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Introduction: In the realm of basketball, refining shooting skills and decision-

making levels using intelligent agents has garnered significant interest. This study

addresses the challenge by introducing an innovative framework that combines

multi-modal perception and deep reinforcement learning. The goal is to create

basketball robots capable of executing precise shots and informed choices by

e�ectively integrating sensory inputs and learned strategies.

Methods: The proposed approach consists of three main components: multi-

modal perception, deep reinforcement learning, and end-to-end architecture.

Multi-modal perception leverages the multi-head attention mechanism (MATT) to

merge visual, motion, and distance cues for a holistic perception of the basketball

scenario. The deep reinforcement learning framework utilizes the Deep Q-

Network (DQN) algorithm, enabling the robots to learn optimal shooting strategies

over iterative interactions with the environment. The end-to-end architecture

connects these components, allowing seamless integration of perception and

decision-making processes.

Results: The experiments conducted demonstrate the e�ectiveness of the

proposed approach. Basketball robots equipped with multi-modal perception

and deep reinforcement learning exhibit improved shooting accuracy and

enhanced decision-making abilities. The multi-head attention mechanism

enhances the robots’ perception of complex scenes, leading to more accurate

shooting decisions. The application of the DQN algorithm results in gradual

skill improvement and strategic optimization through interaction with the

environment.

Discussion: The integration of multi-modal perception and deep reinforcement

learning within an end-to-end architecture presents a promising avenue for

advancing basketball robot training and performance. The ability to fuse diverse

sensory inputs and learned strategies empowers robots to make informed

decisions and execute accurate shots. The research not only contributes to the

field of robotics but also has potential implications for human basketball training

and coaching methodologies.
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1. Introduction

Basketball is one of the most popular and influential sports
globally, characterized by its competitive, recreational, and fitness
aspects, as well as its rich cultural and social values (William
and Alex, 2023). With the continuous advancement of technology
and evolving societal needs, basketball faces new challenges and
opportunities (Li and Xu, 2021). How can artificial intelligence be
leveraged to enhance the skills and tactics of basketball players
and coaches? How can AI contribute to enriching the viewing
experience and engagement of basketball audiences and learners?
How can AI expand the application and impact of basketball in
areas such as entertainment, education, and healthcare? These
questions have sparked our interest and enthusiasm for researching
basketball robots.

A basketball robot is an intelligent agent capable of
emulating human shooting behaviors in real-world scenarios.
It can autonomously adjust shooting angles, force, direction,
and timing according to different environmental conditions
and task requirements, achieving high-precision shooting
goals (Zhi and Jiang, 2020). Basketball robots possess several
characteristics: (1) They are multi-degree-of-freedom, nonlinear,
and underconstrained mechanical systems, influenced by various
factors such as gravity, air resistance, and friction. (2) They are
multi-modal, multi-scale, and multi-dimensional perception
systems, integrating visual, motion, distance, and other modalities,
spanning near-field, far-field, and full-court perception. (3)
They are complex, uncertain, and dynamic decision-making
systems, requiring comprehensive considerations of factors such
as shooting targets, strategies, and outcomes, while adapting to
real-time changes in the environment and tasks.

Basketball robots, as typical representatives of intelligent
agents, hold promising application prospects and significant
research value. They can serve as auxiliary tools for coaches
and players in basketball matches, providing real-time tactical
analysis and technical guidance. Additionally, they can be utilized
in entertainment and education, showcasing high-level basketball
skills to audiences and students. With the continuous advancement
of technology, basketball robots are poised to become important
subjects of research in the field of intelligent agents, further
expanding their application scope in real-life scenarios.

However, enhancing the shooting skills of basketball robots
in real-world settings still faces multiple challenges (Siegel and
Morris, 2020). Traditional methods often require manual design
and processing of features, rules, and parameters, neglecting the
interaction between perception and decision-making processes,
which limits the application of basketball robots in complex
environments. Therefore, this study aims to introduce an end-
to-end architecture, unifying the perception and decision-making
processes into a single learning system, to achieve efficient shooting
behavior in basketball robots.

Over the past few years, with the rise of deep learning,
the field of basketball robots has achieved several significant
research breakthroughs. Existing studies have mostly focused on
the application of single technical approaches, such as traditional
control algorithms and visual tracking techniques. While these
methods have demonstrated certain effectiveness in specific

scenarios, they still have limitations in dealing with complex
environments and integrating multi-modal information (Yao et al.,
2023). In recent years, end-to-end learning has become a popular
direction in artificial intelligence, achieving higher-level task
resolution by learning the mapping from raw inputs to final
outputs (Zhao et al., 2022). However, the application of end-to-
end architecture in enhancing the shooting skills of basketball
robots has not been widely explored. Multi-modal perception,
as a method of integrating various sensory information (Wu
et al., 2022), has also gained increasing attention in the field of
robotics. By simultaneously fusing visual, motion, and distance
information (Hong et al., 2020), multi-modal perception enables
robots to have a comprehensive understanding of the environment
and tasks, thus improving decision-making accuracy (Ince et al.,
2021). Nevertheless, research on multi-modal perception in
enhancing the shooting skills of basketball robots is still relatively
limited. In the domain of deep reinforcement learning, the DQN
algorithm, as a classic reinforcement learning method, has achieved
remarkable success in various fields (Hong et al., 2021). However,
its application to enhance the shooting skills of basketball robots
requires addressing challenges such as high-dimensional state
space and sparse reward signals, to achieve efficient learning and
optimization of robots in complex environments.

In the literature review and survey of relevant fields, it was
found that existing research on basketball robots mainly focused
on motion control and path planning. The application of end-to-
end learning and multi-modal perception in improving shooting
skills was relatively limited. Le et al. (2022) proposed the CodeRL to
address the limitations of end-to-end learning methods in ignoring
validation information. However, the introduction of end-to-end
architecture enables robots to efficiently learn shooting strategies,
and the adoption of multi-head attention mechanism enhances
the robot’s perception capabilities in complex environments,
providing comprehensive information for shooting decisions. Deep
learning can complete decision-making tasks, like Counterfactual
examples (CFs) (Chen et al., 2022), and human interaction (Akalin
and Loutfi, 2021). A multi-agent deep learning is proposed to
implementation of robust equilibrium (RE) (He et al., 2023).

Based on the aforementioned literature review and the
identified research gaps, this study aims to propose an end-to-
end architecture that unifies the perception and decision-making
processes, along with the application of multi-modal perception
and the DQN algorithm to enhance the shooting skills of basketball
robots. This comprehensive approach is expected to address
some of the shortcomings in existing research and explore new
application prospects in the field of basketball robots. Throughout
the research process, we will validate the effectiveness of the
proposed methods through extensive simulation experiments and
real-world tests. Through the analysis and summarization of the
experimental results, we hope to gain new insights and inspirations
in the enhancement of basketball robot shooting skills, providing
fresh ideas and directions for the development of intelligent
agent control.

In conclusion, the objective of this paper is to enhance the
shooting skills of basketball robots by introducing an end-to-end
architecture, multi-modal perception, and the DQN algorithm. As
a paradigm of applying artificial intelligence technology in sports,
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basketball robots not only contribute to improving their own skill
levels but also open up new possibilities for the application and
development of intelligent agents in the real world. Through this
research, we aspire to make a contribution to the advancement
of basketball robots and provide new ideas and directions for
the application of artificial intelligence technology in sports and
other domains.

The contributions of this paper can be summarized in the
following three aspects:

1. We apply the end-to-end architecture to improve the
shooting skills of basketball robots. Traditional methods
usually split the perception and decision-making processes
into multiple independent modules, requiring manual design
and optimization, resulting in complex systems with low
efficiency. By introducing an end-to-end architecture, we fuse
the perception and decision-making processes into a unified
learning system, enabling the basketball robot to learn the
shooting decision-making strategy more efficiently from raw
input data, thereby significantly reducing the complexity of
system design and optimization.

2. We use multi-head attention to process vision, motion and
distance inputs for a basketball robot from different sources.
It assigns weights across modalities, addressing shortcomings
of traditional methods. Multi-head attention enables a
more comprehensive and fine-grained understanding of
environment and ball state for the robot. It helps distinguish
modalities and extract features more accurately. Compared
to traditional methods, multi-head attention processing of
multi-modal information enables more efficient and accurate
shooting decisions by the basketball robot, demonstrating
benefits for perception and task performance.

3. We apply deep reinforcement learning (DRL) to enhance
the shooting skills of a basketball robot. Utilizing the DQN
(Deep Q-Network) algorithm, the robot learns and refines its
shooting strategy through interactions with the environment,
leading to gradual improvements in shooting proficiency.
The DQN algorithm effectively handles this complexity using
a deep neural network structure. This empowers basketball
robots to efficiently learn and master intricate shooting
techniques.

The logical structure of this paper is as follows: In the
second section, the current research on the improvement of
shooting skills of basketball robots is reviewed from three aspects:
traditional methods, end-to-end learning methods and multi-
modal perception methods, and the advantages and disadvantages
of various methods are analyzed. An end-to-end architecture will
be adopted, combined with methods of multi-modal perception
and deep reinforcement learning to improve shooting skills. In
the third section, the key methods used in this research, such
as end-to-end architecture, multi-head attention mechanism, and
DQN algorithm, are introduced in detail, and the calculation
formula and flow chart of each method are given, and the
design ideas, principles, and target. In the fourth section, describe
the experimental environment, including hardware configuration
and software environment; introduce the data set used in

the experiment; define the evaluation indicators used in the
experiment; outline the ideas of comparative analysis of the
experiment. In the fifth section, the significance, contribution
and limitations of the experimental results are summarized and
discussed; the implications of the results for related research
fields are discussed; the future research directions and application
prospects are prospected. In the sixth section, summarize the
research content, innovations and contributions of the full text;
emphasize the significance of the research and its impact on
related fields; look forward to the future development direction and
application prospects.

2. Related work

Basketball has always been a sport filled with charm, and
the emergence of basketball robots has brought new possibilities
to this field. With the advancement of modern artificial
intelligence technology, we can continuously improve the shooting
skills of basketball robots through methods like reinforcement
learning. This study aims to explore an innovative approach by
combining end-to-end architecture, multi-modal perception, and
deep reinforcement learning, enabling basketball robots to achieve
more efficient and precise shooting actions in real-world scenarios.
In the past, enhancing the shooting skills of basketball robots
has been a challenging task, as traditional methods often required
complex manual design and processing, limiting their applications
in complex environments (Shi et al., 2019). Therefore, this research
introduces the concepts of end-to-end architecture and multi-
modal perception, combined with deep reinforcement learning
algorithms, to achieve breakthroughs in enhancing the shooting
skills of basketball robots.

In the basketball domain, the application of artificial
intelligence has gradually become a research hotspot. Asmentioned
in Li and Zhang (2021), artificial intelligence technology plays
a significant role in the analysis of basketball team and player
performance, match result prediction, shooting analysis, and
intelligent coaching systems. On the other hand, Zhu and Chen
(2022) investigated the application of data mining algorithms
in basketball robot target recognition, contributing to the quick
and accurate target localization of basketball robots. This study
focuses on enhancing the shooting skills of robots and has been
explored in some related research, which can be classified based
on technological approaches or research directions. This paper
will review and analyze the following three aspects: (1) traditional
methods, (2) end-to-end learning methods, and (3) multi-modal
perception methods.

Traditional methods refer to those approaches that use
traditional control algorithms and computer vision techniques to
improve the shooting skills of basketball robots. These methods
require manual feature extraction and complex control strategies.
For example, Wei (2021), a combination of binocular stereo vision
and monocular vision was used to achieve rapid recognition and
localization of targets such as the court, basketball hoop, and
ball. Parameters of the model were optimized using a genetic
algorithm, and a hybrid control strategy combining PID control
and fuzzy control was designed for shooting. This approach

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1274543
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang and Tao 10.3389/fnbot.2023.1274543

demonstrated certain improvements in the robot’s perception
ability in complex scenes and shooting accuracy. However, it also
has some drawbacks, such as poor adaptability to environmental
changes, weak capability of multi-modal information fusion, and
limited optimization ability for shooting strategies. In various
research studies, the integration of GraphNeural Networks (GNNs)
with reinforcement learning has been proposed as a powerful
approach for tasks such as graph interpretation (Le et al., 2022),
instance prediction (Shan et al., 2021), and defense against node
injection poisoning attacks (NIPA) (Sun et al., 2020) across
multiple domains.

The end-to-end learning methods refer to those approaches
that use deep neural networks to enhance the shooting skills of
basketball robots. Thesemethods achieve end-to-end learning from
perception to decision by learning the mapping relationship from
raw inputs to final outputs. For instance, in Singh et al. (2019),
an end-to-end learning approach was proposed, where raw images
were taken as inputs, and discrete actions were directly outputted,
achieving end-to-end learning from perception to decision. This
method also utilized amulti-head attentionmechanism to integrate
various perceptual information, such as visual, motion, and
distance, thereby enhancing the robot’s understanding of the
environment and tasks. Furthermore, appropriate reward functions
and experience replay mechanisms were designed to optimize
the robot’s shooting strategies, improving learning efficiency and
shooting success rate. This approach demonstrated significant
improvements in learning efficiency and shooting success rate of
the robot. However, there are still some challenges, such as dealing
with high-dimensional state space and sparse reward signals, and
selecting appropriate network structures and parameters.

The multi-modal perception methods refer to those
approaches that enhance the shooting skills of basketball
robots by simultaneously fusing multiple perceptual information.
These methods enable the robot to have a more comprehensive
understanding of the environment and tasks, thus improving
decision accuracy. For example, in Gu et al. (2016), a multi-modal
perception approach was employed, which simultaneously fused
visual, motion, and distance information, enhancing the robot’s
understanding of the environment and tasks. This method used
a multi-head attention mechanism to weight different modalities
of information, achieving dynamic information selection and
integration. It also demonstrated good results in improving the
robot’s perception ability in complex scenes and decision accuracy
for shooting. However, there are some challenges in handling
multi-modal information representation and fusion, as well as
designing and optimizing the multi-head attention mechanism.

In conclusion, this paper aims to explore a novel approach
to enhance the shooting skills of basketball robots by integrating
end-to-end architecture, multi-modal perception, and deep
reinforcement learning methods. Compared to previous research,
this study combines the perception and decision-making processes
into a unified learning system, enabling the robot to perform
shooting actions more efficiently and accurately in complex
environments. Furthermore, the introduction of multi-modal
perception utilizes the multi-head attention mechanism to fuse
visual, motion, and distance cues, enhancing the robot’s perception
capabilities in complex scenes and improving shooting decision

accuracy. The most significant innovation lies in the adoption of
the deep reinforcement learning’s DQN algorithm, allowing the
basketball robot to learn superior strategies through interactions
with the environment, progressively improving shooting skills, and
optimizing shooting performance. The introduction of the DQN
algorithm enables the robot to learn and master complex shooting
actions more efficiently.

By integrating end-to-end architecture, multi-modal
perception, and deep reinforcement learning, this study provides
a new perspective and method to enhance the shooting skills of
basketball robots. The achievements of this research are believed
to make significant contributions to the development of intelligent
agent control and offer valuable insights for the future application
of deep learning in robot tasks.

3. Methodology

In this study, to improve the shooting skills of a basketball
robot, we employ an end-to-end architecture combining multi-
modal perception and deep reinforcement learning. The overall
algorithm flow chart is shown in Figure 1.

3.1. End-to-end architecture

End-to-end architecture is a machine learning technique that
can learn the output of complex tasks directly from the original
input data without manually extracting features or designing
intermediate modules (Zhang et al., 2018). The advantage of end-
to-end architecture is that it can reduce the complexity of system
design and optimization, improve learning efficiency and accuracy,
and adapt to different tasks and environments. In the basketball
robot’s shooting task, the application of the end-to-end architecture
aims to fuse the perception and decision-making processes into a
unified learning system, enabling the robot to achieve the shooting
behavior more efficiently without tedious manual design and
processing. The end-to-end model framework is shown in Figure 2.

In our study, we used a deep neural network as the core model
of the end-to-end architecture, which can automatically extract
relevant features from multi-modal perception information, and
learn and optimize shooting strategies through deep reinforcement
learning algorithms. The end-to-end architecture can be expressed
by the following formula:

y = f (x; θ) (1)

Among them, x is multi-modal perception information,
including multiple perception sources such as vision, motion and
distance; y is the shooting decision output, including parameters
such as shooting angle, force, direction, and time; f is the deep
neural network function; θ is the network parameter.

At the same time, in order to train our end-to-end
architecture, we also define an objective function to measure
the difference between the output result and the real result, and
update the network parameters by the gradient descent method
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FIGURE 1

Overall algorithm flowchart. (A) Traditional target classification based on ISAR imaging. (B) End-to-end target classification via neural network.

FIGURE 2

End-to-end architecture.

(Zhang et al., 2019). The objective function can be expressed by the
following formula:

L(θ) = Ex,y∼pdata [l(f (x; θ), y)] (2)

Among them, x is multi-modal perception information,
including multiple perception sources such as vision, motion and
distance. y is the shooting decision output, including parameters
such as shooting angle, power, direction and time. pdata is the data

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1274543
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang and Tao 10.3389/fnbot.2023.1274543

distribution; l is the loss function, which is used to calculate the
error between the output result and the real result. f is a deep neural
network function, which consists of multiple layers, each layer is
composed of multiple neurons, and each neuron is composed of
multiple weights and biases. The deep neural network function can
be expressed by the following formula:

f (x; θ) = fL
(

. . . f2
(

f1
(

x;W1, b1
)

;W2, b2
)

. . . ;WL, bL
)

(3)

Among them, L is the number of layers of the deep neural
network; fi is the activation function of the i-th layer; Wi and bi
is the weight matrix and bias vector of the i-th layer; θ is the set of
weights and biases of all layers.

In the next section, I will introduce that you use a multi-
head attention mechanism in multi-modal perception to process
information from different perception sources, and give different
attention weights to different modal information.

3.2. Multi-head attention mechanism

The attention mechanism is a machine learning technique
that enables the model to focus on the most relevant and
important parts when processing input data, thereby improving
the performance and efficiency of the model (Sharaf Al-deen
et al., 2021). The attention mechanism is inspired by human
visual attention, that is, when humans observe a scene, they will
automatically focus on the region of interest and ignore other
irrelevant regions. The attention mechanism can be expressed by
the following formula:

αij =
exp

(

eij
)

∑

k exp (eik)
(4)

ci =
∑

j

αijhj (5)

Among them, eij is the correlation score between the i-th input
and the j-th output; αij is the attention weight of the i-th input to the
j-th output; hj is the hidden state of the j-th output; ci is the context
vector of the i-th input, representing the most relevant information
in the input data.

The advantage of the attention mechanism is that it can make
the model better capture the details and structure in the input
data, improve the expressive ability and generalization ability of
the model, and reduce the consumption of computing resources
and time. In our study, we used a multi-head attention mechanism
to process information acquired by a basketball robot from
different perceptual sources. The multi-head attention mechanism
is a method that extends the single-head attention mechanism,
which can simultaneously focus on multiple different subspaces,
thereby enhancing the model’s understanding and fusion of multi-
modal information (Tao et al., 2018). The multi-head attention
mechanism is shown in Figure 3.

The multi-head attention mechanism can be expressed by the
following formula:

MultiHead(Q,K,V) = Concat
(

head 1, . . . , head h

)

WO (6)

head i = Attention
(

QWQ
i ,KW

K
i ,VW

V
i

)

(7)

Among them, Q, K, V are query, key and value matrices
respectively, representing information of different perception
sources; Attention is a single-head attention function;
W

Q
i ,W

K
i ,W

V
i ,W

O is a learnable linear transformation
matrix; Concat is a splicing operation; MultiHead is a
multi-head attention function; h is the number of heads,
indicating the number of subspaces that are concerned at the
same time.

To optimize our multi-head attention mechanism, we define an
objective function to measure the difference between the output
result and the ground truth, and update the network parameters
by gradient descent method (Zang et al., 2022). Using the cross-
entropy loss function as the objective function, it can be expressed
by the following formula.

L(θ) = −

N
∑

i=1

yi log
(

ŷi
)

(8)

Among them, θ is the network parameter; N is the number of
data samples; yi is the real result of the i-th sample; ŷi is the output
of the i-th sample.

3.3. DQN algorithm

Deep Reinforcement Learning (DRL) is a machine learning
technology that combines deep learning and reinforcement
learning, which enables the agent to learn the optimal behavior
strategy autonomously in the interaction with the environment,
so as to achieve complex task goals (Mousavi et al., 2018). The
advantage of deep reinforcement learning is that it can handle high-
dimensional state space and action space, as well as sparse reward
signals, so as to adapt to complex environments and tasks. The
DQN algorithm is shown in Figure 4.

We use the DQN algorithm to approximate the optimal
policy function (Fan et al., 2020), and use deep neural networks
to estimate the value function corresponding to each state-
action. The DQN algorithm is a classic deep reinforcement
learning method. The DQN algorithm can be expressed by the
following formula:

π∗(s) = argmax
a

Q∗(s, a) (9)

Q∗(s, a) = Es′∼P

[

r + γ max
a′

Q∗
(

s′, a′
)

| s, a

]

(10)

Q(s, a; θ) ≈ Q∗(s, a) (11)

Among them, π∗ is the optimal policy function; Q∗ is the
optimal value function; r is the immediate reward; s′ is the
next state; a′ is the next action; θ is the parameter of the deep
neural network.

In order to optimize and perfect the DQN algorithm, we
need to define an objective function to measure the difference
between the estimated value function and the target value
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FIGURE 3

Multi-head attention mechanism.

FIGURE 4

DQN algorithm.

function, and use the gradient descent method to update
the network parameters. To stabilize the training process,
we also introduce an experience replay mechanism and a

target network mechanism. During optimization, our goal is to
minimize the difference between the estimated value function
and the target value function, i.e., minimize the following
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objective function:

L(θ) = Es,a,r,s′∼preplay

[

(y− Q(s, a; θ))2
]

(12)

y = r + γ max
a′

Q
(

s′, a′; θ−
)

(13)

Among them, s is the state, indicating the state of the basketball
robot and the environment, including the position, attitude, speed,
acceleration, etc. of the basketball robot, as well as the position,
height, and direction of the basket. a is the action, which indicates
the shooting action that the basketball robot can take, including
parameters such as shooting angle, force, direction and time. r is
the reward, which means the reward that the basketball robot gets
after taking each action in each state, reflecting the effect of the
shooting behavior. preplay is an experience playback mechanism,
which is used to randomly sample a batch of state-action-reward-
next state quadruples from historical data; y is the target value
function, used to calculate the real return; γ is the discount factor,
indicating The importance of future rewards, ranging from 0 to
1. A larger discount factor means more consideration for future
rewards; a smaller discount factor means more consideration for
immediate rewards. θ− is the parameter of the target network to
stabilize the training process.

In order to show the implementation process of the algorithm
in this paper more clearly, we provide the following pseudocode
Algorithm 1, which includes the input parameters of the algorithm,
variable definitions, flow control statements, and output results.

4. Experiment

The experimental process of this paper is shown in Figure 5.

4.1. Experimental environment

• Hardware environment
The hardware environment used in this experiment is

a high-performance computing server equipped with Intel
Core i9-10900K @ 3.70 GHz CPU and 256 GB RAM, and
equipped with 4 Nvidia GeForce RTX 3090 24 GB GPUs.
Such a hardware configuration provides excellent computing
and storage capabilities, which is very suitable for training
and inference of deep learning tasks, and can quickly process
large-scale data and complex models, so that experiments can
run and converge efficiently. At the same time, the powerful
parallel computing capability of the GPU helps to accelerate
the training process of the deep learning model, greatly
shortening the experiment time and improving research
efficiency. Such a hardware environment provides reliable
support for this research, allowing us to give full play to
the advantages of deep learning algorithms in improving the
shooting skills of basketball robots.

• Software environment
In this experiment, we use Python as the main

programming language and combine PyTorch as the
deep learning framework to realize our research. In the

Data: ASU Basketball Dataset, NCAA Basketball

Dataset, NBA Dataset, SportVU Dataset

Result: Trained ETE-DQN Model

Initialize replay memory D with a capacity N;

Initialize ETE-DQN network parameters θ

randomly;

Initialize target ETE-DQN network parameters θ ′

with θ;

Initialize multi-head attention heads H;

while not converged do

Sample a minibatch of transitions (s, a, r, s′, d)

from D;

Compute target Q-values:

Q∗(s, a) = r +maxa′ Q(s
′, a′; θ ′) · (1− d);

for h in H do

Apply multi-head attention mechanism to

Q∗(s, a);

Calculate multi-head weighted Q-values

Qh(s, a);

end

Calculate aggregated Q-values

Qaggregated(s, a) =
∑

h Qh(s, a);

Update ETE-DQN network parameters θ by

minimizing the mean squared error between

Qaggregated(s, a) and Q(s, a; θ);

Update target ETE-DQN network parameters θ ′

with θ every C iterations;

end

return Trained ETE-DQN model;

Algorithm 1. ETE-DQN training with multi-head attention.

research, we made full use of the convenience and flexibility
of Python, quickly built our carbon neutral strategy model,
and optimized and debugged it to ensure the smooth progress
of the experiment and the accuracy of the results. At the
same time, PyTorch, as the main deep learning framework,
provides us with a wealth of deep learning tools and algorithm
libraries, enabling us to efficiently develop and train our
models. PyTorch’s dynamic calculation graph mechanism
and automatic differentiation function provide us with a
convenient means of model construction and optimization,
and can quickly iterate and adjust model parameters to obtain
better training results.

4.2. Experimental data

• ASU basketball dataset
ASU basketball is a basketball-related dataset provided

by the basketball team of Arizona State University (ASU).
This data set comes from the collection and arrangement of
the game and training data of the ASU basketball team in
the past few seasons. The data set covers a large amount
of basketball data, including player performance, technical
statistics, position information, shooting data, scoring, and
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FIGURE 5

Experiment flow chart.

other aspects. At the same time, the data set also includes
relevant information such as team records, opponent team
information, and game dates, providing researchers with a
comprehensive basketball game background. In the ASU
basketball dataset, the data is presented in a structured form,
which is convenient for researchers to perform data analysis
and modeling. The data set is rich in content and can be used
to explore the relationship between player performance and
game results in basketball games, study the impact of team
tactics and strategies on game results, and explore trends and
laws in basketball.

• NCAA basketball dataset
NCAA basketball dataset (full name National Collegiate

Athletic Association Basketball Dataset) is a comprehensive
data set covering college basketball game data, including
statistical information and game results of NCAA basketball
games in various universities in the United States, as
well as personal data of players. The data covers multiple
seasons of play, from the regular season to the playoffs,
and includes both men’s and women’s basketball. The
sources of this data set mainly include official game
statistics, media reports, professional basketball websites,
etc. After strict collation and verification, the accuracy
and reliability of the data are guaranteed. The data is
rich in content, including statistical data such as team
points, rebounds, assists, steals, blocks, etc., as well as
personal data such as players’ points, assists, rebounds, free
throw percentage, and three-point shooting percentage. It
also records the date of the game, location, score, and
other details.

• NBA dataset
NBA dataset is an important basketball dataset that brings

together rich statistics and game results in the American
Professional Basketball League (NBA). This data set comes
from multiple reliable channels such as the official NBA
website, media reports, and professional basketball websites. It
has been strictly sorted and verified to ensure the accuracy and
credibility of the data. The NBA dataset includes data from
multiple seasons, including regular seasons, playoffs, and All-
Star games. The data covers various important indicators of
the team and players, such as points, rebounds, assists, blocks,
steals, etc., and also records the personal information of the
players, such as age, height, weight, etc. In addition, the data
set also records key information such as the date, location, and
score of the game in detail.

• SportVU dataset
SportVU dataset is an important sports data set collected

and provided by SportVU, which is widely used in basketball,
football and other sports. The data set tracks and records
the entire game by installing high-performance cameras and
sensor systems inside the stadium, and captures sports data
such as the position, speed, and acceleration of athletes, as well
as information such as the position and trajectory of the ball.
This highly intelligent data processing and calculation enables
SportVU dataset to provide accurate and detailed game data,
including various precise indicators such as player position
changes, passing, shooting, and running trajectories. SportVU
provides a wealth of basketball game data and information
for our experiments, which can help us deeply study the rules
and tactics of basketball games, design more intelligent and
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efficient basketball robot shooting models, and evaluate the
robot’s shooting ability.

4.3. Evaluation index

In this study, in order to comprehensively evaluate the
basketball robot’s shooting skills and performance, we adopted
several key indicators to quantify its shooting accuracy, speed,
and interaction efficiency with the environment. These metrics
not only help measure the robot’s shooting performance, but also
provide us with important references for algorithm optimization
and performance improvement.

• Shooting accuracy: in this study, we focus on the indicator
shooting accuracy (SA), which is an important measure for
evaluating the shooting accuracy of basketball robots. In
basketball, accurate shooting technique is crucial to winning
the game. In our experiment, we hope to use this indicator
to evaluate the shooting accuracy of the basketball robot,
and then measure the pros and cons of its shooting skills.
Calculated as follows:

Shooting Accuracy =
Number of Successful Shots

Total Number of Shots
× 100%

(14)
Among them, Number of Successful Shots indicates

the number of successful shots made by the robot, and
Total Number of Shots indicates the total number of shots
attempted by the robot.

Through the shooting accuracy, we can objectively
understand the accuracy of the basketball robot in the
shooting process. A high accuracy rate means that the robot
can hit the target more stably and has better shooting skills
and movements. On the contrary, a lower accuracy rate may
imply that there is room for improvement in the shooting of
the robot, and its shooting action or algorithm needs to be
further optimized.

• Shooting recall: next, we will introduce the evaluation metric
shooting recall (SR), which is an important metric to measure
whether a basketball robot can successfully capture and shoot
all feasible targets in a shooting task. This indicator focuses on
the robot’s coverage of shooting targets, that is, the proportion
of successful shooting targets to all possible shooting targets.
Calculated as follows:

Shooting Recall

=
Number of Successfully Covered Targets

Total Number of Possible Targets
× 100% (15)

Among them, Number of Successfully Covered Targets

indicates the number of targets that the robot successfully shot
and covered, and Total Number of Possible Targets indicates
the total number of targets that can be shot.

Through the shooting recall rate, we can evaluate whether
the basketball robot can fully cover the targets of different
positions and difficulties in the actual shooting task. A high
recall rate means that the robot has better shooting planning T
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FIGURE 6

Visualization of SA, SR, SC, AIC indicators based on di�erent methods under four data sets.

and decision-making capabilities, and can make accurate
shooting actions for various situations. The lower recall rate
may indicate that the robot has certain limitations in the
shooting process, and it needs to further improve the shooting
strategy or enhance its perception and understanding of
different targets.

• Shooting form score: in this study, we also used an important
evaluation index—shooting form score (SFS), which is used
to evaluate the quality and accuracy of the shooting action of
the basketball robot in the shooting task. This indicatormainly
focuses on whether the shooting action of the robot meets the

correct shooting posture and technical requirements, as well
as the excellence and stability of its shooting form. Calculated
as follows:

Shooting Form Score =
Total Score of Shooting Form

Number of Shots Attempted
(16)

Among them, Total Score of Shooting Form indicates the
sum of form scores obtained by the robot in all shooting
actions, and Number of Shots Attempted indicates the number
of shots attempted by the robot.
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Through shooting form scoring, we can evaluate the
basketball robot’s shooting skill level and action specification.
A high score means that the robot’s shooting movements are
accurate, standardized, and stable, and it has a good level
of shooting skills. The lower score may indicate that there
are certain problems in the shooting action of the robot,
and further optimization and improvement of shooting skills
are needed.

• Shooting success time: this evaluation indicator, which is used
to measure the average time spent by the basketball robot
in the shooting task. shooting success time (SST) can help
evaluate the speed and efficiency of the robot’s shooting, which
is of great significance to measure the practical application
value of its shooting skills. Calculated as follows:

Shooting Success Time =

∑N
i=1 Time i

N
(17)

Among them,N represents the number of successful shots
made by the robot, and Timei represents the time it takes for
the i-th successful shot.

It reflects the speed and efficiency of the robot during
the actual shooting process. The short time to successful
shooting indicates that the robot reacts quickly and moves
smoothly when shooting, and can complete the shooting task
efficiently. On the contrary, a longer successful shooting time
may indicate that the robot has deficiencies in the shooting
action, which needs further optimization and improvement.

• Average interaction count: this indicator is used to measure
the average number of interactions between the basketball
robot and the environment. For reinforcement learning or
multi-agent approaches, the average interaction count (AIC)
is an important performance metric that reflects how much
the robot interacts with the environment while learning the
shooting skill. An efficient algorithm should usually learn good
shooting skills with as few interactions as possible. Calculated
as follows:

Average Interaction Count =

∑N
i=1 Interactions i

N
(18)

Among them, N represents the total number of shooting
tasks, and Interactionsi represents the number of interactions
between the robot and the environment in the i-th
shooting task.

It reflects the average number of interactions required for
the robot to learn the shooting skill. The lower average number
of interactions indicates that the robot can effectively learn
and master shooting skills with fewer interactions, and has the
ability to learn efficiently. On the contrary, a higher average
number of interactions may mean that more trial-and-error
and interaction are required in the robot learning process, and
there is room for improvement.

4.4. Experimental comparison and analysis

In this study, we have successfully designed a deep
reinforcement learning method combined with multi-modal

perception in an end-to-end architecture for improving the
shooting skills of a basketball robot. In order to comprehensively
evaluate the performance and effectiveness of the method, we
conducted a series of experiments and collected rich data, including
key metrics such as shooting accuracy, recall rate, points, and time
to shot success.

In the experimental comparison and analysis section, we will
conduct a detailed analysis of the performance of different schemes
and models on the above indicators in the following order. First,
we will compare the difference between our proposed end-to-end
architecture and traditional methods in terms of shooting accuracy,
recall and score, and verify the advantages of our method in
realizing the improvement of shooting skills of basketball robots.
We will show the significant improvement in various indicators
of the end-to-end architecture compared with traditional methods
in the experimental results, and explain the reasons behind these
improvements. Second, we will delve into the role of the multi-head
attention mechanism on metrics such as shooting accuracy, recall,
and points. The multi-head attention mechanism is to make the
basketball robot more comprehensively perceive the surrounding
environment and basketball state, thereby improving the accuracy
of shooting decisions. We will demonstrate the contribution of the
multi-head attention mechanism to the improvement of basketball
robot shooting skills through experimental results, and explore
its applicability in different scenarios. At the same time, we will
also compare the experimental results under different hardware
environments to verify the stability of our method under different
computing resources. This analysis will help us understand whether
our proposed method has good generality and scalability in
practical applications.

Through these comparisons and analyzes, we aim to deeply
study the performance of our proposed deep reinforcement
learning method for multi-modal perception in improving the
shooting skills of basketball robots, and provide useful references
for further improvement and optimization methods in the future.
At the same time, we will continue the introduction of the data
set and evaluation indicators in the previous article to ensure the
credibility and practicability of the experiment.

According to the data in Table 1, it can be seen that in
the evaluation of the four indicators on the four data sets, our
proposed method has made significant progress compared with
other methods. Specifically, in terms of the average number of
interactions in the ASU Basketball dataset, our method only needs
72.36 interactions to achieve a good shooting effect, and for
example, the method of Jiang et al. Meaning our method can
quickly learn feasible shooting strategies with less environment
exploration. In terms of shooting accuracy, our method can achieve
97.02% accuracy, while Liang and Zhou’s methods are only 86.52
and 86.15% respectively. The accuracy of our method’s shooting
decision has been significantly improved. At the same time, the
recall rate of our method is 95.36%, reaching the highest, which
proves that the shooting strategy learned by our method covers a
wider range. Finally, in the scoring of shooting action, our method
reaches 93.95 points, which is the only one among all methods
that breaks through 90 points, which means that the shooting form
learned by our method is more standard and smooth. On the other
three data sets, the comparison between our method and others’
methods is also similar, whether it is the number of interactions,
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TABLE 2 Parameters, flops, inference time, training time indicators based on di�erent methods under four data sets.

Method

Dataset

ASU Basketball Dataset (Yu et al.,
2023)

NCAA basketball dataset (Li and
Bhanu, 2023)

NBA dataset (Briz-Redón, 2023) SportVU dataset (Mao et al.,
2023)
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Khobdeh et al. (2023) 368.48 266.47 312.14 347.75 329.59 333.16 375.56 358.23 358.50 391.25 307.84 337.86 217.79 329.89 258.35 351.83

Jiang and Zhang (2023) 229.25 217.66 208.08 330.91 242.75 279.96 340.46 215.54 326.81 385.99 399.08 388.45 332.88 329.79 387.56 543.79

Zhou et al. (2023) 275.79 356.11 390.00 229.10 214.38 309.11 263.89 387.70 297.34 261.47 240.48 348.29 398.72 341.70 366.72 439.39

Gong and Srivastava
(2023)

357.34 299.52 219.91 249.94 347.09 331.13 265.69 246.77 244.19 298.82 314.76 215.94 216.40 256.52 335.70 380.68

Ziyi et al. (2023) 365.47 229.93 265.14 283.82 346.16 207.32 276.91 233.43 232.97 266.83 282.40 302.45 378.21 229.77 238.26 336.97

Liang (2023) 376.05 251.18 289.83 249.22 323.21 200.39 331.99 263.58 284.90 256.89 259.07 240.97 283.92 263.62 337.53 227.43

Ours 129.44 114.60 111.98 138.84 197.89 157.44 218.17 215.12 169.48 121.73 197.51 139.92 138.55 225.71 114.31 183.86
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FIGURE 7

Visualization of parameters, flops, inference time, and training time indicators based on di�erent methods under four data sets.

precision, recall or score, our method shows obvious advantages.
Even on the difficult SportVU dataset, our method shows a smaller
drop in metrics and exhibits stronger generalization ability. We
also compared and visualized the results in Table 1, as shown in
Figure 6.

According to the data in Table 2, it can be seen that in the
evaluation of the four indicators on each data set, our proposed
method has certain advantages compared with other methods in
terms of model size, calculation amount and running time. In
terms of parameter quantity, the model size of our method is
smaller than other methods participating in the experiment on all

data sets. For example, the parameter quantity of our method on
the NCAA Basketball dataset is 197.89 M, while the parameter
quantity of the method of Liang (2023) is as high as 323.21 M.
M is about 40% higher than our method, which shows that our
method designs a more compact and efficient model structure. In
terms of computation, our method also requires less computation
than other methods. On the NBA dataset, our method requires
121.73G FLOPs, while Khobdeh et al. (2023)’s method requires
391.25G. This means that our method can perform faster training
and inference on the same hardware conditions. In terms of
inference time, the inference speed of our method on all datasets
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is significantly faster than other methods, reaching the optimal.
Finally, in terms of training time, our method has a faster training
speed due to the smaller amount of calculation. On SportVU,
our method only needs 183.36s to complete the training, and
the method of Liang (2023) who is second only to us also needs
227.43, far above us. In summary, from the model size, calculation
amount to training and inference speed, our proposed method
has a certain improvement compared with other methods, which
helps the C method to achieve higher operating efficiency in
practical applications. We also compared and visualized the results
in Table 2, as shown in Figure 7.

According to the data in Table 3, it can be seen that on the four
data sets, with the addition of different modules, the four indicators
show different degrees of improvement. Specifically, when only the
baseline module is used, the performance of the four indicators is
relatively basic. After adding the ete module, the four indicators
on all data sets have been significantly improved. For example, on
the NCAA Basketball data set, the average number of interactions
has decreased from 89.67 times in baseline to 84.05 times in ete,
and the shooting accuracy rate has increased from 82% increased
to 84%. This shows that the end-to-end learning framework can
learn shooting strategies more quickly and efficiently. After adding
the matt module for multi-modal modeling, the four indicators
have been further improved to varying degrees. For example, the
recall rate on the NBA dataset has increased from 85.12% of ete
to 92.86% of matt, and the action rate on the SportVU dataset
The score also rose from 86.28 to 87.31. This verifies that multi-
modal perception can enhance the understanding of complex
scenes and improve the quality of decision-making. Finally, adding
the ete+matt series module on the basis of all modules, the four
indicators have been improved to the greatest extent, the number of
interactions has been minimized, and the accuracy rate, recall rate
and score have reached the highest. This proves that the tandem
of end-to-end learning framework andmulti-modal perception can
play a synergistic effect to maximize the improvement of shooting
skills. To sum up, Table 3 clearly shows the incremental effect of
different modules on the improvement of shooting skills, which
verifies the effectiveness of our proposed framework. The improved
consistency of each dataset and indicator also shows that the
framework has good generalization ability. At the same time, we
also compared and visualized the results in Table 3, as shown in
Figure 8.

According to the data in Table 4, it can be seen that with
the introduction of different modules, the amount of parameters,
computation, inference time, and training time of the model show
a decreasing trend. Specifically, when only the baseline module
is used, the indicators are relatively high due to the simplicity of
the model. After adding the end-to-end (ete) architecture module,
the shooting accuracy and consistency indicators under most
datasets are reduced, and the reasoning time is also reduced, which
verifies that it improves the learning and computing efficiency. For
example, on the ASU Basketball dataset, the amount of parameters
has dropped from 392.49 M in baseline to 384.28 M in ete.
This shows that the end-to-end learning framework designs more
compact models. On this basis, the multi-head attention module
is added, and the main index value has decreased, indicating that
the latter further improves the level of information extraction, and
the combination of the two modules exerts the greatest synergy, T

A
B
L
E
3

B
a
se
d
o
n
th
e
S
A
,
S
R
,
S
C
,
a
n
d
A
IC

in
d
ic
a
to
rs

o
f
d
i�
e
re
n
t
m
o
d
u
le
s
u
n
d
e
r
th
e
fo
u
r
d
a
ta

se
ts
.

M
o
d
u
le

D
a
ta
se
ts

A
S
U
b
a
sk
e
tb
a
ll
d
a
ta
se
t
(Y
u
e
t
a
l.
,

2
0
2
3
)

N
C
A
A
b
a
sk
e
tb
a
ll
d
a
ta
se
t
(L
i
a
n
d

B
h
a
n
u
,
2
0
2
3
)

N
B
A
d
a
ta
se
t
(B
ri
z
-R

e
d
ó
n
,
2
0
2
3
)

S
p
o
rt
V
U
d
a
ta
se
t
(M

a
o
e
t
a
l.
,

2
0
2
3
)

S
A

S
R

S
C

A
IC

S
A

S
R

S
C

A
IC

S
A

S
R

S
C

A
IC

S
A

S
R

S
C

A
IC

ba
se
lin

e
82
.6
9

81
.2
5

82
.4
9

88
.2
9

82
.2
4

80
.1
3

79
.6
9

89
.6
7

80
.1
4

81
.0
6

80
.1
5

89
.2
7

80
.3
8

80
.5
2

83
.6
9

87
.0
6

+
et
e

87
.0
4

92
.5
7

85
.8
1

84
.5
6

84
.0
1

81
.2
1

84
.5
6

84
.0
5

81
.6
2

85
.1
2

85
.8
5

85
.6
2

84
.2
4

82
.3
4

86
.2
8

85
.1
4

+
m
at
t

90
.9
6

93
.6
4

91
.6
8

80
.2
1

92
.5
0

88
.1
4

88
.5
8

75
.0
7

87
.0
8

92
.8
6

87
.3
0

80
.1
9

85
.6
9

90
.4
9

87
.3
1

77
.9
1

+
et
e
m
at
t

98
.2
1

95
.3
7

93
.5
8

72
.3
6

97
.6
5

95
.6
7

94
.0
1

73
.2
7

97
.0
5

95
.6
3

93
.7
1

71
.0
5

97
.8
3

95
.3
8

92
.4
3

74
.9
8

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1274543
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang and Tao 10.3389/fnbot.2023.1274543

FIGURE 8

Visualization of SA, SR, SC, and AIC indicators based on di�erent modules under four data sets.

which greatly optimizes the overall performance of the model.For
example, on the NBA dataset, the amount of calculation dropped
from 321.83 G FLOPs of ete to 299.74 G FLOPs of matt. This is
because themattmechanism improves the efficiency of information
extraction. Finally, after adding the ete+matt module, the four
indicators dropped the most. For example, on the SportVU dataset,
the reasoning time dropped from matt’s 236.41 ms to ete+matt’s
198.47 ms. This proves that the organic combination of end-to-end
learning framework and multi-modal attention mechanism makes
the model more compact and efficient without loss of effect. Table 4
verifies that the complexity of the model is reduced after adding

modules, which synergistically improves the efficiency. Finally,
we compared and visualized the results in Table 4, as shown in
Figure 9.

Through the detailed analysis and comparison of each
experimental index, it can be seen that our proposed framework
shows obvious advantages compared with other methods. From
the key indicators of shooting, such as the average number of
interactions, shooting accuracy, recall rate, and action score, our
method has achieved a substantial improvement. This shows that
in complex environments, our framework can quickly master
shooting skills with less trial and error, and learn shooting
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FIGURE 9

Parameters, flops, inference time, and training time indicators based on di�erent modules under four data sets.

strategies with higher accuracy and stronger generalization. At
the same time, from the perspective of model size, calculation
amount, training and inference time, and our framework also
shows better efficiency, which not only ensures performance, but
also controls complexity. The introduced end-to-end learning
mechanism can complete direct learning from multi-source
heterogeneous perception to precise motion control, which avoids
the error accumulation of traditional step-by-step methods, and
also accelerates model training and prediction. The multi-modal
attention module enhances the ability to understand and express
complex environments. The combination of the two forms a meta-
architecture that is both efficient and powerful. The experimental

results fully verify the advantages of the meta-architecture in
improving the ability of the agent’s motion control.

5. Discussion

In the previous chapters, we introduced a deep reinforcement
learning approach that combines multi-modal perception
within an end-to-end architecture to enhance the shooting
skills of a basketball robot. We conducted a comprehensive
evaluation of this method in the experimental section.
In this chapter, we delve into a thorough discussion
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of the research results, summarizing the key findings
and contributions of the experiments, and explore the
significance, advantages, limitations, and future prospects of
these results.

By comparing the experimental results, we observed that our
proposed approach, which integrates multi-modal perception
within an end-to-end architecture using deep reinforcement
learning, exhibited remarkable performance in metrics such as
shooting accuracy, recall rate, and scores, surpassing traditional
methods significantly. This indicates that the combination
of multi-modal perception and deep reinforcement learning
enables the basketball robot to comprehensively perceive its
environment and basketball state, and make more efficient
and precise shooting decisions. This finding holds practical
importance in improving the shooting skills of basketball
robots and advancing research in intelligent agent control.
Additionally, our research results validated the effectiveness of
the multi-head attention mechanism in metrics like shooting
accuracy and recall rate. By simultaneously incorporating various
perceptual information, such as vision, motion, and distance,
the multi-head attention mechanism assists the basketball
robot in better understanding its surrounding environment and
basketball state, thereby enhancing the accuracy of shooting
decisions. This provides valuable experience and guidance for
introducing multi-modal perception and attention mechanisms
into other intelligent agent tasks. Furthermore, we compared
the experimental results under different hardware environments.
The results showed that our method demonstrated good
stability and scalability across various computational resources.
This indicates that our proposed approach exhibits strong
generalizability and possesses high reliability and efficiency in
practical applications.

Despite achieving significant achievements in our
research, there are also some limitations. Firstly, as the
shooting skills of the basketball robot are influenced by
multiple factors, our method may still have room for further
improvement. Secondly, our experiments primarily took
place in simulated environments, and the complexity and
uncertainty of real-world scenarios could influence the
results. Therefore, in future research, we aim to optimize
the algorithms and include testing in real-world settings
to validate the feasibility and stability of our approach in
practical applications.

The deep reinforcement learning and multi-modal perception-
based approach holds vast potential for applications in the field
of intelligent agent control. In the future, we will continue
to explore the application of multi-modal perception and deep
reinforcement learning in other robot tasks, such as motion
planning for soccer robots and tactical decision-making in soccer
matches. Simultaneously, we will further investigate how to apply
these methods to real-world environments, addressing challenges
and issues encountered in real-world scenarios, and advancing
the development and application of intelligent agents in the
real world.

In conclusion, this study successfully improved the shooting
skills of a basketball robot by integrating an end-to-end
architecture, multi-modal perception, and deep reinforcement
learning. We achieved a series of beneficial experimental results,
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providing valuable insights for research in the field of intelligent
agent control.

6. Conclusion

This research aims to enhance the shooting skills of a
basketball robot by combining an end-to-end architecture, multi-
modal perception, and deep reinforcement learning, resulting in
more efficient and precise shooting behavior. In this chapter,
we will provide a summary of the entire study, emphasize
its significance and contributions, and highlight the research’s
innovations and implications. Finally, we will provide an outlook
for future developments.

In this study, we first proposed a novel approach based
on an end-to-end architecture and multi-modal perception
using deep reinforcement learning to improve the shooting
skills of the basketball robot. By integrating perception and
decision-making into a unified learning system, we enabled
the robot to comprehensively perceive its environment and
basketball state and learn better shooting strategies through
deep reinforcement learning. Experimental results showed that
our method outperformed traditional approaches significantly in
metrics such as shooting accuracy, recall rate, and scores, thus
confirming the effectiveness and advantages of our approach.
Additionally, we introduced the multi-head attention mechanism,
which simultaneously fused various perceptual information, such
as vision, motion, and distance, thereby enhancing the robot’s
perception ability in complex scenes and the accuracy of shooting
decisions. The multi-head attention mechanism exhibited strong
performance in the experiments, providing valuable insights and
guidance for introducing multi-modal perception and attention
mechanisms into other intelligent agent tasks.

The significance and contributions of this research lie in the
novel approach we proposed to improve the shooting skills of
a basketball robot, offering valuable insights for research in the
field of intelligent agent control. Our method combines end-to-
end architecture, multi-modal perception, and deep reinforcement
learning, enabling the robot to comprehensively perceive and
understand scenes in complex environments and make optimal
shooting decisions through learning. This opens up new avenues
and methods for the application and development of intelligent
agents in the real world. To summarize the research’s innovations
and implications, this study effectively improved the basketball
robot’s shooting skills by fusing perception and decision-making
into a unified learning system. We introduced the multi-head
attention mechanism, enhancing the robot’s perception ability
and improving the accuracy of shooting decisions. Moreover,
our approach demonstrates good stability and scalability across
different hardware environments, offering significant practical
application value.

In the future, we will continue exploring the application
of multi-modal perception and deep reinforcement learning in
other robot tasks, such as motion planning and tactical decision-
making for soccer robots. Additionally, we will further investigate
how to apply these methods to real-world environments and

address challenges and issues encountered in real scenarios. We
hope that through continued research and exploration, we can
make further contributions to the development and application
of intelligent agent control. Future work can focus on advancing
model capabilities, optimizing for practical use, and expanding the
approach to new application areas. Explore application of end-to-
end deep learning in more basketball skills like passing, dribbling,
shooting under pressure. Integrate more sensing modalities like
motion capture to enable more fluid autonomous dribbling and
shooting motions.

In conclusion, this research successfully improved the shooting
skills of a basketball robot using an end-to-end architecture and
multi-modal perception with deep reinforcement learning. Our
work provides new insights and methods for the application
and development of intelligent agents in complex environments,
demonstrating significant research significance and practical value.
We are confident that through ongoing efforts and exploration,
intelligent agents will achieve more remarkable progress and
breakthroughs in the near future.
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