixing
points. The learning network is trained with weak supervision
by assigning weights to false positive point pairs. This network
can be compatible with traditional point cloud feature extraction
methods such as fast point feature histogram FPFH (Rusu et al.,
2009) and graph convolutional neural network GNN (Shi and
Rajkumar, 2020). IDAM has significant computing advantages
in the case of dense point clouds. However, the network relies
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heavily on selecting key points to avoid outlier pairs, so the
registration result depends on the detection of the network
key points.

Based on DCP, Wang and Solomon (2019b) proposed a
partial-allocation quasi-network (PRNet). One of the key new
components is the partial key point detection module. The network
model converts partial overlap into detecting the common points
of two point clouds, removes non-overlapping areas, matches
these key points, and solves the Procrustes problem. The model
samples keypoint correspondence using Gumbel-SoftMax and a
pass-through gradient estimator. The framework allows coarse
matching using diffuse (fuzzy) matching for far-point clouds, and
the final refinement iteration becomes clearer. At the same time,
the model does not introduce additional hyperparameters, but
uses an embedded subnetwork to predict the annealing parameters
and convert them into a simplified version of the actor-evaluation
model. Finally, iteration optimization technique is used to improve
the registration accuracy. The model achieves good results in low
overlap and noise scenarios, but its practical application is limited
due to the large scale of the network. At the same time, the input
point cloud should have a unique local geometric structure to
extract reliable sparse 3D feature points.

Using the network to learn highly unique point features
of different locations but similar shapes is challenging. In
order to solve this problem, Min et al. (2021) put forward
Geometry Guided Network. The model uses a spherical position
coding method and self-attention mechanism to assign global
geometric position information to irregular 3D points to learn
global unique features. And assign this feature to each point.
The uniqueness of each feature is further enhanced by the
unsupervised geometric consistency loss function. The model
uses two normal forms to predict the rigid transformation:
unsupervised geometric consistency loss, which is used tominimize
the geometric distance between the transformation source and
the target point cloud; By having a supervised transformation
loss, which is used to estimate the rigid motion itself. The
proposed method is robust in partially overlapping and noisy
registration. However, since the model assigns globally unique
features extracted to each point, it requires the enhancement of
geometric uniform loss function. However, the parameters of the
subnetwork loss function are not predicted, so the optimality of the
parameters cannot be guaranteed. At the same time, the selection of
spherical position coding coordinate system also greatly influences
the performance.

In practice, point clouds vary in size due to capture distance,
sensor type, environment, and many other factors, making it
difficult for traditional methods to cope with this situation. To
this end, Yan et al. (2022) proposed a partial feature extraction
network PointpartNet. It is a neural network that divides the
point cloud by KNN, extracts the features of each part, and
calculates the matching likelihood score of each part. The matching
likelihood score predicts which part of the larger intact point
cloud is most similar to the smaller point cloud. This result
is used to divide registration into global registration and local
registration using SVDS to avoid falling into local minima. The
model successfully registered point clouds of different sizes, which
was almost impossible to achieve before. However, since the feature
extraction module of the model uses a PointNet structure, it is

affected by the initial direction. At the same time, the model has
not been tested on a real scene, so there is still a distance for its
practical application.

In order to register poorly initialized and partially overlapping
point clouds, Li et al. (2021) proposed a Deep Weight Global
Registration network, DWG-Reg. Firstly, the bidirectional nearest
correspondence strategy is introduced to establish a reliable
symmetric registration model. Secondly, aiming at the problem
of partial overlap, a weighted pruning strategy is proposed to
filter the wrong correspondence of points, and a probabilistic
method is proposed to suppress the noise. A secondary network
is introduced to predict the optimal annealing parameters, and
a Hybrid distance generator network is used to learn the mixed
distances of corresponding points, and a robust kernel function is
used to estimate the corresponding confidence. Finally, a weighted
optimizer is introduced into the network to solve the registration
problem.

4.1.2 Prediction complements non-overlapping
regions

In addition to the above network model of eliminating non-
overlapping regions, the researchers have proposed a series of
methods to predict and supplement non-overlapping regions.
Based on D3Feat and combined with Transformer attention
mechanism, Huang et al. (2021a) proposed a point feature
extraction method PREDATOR. The self-attention and cross-
attention mechanisms are used interchangeably in this method, so
the local and global information of point cloud can be obtained
simultaneously. At the same time, thanks to the predicted overlap
region probability and the unique feature matching point selection
logic, the method can achieve good results in the scene with 10
to 30% overlap. However, the registration accuracy of this method
depends heavily on the accuracy of matching points, so the local
features of the input point cloud must be significant. Otherwise,
the extracted features are more generalized, easily leading to
mismatching.

To solve the above problems, Zhang et al. (2022) proposed
a two-stage partially overlapping point cloud registration method
based on global features. Firstly, the Edge-Conv layer is used to
map the input two point clouds to the high-dimensional space.
Since the characteristic information interaction between two point
clouds is necessary, the model uses a micro-overlapping region
prediction module with an attention mechanism to predict the
overlapping region. Finally, the sampled point cloud is taken as
input, and the attention mechanism is used to capture the global
information of the point cloud. The so-called two-stage registration
of this method means that in the first stage, edge convolution
is combined with Transformer to predict overlapping areas to
improve the global feature quality in the next stage. In the second
phase, PointNet is combined with the attention mechanism to
capture global information and use it for robust regression. The
model deals with point clouds from different sources and target
point clouds with uneven density and obtains excellent results.
However, in the face of over-fitting of training data, the registration
accuracy of the model will be reduced. At the same time, this model
is not an end-to-end network, and cannot deal with large-scale
point cloud data.
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In addition, Žagar et al. (2022) proposed a point cloud
registration method centered on target objects in view of the
impact of non-overlapping regions in feature extraction by global
feature-based registration methods. First, the most distant point
sampling (FPS) is used to stratify the input point cloud to extract
the object of interest. Due to the self-occlusion of the 3D sensor,
the extracted points can only partially represent the object of
interest. Then PointTr (Yu et al., 2021) was used to predict the
missing points and increase the similarity between the extracted
point clouds. Using this similarity, the completed point cloud of
the object of interest is roughly aligned. Finally, the registration on
the entire capture scenario is refined by using roughly estimated
transformation parameters as initial conditions. By focusing on
object centric alignment, the model can overcome the problems of
point clouds captured from different viewpoints, low overlapping
point clouds, and the need to learn correspondence across the entire
scene.

Consistent Two-Flow Network (CTF-Net) is proposed by
Yan et al. (2021). Considering that the completed shapes are
easier to register than each shape individually, and the degree
of overlap of the complete shapes increases, the registration
becomes easier. Therefore, the method uses neural network to
learn the prior knowledge of a class of objects and completes the
shape completion. The main idea of this model is to train two
independent networks jointly to complete the two tasks of non-
overlapping part shape complement and point cloud registration
after compliment. The model uses two coupled flows to train the
registration network and the completion network simultaneously.
One network performs registration-completion, and the other
performs completion registration to maximize the consistency of
both registration and completion. Since the completion network in
the method only generates the information of the missing part, the
completion along the two branches of the networkmay be different.
A particular conformance term is set up for this method to generate
the completion of the specification. This method performs well
when point cloud overlap is low or even non-existent. Thanks
to the prior knowledge learning of neural networks, the original
complete shape can be restored from the local shape. However, the
completion strongly relies on the prior knowledge brought by the
training set, which brings challenges to the type and quantity of
data, and also brings great limitations to the popularization and
generalization of the method. At the same time, due to the fuzziness
of the completion task itself, the registration without overlapping is
also complicated.

To deal with the influence of non-overlapping regions on
registration results, researchers conducted a series of studies from
the positive and negative directions of removing and predicting the
addition of non-overlapping regions. The method of eliminating
the non-overlapping area can theoretically be applied to the various
methods of complete overlap in order to deal with partial overlap.
But the degree of overlap is low, unless the overlap area greatly
affects the final registration result, or even mismatch. However, due
to its late start, the current method does not have an end-to-end
net-work, so it cannot deal with large-scale point cloud data, which
limits the further practical application of this method. Registration
methods for non-overlapping regions are summarized as shown in
Table 4.

TABLE 4 Summary of registration methods for non-overlapping regions.

Category Model Reference

Reject non-overlapping areas

MaskNet Sarode et al. (2020)

OMNet Xu et al. (2021a)

IDAM Li et al. (2020a)

PRNet Wang et al. (2019)

Geometry guided
network

Min et al. (2021)

PointpartNet Yan et al. (2022)

DWG-Reg Li et al. (2021)

Prediction non-overlapping areas

PREDATOR Huang et al. (2021a)

Two-stage partial
point cloud
registration

Zhang et al. (2022)

Object-Centric
Alignment

Žagar et al. (2022)

CTF-Net Yan et al. (2021)

4.2 Disregard non-overlapping regions

Registration becomes extremely difficult when the overlap
between two point clouds is extremely small. For the registration
network, if its influence on the overlapping region and noise
are extremely robust, there is no need to carry out additional
operations on the non-overlapping region of the point cloud.
Therefore, researchers propose a series of deep learning point
cloud registration methods that do not require processing of non-
overlapping point clouds.

The strengthening of the network itself mostly starts from
the direction of information acquisition or noise suppression.
Therefore, this article only summarizes and discusses each method
from the perspective of implementation. Huang et al. (2020)
proposed a global registration method of three-dimensional point
cloud based on decoder, FMR. The coordinate information input
point cloud is restored by decoder to achieve the effect of
eliminating redundancy and information loss of global features
extracted from input point cloud. Registration by global features
does not require RANSAC, so it has a greater advantage in speed
than removing mismatched points. Lu et al. (2019a) proposed
a simple network based on spatial and channel attention called
SCANet. The spatial self-attention aggregation (SSA) module is
used in the feature extraction subnetwork to effectively utilize the
internal information and global information of different levels of
input point cloud. The channel cross attention regression (CCR)
module is used in the sub-network of pose estimation to realize the
information interaction between two input global feature vectors,
enhance the correlation information and suppress the redundant
information.

Because the point cloud data is easily polluted by noise in
practical application, the point cloud density of the overlapping
part is also different. So it’s hard to find a dot correspondence.
In order to overcome these problems, Xie et al. (2022) proposed
a new approach based on Siamese architecture, namely, end-to-
end micro-depth network convolution with Siamese point network
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(CSPN). A pyramid structure is proposed to learn multi-scale
features of each point. This structure can extract local features and
combine features of different levels for point cloud registration. At
the same time, the model uses a new matching matrix calculation
method based on the robust point matching method RPM, using
information extracted from the feature space and coordinate space.
Combined with the unique attention mechanism to deal with the
conflict between coordinate matching matrix and feature matching
matrix, the influence of mismatching points is reduced.

Recent hybrid feature approaches improve high point cloud
registration performance by emphasizing more integrated
information (Li et al., 2020a). However, mixed feature extraction
often ignores the dimensional difference, semantic gap and mutual
interference between shape features and spatial coordinates.
Therefore, Wang et al. (2022) proposed a new multi-feature
guidance network (MFGNet) to overcome the inherent defects of
mixed features. The network combines spatial coordinates and
local features to guide the corresponding search. In contrast to
the previous approach using mixed features, MFGNet consists of
two distinct branches of matching matrix computation: coordinate
matching matrix computation and feature matching matrix
computation. The two branch learning networks independently
assign the correct correspondence. The final matching matrix
is obtained by blending the two matching matrices, and the
differentiable singular value decomposition (SVD) layer is used to
solve the rigid transformation between point clouds. In addition,
in order to deal with the conflict relationship between two
matching matrices, the corresponding credibility computing
module scores the reliability of each pair of responses, thus
significantly reducing the impact of mismatches or mismatching
points. The experimental results on the data set show that the
method can still achieve excellent accuracy and robustness under
the condition of invisible point cloud, unknown class and noise.
However, the method does not use the attention mechanism to
calibrate the matching results, nor does it use the new loss function
to supervise the learning of the network, so there is still a lot of
room for improvement. In order to deal with the above problems,
SLORNet (Li et al., 2020a) integrated the attention mechanism into
the network model, weighted the pose information perceived by
different positions, formed a channel for information interaction
between scenes, and achieved good results in scenes with low
overlap.

The deep learning point cloud registration method using
singular value decomposition (SVD) to find the rotation matrix
does not fully consider the scale information, and it is difficult
to deal with the point cloud with large initial rotation Angle. For
this purpose, Zhang et al. (2021) proposed a High-Dimensional
Regression Network (HDRNet). Firstly, the 3D point cloud is
mapped to a higher dimension through the feature extraction layer.
Then the corresponding matrix estimation layer is used to learn to
express local features explicitly. Secondly, the correspondingmatrix
is embedded in the feature embedding and fusion layer. It includes
calculating the inner product matrix of local features of two-point
cloud. This method fully improves the characteristics of source
point cloud and can effectively handle the registration of point
cloud with large initial Angle. The method then uses 2DCNN to
further extract the features and extend them to one-dimensional
tensors. Finally, a scaling factor is introduced at the end of the

TABLE 5 Method of disregarding non-overlapping regions.

Category Model Reference

Disregard non-overlapping regions

FMR Huang et al. (2021a)

SCANet Lu et al. (2019b)

CSPN Xie et al. (2022)

MFGNet Wang et al. (2022)

HDRNet Gao et al. (2022)

fully connected layer and the tensor is used to return the attitude
information. In addition, the EMD loss function in PCRNet is used
to train the network, which ensures that the method can cope with
multi-scale partial overlapping point cloud registration. However,
since the method only uses the improved loss function to deal
with partially overlapping point cloud registration, the registration
accuracy of point cloud will decline rapidly when the local features
are not obvious.

The degree of overlap between the target point cloud and
the target point cloud is an important factor affecting the
practical application effect of point cloud registration. Although
the recently proposed partial point cloud registration network of
deep learning has designed a unique structure combined with
its own method characteristics to alleviate the interference of
non-overlapping regions, it is far from being able to completely
eliminate the influence of non-overlapping regions. A summary of
the methods in this class is shown in Table 5. In the future, more
innovative networks are needed to solve the problem of point cloud
registration for large-scale, low overlap and real-time applications.

5 Network acceleration

Deep learning-based point cloud registration methods have
made great progress, but the existing methods are mostly in the
laboratory environment, using the existing data set for training,
testing and horizontal comparison. How to apply the existing
network model to the actual field and develop a real-time, accurate,
and fast registration method is a problem that researchers have
to think about. With the development of computer hardware
technology and the emergence of advanced networks, the practical
application of deep point cloud registration technology is becoming
more and more. Therefore, this section will make a detailed
summary and comment on the neural network acceleration
application of deep learning from the hardware and software parts.

5.1 Hardware

The continuous development and breakthrough of GPU
technology (Nickolls et al., 2008; Lee et al., 2010; Rosenberg et al.,
2020; Gao et al., 2022) has ushered in the vigorous development of
deep learning technology. Bakhoda et al. (2009) proposed a brand
new high-performance GPU parallel space hash framework ASH.
With this new framework, richer functionality can be achieved
with fewer lines of code. Such as space transformation operation,
geometric reconstruction and micro-appearance reconstruction.
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At the same time, the framework can index the data of direct
access to outer space changes, and realize seamless integration with
Pytorch and other neural network frameworks. For large-scale 3D
sensing tasks such as point cloud voxel, scene reconstruction, non
rigid point cloud registration (Jin et al., 2021; Dong et al., 2022),
and volume deformation, researchers are allowed to complete the
previous work with less code workload.

In order to achieve high accuracy in deep learning network, the
scale of deep learning point cloud registration model is increasing.
However, due to the limitation of single GPU memory, it is
difficult to achieve high precision and large scale depth model.
For this reason, NVIDA introduced unified memory technology in
the sixth generation of CUDA to expand GPU memory through
CPU memory and device memory (Harris, 2017; Chien et al.,
2019; Choi and Lee, 2021; Lin, 2022). The data required for point
cloud registration of deep learning can be roughly divided into
three categories: parameters required by the model, input data
and intermediate results. In each iteration run, new values are
needed to update the parameters required by the model, and
this work must be carried out on the GPU until the training is
completed. The data access mode during registration is similar to
the memory suggestion mode supported by NVDIA. Therefore,
the unified memory technology of CUDA can more effectively
implement the point cloud registration of deep learning. In order
to cope with the limitation of single GPU, many institutions have
built large GPU clusters for deep neural network (DNN) training
(Sakharnykh, 2018). GPU clusters generally provide services for
parallel tenants. Multi-user GPU clusters are usually managed by
the cluster manager (Hindman et al., 2011; Vavilapalli et al., 2013;
Wu et al., 2021) or the GPU cluster customized scheduler (Peng
et al., 2018; Xiao et al., 2018; Gu et al., 2019; Mahajan et al., 2020).
Users submit deep neural network (DNN) training tasks and their
resource requirements, such as the number of Gpus and rental
time, to the cluster. To realize the use of idle resources to complete
the performance analysis, work migration and other goals. It also
provides a new and efficient hardware foundation for deep learning
point cloud registration researchers.

In addition to GPU, the development of new hardware,
especially surface scanning, line scanning, active/passive laser, and
femtosecond lidar, also provides new opportunities for point cloud
data registration of Lidar (Zhang et al., 2017).

5.2 Software

In addition to the hardware mentioned above, software is also
an important factor affecting the registration effect of deep point
cloud. Most of the existing models strengthen the learning ability of
the network through the complex design of the network structure,
but ignore the complexity of the network operation and the time
cost. Some methods can only be applied to small-scale point cloud
data and cannot deal with actual large-scale point cloud data.

Therefore, recently researchers have proposed a variety of
solutions for deep learning neural networks affected by point
cloud data in large-scale scenarios. For example, RandLA-Net
(Cheng et al., 2018) uses random sampling method to replace the
nearest point sampling of iteration, random ellipsoid sampling and

other methods that cost much calculation. Meanwhile, a pooling
layer based on attention mechanism is designed to alleviate the
influence of random sampling on learning mechanism. CSPN
(Xie et al., 2022) adopted a pyramidal network structure to help
extract and combine features of different levels. PVCNN (Hu
et al., 2020) and improved PVRCNN (Shi et al., 2020) network
combined the network structure of PointNet with the learning
mode of 3D voxel grid structure, and designed PV-Conv as the
basic module of the learning network. The PV-Conv structure
can aggregate neighborhood features at low resolution through
3D-CNN of 3D voxel lattice structure. The PointNet is used
to supplement the lack of information in high resolution single
point mode. Thus, rapid perception and collection of point
cloud features can be realized in large-scale scenarios. The newly
proposed SPVNAS structure (Liu et al., 2019b) further improves
PC-Conv. By combining with sparse convolution structure, it can
accommodate voxel lattice with higher resolution and improve
the computing efficiency of the network. At the same time,
because some existing models are not end-to-end, combining
traditional registration methods is necessary. This undoubtedly
brings additional computing costs. Therefore, the development of
end-to-end networks, or more easily integrated network modules,
is also a valuable direction.

While ensuring the effectiveness of the method, real-time
processing of massive point cloud data is an urgent problem
for deep learning point cloud registration methods. If you
want the solution to be real-time, as well as data processing
in large-scale scenarios, you have to consider the support of
computer hardware and software. In future work, more excellent
performance of GPU and its running conditions, and more
efficient method structure are undoubtedly the focus of attention
of researchers.

6 Applications

Point cloud registration plays a pivotal role in various
practical applications, as illustrated in Figure 5, which depicts the
integration of deep learning-based point cloud registration with
disciplines such as computer science, engineering, mathematics,
medicine, and more. This section will delve into the real-world
utilization of deep learning for point cloud registration and offer
insights into its application trends and prospects in these diverse
fields.

6.1 Medical

Real-time medical image registration has always been a
frontier problem in the medical field. This is especially true
of prostate cancer, the second most malignant disease in the
world. MR-TRUS image registration enables targeted biopsy
and brachytherapy, resulting in accurate perineal biopsy
needle insertion and brachytherapy catheter placement.
Because the manual registration process depends on doctors,
it is time-consuming and cannot be replicated. Therefore,
Tang et al. (2020) proposed a nonrigid MR-TRUS image
registration framework ProRegNet for prostate intervention.
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FIGURE 5

Interdisciplinary integration of deep learning-based point cloud registration (Source: Scopus database).

The registration framework consists of a convolutional neural
network (CNN) for MR Prostate segmentation, a CNN for
TRUS prostate segmentation, and a point cloud-based network
for fast 3D point cloud matching. In addition, based on the
simulated Fe-TRUS training, ProRegNet can predict the point
cloud motion of the prefrontal glands under the implicit
biomechanical constraint and achieve automatic MR-TRUS
image registration.

In prostate cancer treatment, radiation reagents can be injected
into major prostate lesions to control tumors effectively. However,
it is difficult to identify major intracortical lesions on CT images.
Multi-parameter MRI has superior soft tissue contrast and is
commonly used to detect lesions in the oral cavity. For this
reason, Fu et al. (2021a) proposed a deep learning-based point
cloud matching network, which registered multi-parameter MRI
and computed tomography CBCT images to identify the main
lesions of radiotherapy for prostate cancer. CBCT and MRI first
contour the prostate, which is then meshed into point clouds.
This method trains the network using the point cloud generated
by finite element analysis. The trained network can perform
MRI-CBCT prostate image registration under biomechanical
constraints, bringing new opportunities for identifying diseased
sites.

Physical registration of nonrigid images is a critical component
of image-guided liver surgery. To overcome the problems caused
by noise, partial overlap, and sparse point clouds during the
operation, Fu et al. (2021b) propose a new grid point cloud
registration based on occupancy learning-based, which trains the
point cloud depth network to reconstruct occupancy functions
from sparse points. The reconstructed liver was used to guide
nonrigid registration and to align preoperative liver images with
intraoperative samples. Considering the booming development of

themedical field and a large amount of research funds, it is expected
that the field will remain strong in the practical application
direction of deep learning point cloud registration (Jia and Kyan,
2021).

6.2 Autonomous driving and intelligent
vehicles

Recently, point cloud registration is widely used in intelligent
vehicle research, including creating larger 3D scanning scenes,
map matching, visual odometer, attitude estimation, and other
directions. Intelligent vehicles must recognize the exact location
and category of surrounding objects in various situations to take
into account interactions with them. As a result, light detection and
range sensors called LiDAR (laser radar) are widely used in smart
cars. LiDAR provides information in the form of point clouds that
can be used to locate and classify surrounding objects. However,
unlike vision-based object detection and classification systems,
LiDAR point clouds do not have enough shape information to
classify dynamic objects due to the sparsity of points. To solve
this problem, Min (2019) proposed a brand new model, which
enhanced classification performance based on deep learning by
adding LiDAR point cloud shape information. A hierarchical
accumulationmethod considering three degrees of freedommotion
of dynamic objects is also used. The test on actual vehicle data
obtained excellent results. However, the classification performance
of this model will decline with the increase of nonrigid objects such
as pedestrians.

Loop closure detection, as an essential component of the
SLAM system, can reduce the drift accumulated over time.
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Cattaneo et al. (2022) proposed a new registration method for
loop closure detection, LCDNet, which can simultaneously perform
loop detection and point cloud registration. LCDNet estimates
the whole six degrees of freedom (DoF) relative transformation
between point clouds under driving conditions, which is completely
different from previous registration methods and helps to achieve
faster convergence in subsequent ICP refinements. This method
can also be integrated into the existing Lidar SLAM database (Kim
et al., 2021).

In addition, point cloud registration between real-time point
cloud of vehicles and 3D maps can be applied to real-time
vehicle positioning. The critical requirements of autonomous
driving for the positioning function are high precision and real-
time efficiency. The development of a high-precision and fast
registration method with prior road information is the research
direction of automatic driving (Shan et al., 2020). Meanwhile,
the existing image-to-point cloud registration methods mainly
aim at vehicle platforms along paved roads. The image-to-
point cloud registration on the UGV platform suitable for off-
road driving is also a new application direction (Li and Yang,
2021).

6.3 Architecture

BIM (Building Information Modeling), as a new generation
of information storage and operating system, is widely used in
architecture and construction management. The system usually
contains a three-dimensional model and properties of the building.
Previous computer-aided BIM designs were only capable of simple
guidance and theoretical planning because there was no linkage
between the system and the real world. Point cloud data can
overcome this limitation and precisely align the digital model with
the physical space. Significant advances in 3D imaging technology
enable us to effectively monitor and manage engineering progress
during construction (Omar and Nehdi, 2016; Jeon and Seo, 2022).
The application of point cloud data will make it easier to evaluate,
visualize and transform projects dynamically. In general, point
cloud data can be used with BIM to visualize the progress of
the project. Yang et al. (2015) proposed an automatic registration
method based on the deep learning method of a data-driven
convolutional neural network (CNN). The model can identify the
differences between the “planned” and “actual” models with greater
accuracy, ensuring that monitoring and construction can be carried
out in real time. Sheik et al. (2022) proposed a method of using
corner points to register the scanning model of buildings with
the BIM model. Using Building SMART International Ltd. based
on IFC data exchange format, they directly employed the IFC
schema to extract lossless geometric details, rather than converting
BIM to another format. In addition, indoor and outdoor point
cloud registration is also a challenging research direction (Thein,
2011).

Although point cloud data brings a new level of technological
innovation to the construction industry, two obstacles limit its
widespread use. First, 3D sensors are expensive. Secondly, the
existing registration methods could be more efficient, and the main

factor lies in the slow speed of registration methods. Most of
the current methods are improvements on the traditional point
cloud registration (Kim and Cho, 2017; Kim et al., 2018; Lei
et al., 2019). However, there is still a lack of more robust and
fast deep learning point cloud registration methods in the field of
building information. In future research, it is urgent to develop
a fast and high-precision registration method that can be applied
in architecture. The combination with deep learning point cloud
registration is also a new development opportunity in architecture.

6.4 Industrial

In the field of automation-related industry, in order to
overcome the shortcomings of manual assembly, automatic
assembly system has developed rapidly. Zhang et al. (2012)
proposed a flexible and unified system. The system integrates
a partial point cloud registration architecture, including deep
learning-based and iterative nearest point (ICP) methods for
rough and exact registration, respectively, to solve time-consuming
matching problems. At the same time, it also includes an open
loop, closed loop, visual-based control, and force control required
by the semi-automatic assembly, so as to solve the problem of
inconvenient manual operation in industrial manufacturing.

The blade is known as the crown jewel of modern industry,
widely used in aeroengine, steam turbines, wind turbine, etc. In
order to ensure perfect and stable aerodynamic performance, the
modern industry requires very high dimensional accuracy and
surface integrity of the blade. An accurate measurement of blade
profile is a key means to guide blade production. At present, non-
contact optical measurement technology is particularly prominent
in blade profile measurement. A fundamental problem of this
technology is how to arrange measurement point clouds from
different viewpoints into a complete profile. Xie et al. (2022)
proposed a new general model CSPN for blade profile registration
on the basis of the developed multi-axis motion system. With
the learning ability of the deep neural network, the accuracy of
registration is greatly improved.

In addition to the above applications, Peng et al. (2023) presents
a novel approach to modeling soft fabric-type actuators using
deep learning to correct simulated point clouds and improve their
resemblance to real actuators. By employing PointNet and LSTM,
the authors effectively capture time-series data and enhance the
accuracy of point cloud features prediction, ultimately improving
the similarity between corrected simulated point clouds and
real data. The integration of deep learning into this context
is promising for applications in robot design and control,
enabling rapid and cost-effective real-time simulations of wearable
devices.

6.5 Other applications

In addition to the above fields, researchers have been exploring
the application of deep learning point cloud registration technology
in other fields in recent years (Peng et al., 2022; Mao et al., 2023).
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In many countries, the protection and restoration of cultural
relics have attracted more and more attention [CHANGE project
& PRESIOUS project]. As one of China’s most precious cultural
relics, excavating and preserving the Terracotta Warriors has
always been a major challenge. Many of the terracotta warriors
exist in fragments, and reassembling them manually would be
laborious and time-consuming. For this reason, Chang et al.
(2021) proposed a recombination method SPPD based on the
fracture surface. It provides a precious tool for virtual restoration
of three-dimensional cultural heritage. Augmented reality (AR)
has been prominent in artificial intelligence applications recently.
Among them, modeling the spatial relationship between the
2D images captured by the real camera and the 3D model of
the environment (2D and 3D space) is a method to realize
the virtual-real registration of augmented reality (AR). Based
on this, Yao et al. (2021) proposed a new end-to-end network
AE-GAN-Net to verify and evaluate the virtual-real registration
performance of AR in the cross-domain image matching results,
providing a novel tool for AR virtual-reality registration in outdoor
environments.

7 Summary and future outlook

Point cloud registration is a crucial task in many areas. This
review discusses the point cloud registration technology based
on deep learning. Based on the morphology of point clouds,
the current methods are categorized into two types: complete
overlapping point cloud registration and partial overlapping point
cloud registration. For each type, a comprehensive overview and
evaluation have been presented. How to further improve the
performance of the method, and speed up the processing speed
of the network to adapt to the real data on a larger scale
is analyzed and summarized from both software and hardware
aspects. After that, the practical applications of deep learning point
cloud registration in various fields are discussed, and some ideas
about the possible development in the future are put forward. At
present, the point cloud registration method of deep learning has
made great progress, but it still needs to improve. At the end
of this article, the future research direction and challenges are
prospected.

(1) Influence of point cloud density, scene noise and low
overlap on the robustness of the registration methods. The point
cloud data obtained in natural environment often has much
noise, uneven distribution, and low overlapping. In the future,
how to further strengthen the robustness of the method in
practical situation s is one of the future research focuses. (2)
Real-time processing of massive point cloud data in large-scale
situations. In order to apply point cloud registration to actual
medical image guidance, intelligent vehicles, and other fields,
efficient real-time performance is needed. Due to the complex
network structure, it is often difficult for the proposed methods
to process massive point cloud data quickly. Therefore, while
ensuring the effectiveness of the method, improving the real-time
performance of the method is also the focus of future re-search.
(3) The registration based on deep learning can be supervised
or unsupervised. Most of the existing deep learning point cloud

registration methods are supervised and must be based on a large
number of training samples. However, the unsupervised method
can avoid the calculation cost caused by the need for massive
annotated data in the training process. Still, the unsupervised
method generally uses the loss function of similarity measurement
to train the network, which makes the selection of loss function
become extremely important. To solve the above problems, self-
monitoring may be a good solution. This method does not require
pre-annotated point cloud data for training, but carries out self-
annotated training through the inherent internal relationship
between input data. This is of great significance to the real-time
performance of the method. This is also one of the research
hotspots in the future. (4) Non-rigid point cloud registration
method. Point clouds can be divided into rigid point cloud
registration and non-rigid point cloud registration for different
estimation categories. Non-rigid registration is essential for human
point cloud data, joints, deformation, etc. Compared with rigid
registration, non-rigid point cloud registration needs to consider
deformation in addition to the above challenges, which leads to
larger solution space. This is also a big challenge for researchers.
The current mainstream methods can be divided into two
categories: displacement-based and flow-based models. However,
only a few researches on non-rigid point cloud registration are
based on deep learning. This is undoubtedly one of the research
hotspots in the future.

8 Conclusion

In conclusion, this review has provided a comprehensive
analysis of the current state of point cloud registration technology
based on deep learning. It has categorized methods into complete
and partial overlapping point cloud registration, highlighted the
need for performance improvement, and addressed challenges
from both software and hardware perspectives. The practical
applications of deep learning in various fields have been
explored, offering valuable insights for its future development.
The identified research directions include enhancing robustness
in noisy and low-overlapping environments, improving real-
time processing capabilities, exploring unsupervised learning
methods, and advancing non-rigid point cloud registration.
These challenges represent exciting areas of future research,
underscoring the evolving landscape of deep learning in point
cloud registration.
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