AUTHOR=Jin Piaopiao , Lin Yinjie , Song Yaoxian , Li Tiefeng , Yang Wei TITLE=Vision-force-fused curriculum learning for robotic contact-rich assembly tasks JOURNAL=Frontiers in Neurorobotics VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2023.1280773 DOI=10.3389/fnbot.2023.1280773 ISSN=1662-5218 ABSTRACT=
Contact-rich robotic manipulation tasks such as assembly are widely studied due to their close relevance with social and manufacturing industries. Although the task is highly related to vision and force, current methods lack a unified mechanism to effectively fuse the two sensors. We consider coordinating multimodality from perception to control and propose a vision-force curriculum policy learning scheme to effectively fuse the features and generate policy. Experiments in simulations indicate the priorities of our method, which could insert pegs with 0.1 mm clearance. Furthermore, the system is generalizable to various initial configurations and unseen shapes, and it can be robustly transferred from simulation to reality without fine-tuning, showing the effectiveness and generalization of our proposed method. The experiment videos and code will be available at