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In this paper, we propose a monocular catadioptric panoramic depth estimation

algorithm based on an improved end-to-end neural network model. First, we

use an enhanced concentric circle approximation unfolding algorithm to unfold

the panoramic images captured by the catadioptric panoramic camera and

then extract the e�ective regions. In addition, the integration of the Non-local

attentionmechanism is exploited to improve image understanding. Finally, a depth

smoothness loss strategy is implemented to further enhance the reliability and

precision of the estimated depths. Experimental results confirm that this refined

algorithm is capable of providing highly accurate estimates of object depth.
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1. Introduction

Traditional camera systems are often limited by their narrow field of view, a problem

that is currently being alleviated by the introduction of panoramic cameras (Svoboda et al.,

1998). There are four main types of panoramic vision cameras: pan-tilt rotating, fisheye lens,

multi-camera stitching, and catadioptric. In particular, a catadioptric panoramic camera uses

a special type of mirror, called a catadioptric mirror, to direct light from different angles onto

a single image sensor, thus capturing panoramic images (Jaramillo et al., 2016). Consisting

mainly of a convex reflecting mirror, an imaging lens, and a photosensitive component

(Baker and Nayar, 1998, 1999), the catadioptric panoramic camera avoids the complicated

designs associated with optical lens structures and solves the problem of image distortion

(Liu et al., 2016). Additionally, it eliminates the call for image stitching, thus affirming the

real-time capture of a 360◦ panoramic view.

The rapid growth of visual systems research has increasingly made panoramic vision

systems a critical point of interest for researchers in related fields. This technology finds

its extensive applications in areas such as robotic navigation, Internet of Things (IoT), and

autonomous driving (Yamazawa et al., 1995; Liu and Liang, 2013; Khurana and Armenakis,

2018). Panoramic vision systems are designed to capture a 360◦ view of the environment

(Nichols et al., 2010). In the field of depth estimation in panoramic vision, a depth value

is computed for each pixel in an image to facilitate the approximation of distances between

objects in the scene and the camera itself. Twomain approaches have dominated the research

field of image depth estimation: supervised and unsupervised learning.
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Supervised learning is performed on datasets that are

comprehensively labeled with critical depth information, providing

an effective method for monocular depth estimation (Eigen

et al., 2014). A unique image reconstruction loss function is

incorporated to assess the disparity between the generated depth

map and the input image (Li et al., 2017), thereby supporting

the network’s learning of image depth information. In addition,

data augmentation techniques are used to amplify and transform

the training data, thus diversifying the network training samples

and effectively increasing the network’s generalization capacity

(Eldesokey et al., 2020; Kusupati et al., 2020). Despite their

proven ability to deliver high-quality depth estimation results, these

methods are highly dependent on the considerable time and skill

of the personnel responsible for the annotation process, making

the potential occurrence of annotation errors or inconsistencies

virtually unmanageable.

With the advancement of deep learning techniques,

unsupervised end-to-end depth estimation methods have become

one of the research hotspots. End-to-end neural network models

can complete the entire process from input to output without the

need for human intervention at intermediate steps. These models

fall into two categories: the first assimilates learning through stereo

matching techniques; the second exploits the displacement between

successive frames to infer the depth data associated with objects in

the scene (Garg et al., 2016). The use of unlabeled monocular video

sequences as network inputs to train convolutional neural networks

(CNNs) in an unsupervised approach has enabled depth estimation

models to be independent of labeled depth information datasets

(Zhou et al., 2017). This method has expanded the potential

application scenarios of depth estimation models. However, a

limitation of this method is the relatively lower precision of

depth estimation. Consequently, various methodologies have been

adopted to enhance the performance and robustness of depth

estimation. These include the employment of a reconstruction

image loss function to improve the consistency between left and

right disparity maps (Godard et al., 2017), and the integration of

three-dimensional geometric constraints to constrain unsupervised

learning of depth (Mahjourian et al., 2018). By using binary depth

classification during the training process, it is possible to quickly

predict nearby objects (Badki et al., 2020). In addition, even with

relatively coarse quantization of depth estimation, a high level

of accuracy can be maintained. To tackle the prevalent issue of

unsupervised scale, joint training of monocular depth estimation

and stereo visual odometry is executed through the utilization

of depth information derived from stereo images relative to the

motion between them (Zhan et al., 2018). Unsupervised learning

methods can automatically discover the depth structure within

images without the need for any manual intervention. However,

the complex phenomena in real outdoor scenes, such as lighting

variations, occlusions, etc., pose potential challenges to image

depth estimation. During image depth estimation, these factors

can potentially lead to issues such as the loss of fine details in the

predicted depth map and lower accuracy in the depth map, thereby

preventing the acquisition of accurate depth information.

This paper presents a novel approach to depth estimation in

panoramic images using a catadioptric panoramic camera. The

unique design of this camera facilitates real-time monitoring of

FIGURE 1

Panorama expansion.

the environment in a 360◦ fashion and mitigates the challenges

of distortion and missing patches encountered by multiple camera

systems, ultimately reducing costs. The unsupervised end-to-end

depth estimation method proposed herein systematically addresses

the challenge of insufficiently accurate fine detail prediction often

seen in existing models. With this goal in mind, our approach

incorporates a Non-local attention mechanism to capture intricate

contextual dependencies within images. Additionally, we introduce

a depth smoothing loss to increase the accuracy and efficiency of

our depth estimation algorithm.

2. Proposed method

2.1. Catadioptric panoramic camera image
preprocessing

The imaging principles, manufacturing costs, and complexity

of various curved reflecting mirrors are all factors to consider

when selecting reflecting mirrors for a catadioptric panoramic

imaging system. A hyperbolic mirror can capture images within

a broader range and it offers the advantage of lower production

costs. Therefore, in this paper, hyperbolic mirrors are selected as

the reflecting elements for the catadioptric panoramic imaging

system. Due to the special characteristics of the imaging principle

of the catadioptric panoramic camera, the panoramic image

captured by the catadioptric panoramic camera has a large

distortion. To solve this problem, it is necessary to expand the

panoramic image into a two-dimensional rectangular image, so

that each pixel in the panoramic image corresponds to a position

in the expanded image. This is called panorama expansion.

As shown in Figure 1.

The traditional catadioptric panorama is usually expanded

by the concentric circle approximate expansion algorithm, but
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FIGURE 2

The principle of the improved concentric circle approximation

unfolding algorithm.

the distortion of the expanded image is obvious, which will

affect the subsequent processing of depth estimation. Aiming

at this problem, this paper improved the concentric circle

approximate expansion algorithm to reduce the distortion degree

of the expanded image. Figure 2 shows the principle of the

improved algorithm.

A rectangular coordinate system with the center of the

catadioptric panorama as the origin O and the horizontal and

vertical directions as the X-axis and Y-axis. The dashed line in

the right plot of Figure 2 is shown. Let the ring represented by the

dotted line be its panorama expansion. Thus, after the panorama

expansion, the length and width of the 2D rectangle can be

obtained. As shown in the following formula:

W = l′ = 2πr,H = h′ = r − R0 (1)

A ray passing through the center point O intersects a circular

ring represented by a dashed line at a point P(x1, y1). After

unfolding, the angle between the ray and the X-axis is denoted by

θ1, so:

θ1 =
1

R1
(2)

Using ray OP as polar axis, rotate 360◦ around pole point O. By

calculation, all the pixel values on the circumference of the circle

can be obtained and arranged in a certain order. The calculation

formula is:















ρ = H + R0

x = ρ cos(θ1)+ u0

y = ρ sin(θ1)+ v0

(3)

As shown in Figure 3, the interpolation process of the

panoramic image is depicted. In Figure 3A, the red dashed

lines represent the pixel values after unfolding the catadioptric

panoramic image. In Figure 3B, the black dots represent the

inserted pixel values. In Figure 3A, the longest side of the trapezoid

corresponds to the region farthest away from the center of the

catadioptric panoramic image. Based on this longest side, construct

a two-dimensional rectangle, ensuring that each row has the same

number of interpolated pixels as the length of the longest side. If

the longest side of the trapezoidal image has m pixels, and the

FIGURE 3

The principle of interpolation for catadioptric panoramic images.

(A) is unfolding of the catadioptric panoramic image, and (B) is

unfolding image after interpolation.

shortest side has n pixels, then the shortest side needs to insert m-n

pixels to ensure that each row in the two-dimensional rectangle has

the same number of pixels as the longest side. When performing

the interpolation process, the first pixel xi, i = 1, 2, · · ·m of the

shortest side of the trapezoidal image should be placed at the

first position of the corresponding side of the rectangle. Since we

need to insert m − n pixels on the shortest side, this means that

between adjacent pixels, we will need to insert (m − n)/n pixels to

maintain the required consistency in the interpolation process. By

using interpolation, we insert n interpolated pixel values between

adjacent pixels of the catadioptric panoramic image’s shortest side.

This process is performed consistently for each row, resulting in

the final rectangular unfolded image of the catadioptric panoramic

view. Finally, by using interpolation, we insert (m − n)/n pixel

values between adjacent pixels of the longest side of the catadioptric

panoramic image, resulting in the final rectangular unfolded image

of the catadioptric panoramic view.

As shown in Figure 4, the simulation results from bothmethods

indicate that the improvedmethod exhibits significantly better real-

time performance compared to the traditional method. Comparing

the unfolded images in Figures 4B, C, the improved concentric

circle approximation unfolding algorithm shows less distortion and

more accurately reproduces the original scene.

The unfolded panoramic image contains complete 360◦

panoramic information of the scene. In practice, only the part

of the image directly in front of the object is needed. Therefore,

it is necessary to extract the relevant region from the unfolded

panoramic image effectively. From the unfolded image in

Figure 4C, it can be observed that the frontal view of the vehicle

is located on the left side of the unfolded image, and the height

of the vehicle’s top part is approximately one-third of the entire

image height. Therefore, the effective region of interest lies

within the left-to-right half of the unfolded image and within the

top-to-bottom two-thirds of the unfolded image height. As shown

in Figure 5, this effective region is the crucial area for subsequent

depth estimation. In fact, this can reduce the computational

load, improve detection speed, and even eliminate some

false positives.

2.2. Improved unsupervised monocular
depth estimation model

To address the challenge of difficult annotation in supervised

learning methods, this paper adopts an unsupervised learning
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FIGURE 4

Unfolding of the catadioptric panoramic image. (A) is the panoramic image, (B) is the unfolded image using the traditional method, and (C) is the

unfolded image using the improved method.

FIGURE 5

E�ective region extraction.

approach for image depth estimation. A common problem with

unsupervised end-to-end depth estimation methods is the lack of

accuracy in predicting fine details. Existing unsupervised image

depth estimation methods pay limited attention to the influence

of the spatial context of the image on the depth information.

Therefore, this paper proposes an improvement to a novel

unsupervised learning algorithm framework by incorporating the

Non-local attention mechanism module into the network structure

of the encoder and decoder. This helps the network to perform

adaptive contextual modeling for different regions in the image.

This method enables the network to better comprehend various

objects, backgrounds, and textures present in the image, thereby

enhancing its understanding and representation capabilities of the

image content.

As shown in Figure 6, this is the improved unsupervised

learning depth estimation network model. The network is based

on an end-to-end encoder-decoder framework, allowing it to

perform depth estimation on images at multiple scales. In order

to better capture contextual information in the image, a Non-

local operation attention mechanism module is incorporated

into the network framework. In each layer of the encoder, the

Non-local operation attention mechanism module is used as the

second operation and employs convolution with a stride of 2.

The network architecture consists of three parts: an encoder, a

decoder, and aNon-local operationmodule. The encoder is used for

feature extraction, responsible for converting the input image into

high-dimensional feature vectors. Convolutional neural networks

(CNNs) are commonly employed to implement the encoder part.

The decoder is used for depth estimation, and its main role is to

decode the feature vectors extracted by the encoder into a depth

map. The Non-local operation module is used to extract contextual

information from the image and enables global interaction in the
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FIGURE 6

Unsupervised learning-based image depth estimation model.

spatial dimension of the input feature map. This allows for the

fusion of global contextual information, helping the model to better

understand the relationships between objects in the image, leading

to improved performance.

In this paper, the Disp Net framework (Mayer et al., 2016) is

used to design the structure of the encoder. And, by combining

the long-range skip connections and the Non-local operation,

the network’s expressive power is enhanced to obtain more

accurate depth maps. Convolutional layers are mainly used for

feature extraction in neural networks. Activation layers introduce

nonlinearity into the neural network, which is essential for the

network to learn complex and nonlinear patterns in the data.

Pooling layers play a crucial role in reducing the spatial dimensions

of the feature maps, which can help in reducing the computational

load and the number of parameters in the network. In this network

architecture, except for the output layer, ReLU activation functions

are used after all the convolutional layers. That’s because this

activation function has advantages such as fast computation, ease

of optimization, and avoidance of the vanishing gradient problem.

This design strategy helps to enhance the performance and stability

of the network, making the depth estimation model more reliable

and practical.

In the encoder, using convolutional operations with a stride

of 2 is intended to extract features more efficiently. This

convolutional operation helps to reduce the size of feature maps,

increase the receptive field, and decrease the number of channels,

thereby reducing computational complexity, lowering memory

consumption, and improving the computational efficiency of the

network. Increasing the receptive field helps the network to better

understand the contextual information in the input data, thereby

improving the prediction accuracy of the network. Reducing the

number of channels in the feature maps helps to lower the

dimensionality of the data, leading to reduced computational and

storage costs. By combining these operations in the encoder, the

performance and efficiency of the neural network can be effectively

optimized. Finally, the predicted depth values are constrained using

TABLE 1 The specific structure of the encoder network model.

Name Input Kernel
size

Stride

conv1 image 7× 7 1

conv1b conv1 7× 7 2

conv2 conv1b 5× 5 1

conv2b conv2 5× 5 2

conv3 conv2b 3× 3 1

conv3b conv3 3× 3 2

conv4 conv3b 3× 3 1

conv4b conv4 3× 3 2

conv5 conv4b 3× 3 1

conv5b conv5 3× 3 2

conv6 conv5b 3× 3 1

conv6b conv6 3× 3 2

conv7 conv6b 3× 3 1

conv7b conv7 3× 3 2

the function 1/(α ∗ sigmoid(x)+ β), where α = 8 and β = 0.1. As

shown in Table 1, the encoder network model’s specific structure is

part of an end-to-end encoder-decoder architecture.

As shown in Table 1, the decoder of the end-to-end network

in this paper utilizes deconvolutional operations, taking the output

of the second operation in the last layer of the encoder as its

input. In the other layers of the decoder, a fusion concatenation

operation is employed with the output of the second operation

in the second-to-last layer of the encoder. This fusion allows

the decoder to access and incorporate more image features from

the encoder. The fusion concatenation operation in the other

layers of the decoder follows a similar principle. Specifically, each
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TABLE 2 Decoder network model specific structure.

Name Input Kernel size Stride

upconv7 conv7b 3× 3 2

iconv7 [upconv7, conv6b] 3× 3 1

upconv6 iconv7 3× 3 2

context Non-Local Block [upconv6, conv5b]

iconv6 context 3× 3 1

upconv5 iconv6 3× 3 2

iconv5 [upconv5, conv4b] 3× 3 1

upconv4 iconv5 3× 3 2

iconv4 [upconv4, conv3b] 3× 3 1

disp4 iconv4, sigmoid 3× 3 1

disp4_up disp4, bilinear H/4, W/4

upconv3 iconv4 3× 3 2

iconv3 [upconv3, conv2b, disp4_up] 3× 3 1

disp3 iconv3, sigmoid 3× 3 1

disp3_up disp3, bilinear H/2, W/2

upconv2 iconv3 3× 3 2

iconv2 [upconv2, conv1b, disp3_up] 3× 3 1

disp2 iconv2, sigmoid 3× 3 1

disp2_up disp2, bilinear H, W

upconv1 iconv2, sigmoid 3× 3 2

iconv1 [upconv1, disp2_up] 3× 3 1

disp1 iconv1, sigmoid 3× 3 1

output [disp1, disp2, disp3, disp4]

layer in the decoder consists of two operations: deconvolution

and concatenation. The deconvolution process upsamples the

feature maps from the encoder to obtain higher resolution image

features. In the concatenation operation, the upsampled feature

maps obtained through deconvolution are combined with the

corresponding layer’s featuremaps from the encoder. By combining

the deconvolution and concatenation operations in the decoder,

the network can obtain more detailed and contextually rich feature

maps. This allows the decoder to generate more accurate and

visually appealing image results.

During the deconvolution process, the lack of contextual

information may lead to the loss of some fine details in RGB

images, thereby affecting the results of image depth estimation. To

address this issue, this paper incorporates a Non-local operation

attention mechanism, which calculates the similarity of each pixel

to weight the context information of each pixel. By doing so,

the network can capture and utilize richer contextual information

during the deconvolution process, mitigating the loss of fine details

and enhancing the accuracy of image depth estimation.

The specific structure of the decoder network model for

the end-to-end network is shown in Table 2. The experimental

results show that incorporating a Non-local operation attention

mechanism between [upconv6, conv5b] yields the best performance.

In image depth estimation, to obtain four different scales of depth

maps and upsample the first three scales, bilinear interpolation is

commonly used. The sampling rates for the first three scales are 1/4,

1/2, and 1, respectively, when performing bilinear interpolation.

Finally, by fusing the three scales of depth maps, the network

obtains the final set of four different scales of depth maps

[disp1, disp2, disp3, disp4].

2.3. Non-local attention mechanism

In computer vision, incorporating attention mechanisms can

help models focus on more important areas of an image,

thereby reducing the influence of irrelevant background. Non-

local operation is a type of attention mechanism that uses global

information to capture long-range dependencies between pixels in

an image. Compared to local operations, Non-local operations have

a broader receptive field and stronger modeling capabilities. The

fundamental concept behind non-local operations is to compute

the similarity between each pixel and all other pixels in the image.

These similarities are then used to adaptively weight the entire

image, allowing the model to better understand the global structure

of the image.

Figure 7 shows the schematic diagram of the non-local

operation module. In this paper, both the Context Aggregation

Module and the Transformation Module have incorporated 1 ×

1 convolutions, which can reduce the dimensionality of the

input feature map without losing information. The Context

AggregationModule is the core component for implementing non-

local operations. Its main function is to measure the relationship

between two pixels by calculating metrics such as Euclidean

distance or cosine similarity. By computing these metrics, the

Context Aggregation Module can determine the similarity or

dissimilarity between pixels in the input feature map. This allows

the module to capture long-range dependencies and establish the

global context within the image, enabling the model to understand

the relationships between different pixels and extract important

contextual information. The Transformation Module is used to

convert the input feature map into a new feature map for further

processing. The output of the Transformation Module serves as the

input to the next layer, enabling communication and integration

of data across different layers. 1 × 1 convolutions have two main

purposes: first, to reduce dimensions and decrease the number of

channels; second, to introduce non-linear elements to enhance the

expressive capability of neural networks.

The mathematical definition of the non-local operation is as

follows:

yi =
1

C(x)

∑

∀j

f (xi, xj)g(xj) (4)

In the above Equation: (1) x is feature map; (2) i represents

a spatial position of a point on the input x or output y; (3)

The response value at position i is represented by yi; (4) The

variable j iterates over the spatial coordinates of all points on the

input x or output y; (5) The variable xj represents the value at

position j on the input data; (6) The function f (xi, yj) calculates the
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similarity between position i and position j of the input data; (7)

The function g(xj) calculates a representation of the input data at

position j, which can be understood as a weight for the similarity

function f (xi, yj); and (8) The final response value y of the Non-

local operation at position i is obtained by summing the weighted

similarities f (xi, yj)g(xj) of each position j relative to the current

position i. This sum is then normalized using the normalization

factor C(x), which results in the weighted sum of features from all

positions being used as the response value at that specific position.

2.4. Deep smoothing loss function

To reduce errors and uncertainties of the results, smooth

constraints can be used in depth estimation. Smooth constraints

refer to the reduction of noise and discontinuities in the depth

map by limiting the differences between the depths of neighboring

pixels. This can be accomplished by adding a smoothing term to the

loss function of the depth estimation model. To further improve

the accuracy and effect of depth estimation, this paper improves

the loss function of the model and adopts a depth smoothing loss.

The smoothness error of this loss function can be obtained by

calculating the gradients of the depth map. To better represent

the variations in depth, the gradient computation is performed in

the logarithmic domain of the depth map. Based on experience,

discontinuous depth values in the depth map are typically found

at the edges of the image. Therefore, the edge of the image to be

estimated is used as a penalty factor to limit the smoothing loss.

The deep smoothing loss constructed in this paper includes the

following three aspects:

(1) Smoothing loss based on gradient computation of the

depth map. By computing the gradient of the depth map in

the logarithmic domain, we can obtain information about depth

variations, thereby enhancing the smoothness of the depth map.

∂xZ
i,j

log
= Z

i,j

log
− Z

i+1,j

log
, i = 0, 1 · · ·W − 1; j = 0, 1 · · ·H − 1 (5)

∂xZ
i,j

log
= Z

i,j

log
− Z

i,j+1

log
, i = 0, 1 · · ·W − 1; j = 0, 1 · · ·H − 1 (6)

∇Zlog = |∂xZlog| + |∂yZlog| (7)

In the above equation, ∇Zlog represents the logarithmic

gradient of the depth map, ∂xZlog denotes the gradient’s horizontal

component, and ∂yZlog corresponds to the gradient’s vertical

component. The indices i and j represent the row and column

indices of the depth map, respectively, while W and H represent

the width and height of the depth map.

(2) Smoothing Loss based on Edge information. By utilizing the

edge information from the input image as a constraint, the depth

map can undergo a more accurate smoothing process.

∇Igray = |∂xIgray| + |∂yIgray| (8)

In the equation, Igray represents the grayscale image obtained

from the RGB image, where each pixel value lies in the range of 0 to

255. ∂xIgray denotes the horizontal gradient, and ∂yIgray represents

the vertical gradient.

(3) Final depth map smoothing loss. As shown in Equation (9):

Lsmoth =
1

N

∑

i,j

(∇Z
i,j

log
· e−∇I

i,j
gray ) (9)

In the equation, N represents the total number of pixels in the

image.

TABLE 3 Experimental environment parameters.

Project Environment
configuration

Version Quantity

Operating system Windows10 21H2 -

Deep learning framework PyTorch 1.12.0 -

GPU Nvidia GTX3090 1

Programming languages Python 3.10 -

Public datasets Kitti - 10,000

Self-built dataset - - 1,000

FIGURE 7

Schematic diagram of the non-local operation module.
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3. Experiment

3.1. Experimental environment and process

In this study, the improved unsupervised depth estimation

network model was implemented and trained using the PyTorch

deep learning framework on an NVIDIA GTX3090 GPU. The

experiments were conducted to evaluate the model’s performance

in depth estimation. In addition to using the publicly available

KITTI dataset (Geiger et al., 2013), this study also utilized

a dataset collected from a catadioptric panoramic camera

for the experiments. During the experimental process, batch

normalization layers and the Adam optimizer were applied to all

layers except the input layer. In the Adam optimizer, set β1 = 0.95,

β2 = 0.994, the learning rate to 0.001, and the mini-batch size to

3. Batch normalization layers are applied to every layer except for

the input layer, which helps accelerate the training of the network

and improve its accuracy. Moreover, a relatively small mini-batch

size was chosen to facilitate faster convergence of the network.

Table 3 shows the parameters of the experimental environment in

this chapter.

3.2. Evaluation index

This paper employs four evaluation metrics to assess the

model’s performance, namely Absolute Relative Error (AbsRel),

Squared Relative Error (SqRel), Root Mean Squared Error (RMS),

and Log Error (Log). The specific form is as follows:

AbsRel: The absolute relative error is a metric used to evaluate

the difference between the model’s predicted values and the ground

truth values. Its calculation formula is the absolute difference

between the predicted value and the ground truth value, divided by

the ground truth value, reflecting themagnitude of the error relative

to the ground truth value.

AbsRel =
1

N

N
∑

i=1

|Di − D∗
i |

D∗
i

(10)

SqRel: The squared relative error is computed by taking the

square of the difference between the predicted value and the ground

truth value, and then dividing it by the ground truth value.

SqRel =
1

N

|Di − D∗
i |
2

D∗
i

(11)

RMS: The root mean square error is a metric that calculates

the square root of the mean of the squared prediction errors. It

measures the average magnitude of the prediction errors and is

commonly used to evaluate the accuracy of a model’s predictions.

RMS =

√

√

√

√

1

N

N
∑

i=1

|Di − D∗
i |
2 (12)

TABLE 4 Comparison with other methods.

Methods AbsRel SqRel RMS Log Dataset

Eigen 0.204 1.385 5.995 0.283 Kitti

Zhou 0.202 1.347 5.679 0.264 Kitti

In this paper 0.196 1.423 6.237 0.269 Kitti

FIGURE 8

Results of depth estimation.
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Log: The logarithmic error is a metric that first takes the

logarithm of the predicted values and the true values and then

calculates the error between these logarithms. This metric is useful

when dealing with data that has a large range or significant

differences between values.

Log =
1

N

N
∑

i=1

| lgDi − lgD∗
i | (13)

In the above expressions, N represents the total number of

valid pixels used for evaluation across all RGB images. Di denotes

the predicted depth of the i-th pixel in the RGB image, and D∗
i

represents the true depth of the same pixel.

3.3. Results and analysis

The improved concentric circle approximate expansion

algorithm is used to process the panorama and extract the effective

area. Creating a dataset from these image segments and performing

depth estimation, which validates the robustness of the improved

algorithm proposed in this paper.

Figure 8 shows the result of depth estimation. In Figure 8, the

first column is the original image, the second column represents

the depth estimation results by Zhou et al. (2017), and the last

column shows the depth map obtained using the method proposed

in this paper. The darker colors in the depth map indicate closer

distances, while lighter colors represent farther distances. Through

experiments on different scene images, the depth estimation results

of the original algorithm are fuzzy, and cannot get accurate results

in most cases. The method improved in this paper can generate

clearer depth maps. Especially in the case of edge segmentation of

objects, the effect of the proposed method is more obvious.

To validate the effectiveness of the improved depth estimation

algorithm proposed in this paper, experiments and analyses were

conducted on the Kitti dataset. The proposed depth estimation

model was evaluated by comparing it with the depth estimation

models introduced by Eigen et al. (2014) and Zhou et al. (2017).

The experimental results comparison is shown in Table 4.

As shown in Table 4, our proposed method exhibits lower

absolute relative error and log error compared to the supervised

approach by Eigen et al. (2014), with reductions of 0.8 and 1.4%,

respectively. Compared to the unsupervised learning method by

Zhou et al. (2017), our approach performs better in terms of

absolute relative error, with a reduction of 0.6%, but exhibits slightly

higher overall error. In conclusion, our improved method in this

paper exhibits better performance in terms of error, with higher

accuracy and the ability to address the blurriness issue in image

depth estimation.

To further validate the effectiveness of our algorithm, we

conducted tests on 200 images captured by the catadioptric

panoramic camera in various scenes. Figures 9, 10 show some of

the experimental results from different scenes.

FIGURE 9

Highway depth estimation results.
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FIGURE 10

Neighborhood street depth estimation results.

In Figures 9, 10, the first and third rows show the original

test images. The second and fourth rows display the depth

estimation results. The color of the pixels in the depth estimation

images represents the distance, where darker colors indicate closer

distances and lighter colors indicate farther distances.

From the experimental results, it can be observed that the

improved image depth estimation algorithm in this paper can

relatively accurately estimate the depth range of objects in

the images. Considering the distance analysis relative to the

vehicle during image capture, for objects such as vehicles and

pedestrians located within a distance of less than 2.5 meters, their

corresponding depth values in the depth map fall within the range

of 0 to 80, which shows the darkest colors in the depth map; for

objects with a distance of 2.5 to 4 meters, the gray values in the

depth map results fall within the range of 81 to 150; for objects with

a distance greater than 4 meters, the gray values in the depth map

results fall within the range of 151 to 255, which results in relatively

lighter colors in the depth map.

In conclusion, the research approach proposed in this paper,

based on the catadioptric panoramic camera, has demonstrated its

effectiveness in depth estimation.

4. Conclusion

This paper proposes a monocular depth estimation algorithm

based on the catadioptric panoramic camera. The paper proposes

an improved concentric circle approximation unwrapping

algorithm to process the panoramic images captured by the

catadioptric panoramic camera. This algorithm is used to unwrap

the distorted panoramic images into a more usable format for

further analysis and depth estimation. The proposed approach

enhances the quality and accuracy of the panoramic data. The

effective region is extracted according to the unfolded rectangular

panorama characteristics. Finally, this paper proposes a new

unsupervised end-to-end depth estimation network model. The

experimental results show that the depth estimation results of the

proposed algorithm are better than the existing algorithms.
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