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The brain-computer interface (BCI)-mediated rehabilitation is emerging as a

solution to restore motor skills in paretic patients after stroke. In the human

brain, cortical motor neurons not only fire when actions are carried out but are

also activated in a wired manner through many cognitive processes related to

movement such as imagining, perceiving, and observing the actions. Moreover,

the recruitment of motor cortexes can usually be regulated by environmental

conditions, forming a closed-loop through neurofeedback. However, this

cognitive-motor control loop is often interrupted by the impairment of stroke.

The requirement to bridge the stroke-induced gap in the motor control loop

is promoting the evolution of the BCI-based motor rehabilitation system and,

notably posing many challenges regarding the disease-specific process of post

stroke motor function recovery. This review aimed to map the current literature

surrounding the new progress in BCI-mediated post stroke motor function

recovery involved with cognitive aspect, particularly in how it refired and rewired

the neural circuit of motor control through motor learning along with the BCI-

centric closed-loop.
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1. Introduction

Recovery of motor function is of significant importance for physical independence and

social integration of stroke patients. One of the ambitions of post stroke motor function

restoring (PMFR) is to recouple the brain and external muscles while supporting the patients’

personhood by regaining functional activities of daily living (e.g., walking, gait) rather than

replacing incomplete limbs with lifelong prostheses (Kübler, 2020). It is widely accepted

that restore of motor function in patients with stroke is based on the exploitation of

neuroplasticity, which promotes the reconstruction of the motor control system through

motor learning (Teasell et al., 2014).

“The cortical motor system is not an unthinking, passive circuit controlled by more

intelligent parts of the brain (Kandel et al., 2000).” Unlike what we commonly think of as

the simple generation of a series of muscle activities, voluntary motor control is understood

in a broader sense as a process that is more sensory, perceptual, and cognitive in nature

(Chivukula et al., 2019; Sensinger and Dosen, 2020). Therefore, the cognitive processes of
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motor control and motor learning in stroke survivors

underpin substantial gains in the PMFR. In recent decades,

the neuroscientific theory of the inseparable cognitive processes

involved in motor control and motor learning has further extended

the boundaries of post stroke rehabilitation strategies, such as

constraint-induced movement therapy, mirror therapy, motor

imagery, enriching environment, etc. (Ward, 2017; Maier et al.,

2019). However, there are still many applicable gaps in translating

neuroscientific principles into protocols of PMFR. The reason may

be that traditional rehabilitation treatment methods may attach

importance to only one or several nodes in the motor control

loop and lack the function of forming a unified and complete

motor pathway. Therefore, the ideal strategy might be to build up a

continuous loop to “fire together and wire together” consistent with

the incomplete or impaired movement control circuit after stroke,

which can reinforce the motor control through motor learning.

With the boom in robotic technologies, robot-assisted therapy

is now seen as promising to compensate for the innate

disadvantages of traditional physical and occupational therapy,

turning more, and more theoretical insights into real applications.

In the field of human-robot cognitive interface, concerns have

been expressed about what a robot, based on neuroscientific

principles, can do in motor rehabilitation after stroke to

synergy the conventional therapy rather than merely replacement.

The most convenient and widely used noninvasive method

to connect the brain to an assistive device is the EEG-based

Brain-Computer Interface (BCI; Birbaumer et al., 2008; Sitaram

et al., 2017). Regarding clinical aspects, this review has mainly

focused on EEG-based BCI systems. Over the past decades,

the BCI has gradually taken robots beyond the tools passively

used by therapists. For example, a BCI can supplement stroke

survivors’ impaired muscle control by decoding their motor

intentions into signals to manipulate external devices such as

neuroprostheses or exoskeletons, which the BCI system operates

in an “open loop.” As a counterpart or compensation to the

“open loop,” in the “closed-loop” manner, the end-user controls

the rehabilitation robotics and receives sensory feedback provided

by the BCI system to promote stimulatory neuroplasticity-based

reorganization of the motor-related brain regions (Wang et al.,

2010; see Figure 1).

Interestingly, the idea of a closed-loop BCI system is in

line with the way that the natural human motor control

circuit works. Within this loop, state-of-the-art approaches

have been developed at various nodes with profound benefits

and challenges. Namely, from simple brain signal extraction

devices to their combination with functional electric stimulation

devices, from somatic sensory feedback alone to multimodal

environmental conditioning, from simple assistive robotics to

adapted devices with feedback sensors and timely external

stimulations, and so on. All these innovations and add-on

interventions are enhancing the theoretical and methodological

development of the closed-loop non-invasive BCI, which could

promote neuroplasticity through the embodied cognitive process

of the human side. A comprehensive understanding of these

issues could advance the engineering and design of robot-aided

PMFR approaches. This review provides a focused overview

of the progresses that facilitate the cognitive-motor circuit

FIGURE 1

BCI system for PMFR. (A) Illustration of the concepts of open loop

BCI system. (B) Illustration of the concepts of closed-loop BCI

system.

within the closed-loop of EEG-based BCI systems designed to

promote PMFR.

2. Rethinking the cognitive aspects on
the human side in the context of
BCI-mediated PMFR

The human motor control system does not simply consist

of unthinking or passive circuits. The motor and cognitive

functions interwove in a seamless fashion in the motor control

loop. In addition to the primary motor cortex, many areas [e.g.,

supplementary motor areas (SMA), cingulate motor areas (CMA),

premotor areas (PMA)] in the frontal lobe and parietal lobe

are wired together to participate in motor control during self-

paced movements (Rizzolatti and Luppino, 2001; see Figure 2).

In a certain number of stroke patients, the motor function

deficiency is due to the impairment of cognition or mental

processing, which is anchored in action (Platz et al., 2000).

Furthermore, even in the ipsilateral motor, both the two cortical

hemispheres are interconnected through the corpus callosum.

These neural circuits are responsible for controlling voluntary

behavior rather than simply generating a particular pattern of

muscle activity. The context-depended paradigm of the activation

and deactivation of the motor control system can be presented as

event-related desynchronization and synchronization (ERD/ERS)

of sensorimotor rhythms (SMR), which can be detected and

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1271967
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Mang et al. 10.3389/fnbot.2023.1271967

FIGURE 2

Schematic of the closed-loop BCI system for PMFR. (A) The normal cognitive-motor control loop. (B) The cognitive-motor control loop interrupted

by stroke. (C) The closed-loop BCI system for PMFR. The BCI-mediated PMFR was based on the MI-EEG system, provided multimodal feedback to

the subject, and formed a closed-loop that promoted motor learning through neuroplasticity as well as assisted patients with activities of daily living

(ADL).

recorded by electrodes placed on the scalp (EEG) or directly on the

exposed surface of the brain (ECoG; Georgopoulos, 2000; Rizzolatti

and Luppino, 2001). It should be noted that the effects on the

cognitive process of the cerebral cortex may be individualized, i.e.,

a patient with locked-in syndrome could have intact cognition but

complete loss of voluntary movement (Plum and Posner, 1982).

Nonetheless, the conceptual issues regarding the cognitive features

of motor physiology after stroke should be considered for the

rationale and heuristic value for the scope of investigation of BCI-

mediated PMFR. In addition, other cognitive features of the human

side in the process of PMFR should be considered when speaking

of a closed BCI loop.

2.1. Somatosensory information from the
body

Sensory feedback plays an important role to maintain motor

cortical activity and circuitry (Tabot et al., 2015; Carteron et al.,

2016). Motor control encompasses mainly a process of sensor input

and motor output. There is not only a control mechanism for

the execution of the movement, but also for whether, how, and

when to act. The somatic sensory input from body receptors can

act as feed forward control of intended movement and feedback

control of ongoing movements. In stroke patients, a loss or weak

of proprioception and tactile sensation is the most likely to occur

due to impairment on the somatosensory pathway. In addition,

this somatosensory loss can also induce the disuse of paretic

limbs after stroke (Dannenbaum and Dykes, 1988). Studies in

humans and non-human primates have shown that the stroke-

impaired limbs might be continued to disuse even when their

capacity are recovering, which is referred to as the “learned non-

use phenomenon (Han et al., 2013; Taub et al., 2014).” The

compensatory use of the non-paretic limbmay limit the subsequent

gains in motor function in the paretic limbs (Oujamaa et al., 2009).

Interestingly, reducing somatosensory input from the intact hand

may serve as another solution to the learned nonuse phenomenon

of the paretic limbs, just as in constraint-induced movement

therapy (CIMT; Sens et al., 2013). Moreover, in the BCI-mediated

system, the somatosensory-induced effects can be augmented by

the sensory components of the external robotic device, which

offered a greater advantage of incorporating proprioception and

tactile feedback to the users.
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2.2. Sensorimotor interface in the human
brain

The sensorimotor interface, which relays sensory input to

higher motor control areas, plays an important role in the integrity

of the motor control circuit. The posterior parietal cortex (PPC)

has been recognized as an association cortex in the sensorimotor

pathway. The PPC is involved in motor intention, movement

planning, spatial reasoning, and integration of multisensory

feedback that is transmitted to the frontal lobe for movement

control. Damage to the PPC from stroke can impair the patient’s

ability to plan movements and perceive spatial relationships that

affect sensorimotor circuitry (Buneo and Andersen, 2006). The

damaged sensorimotor interface of stroke survivors can be both

spatial and temporal and has important implications for the

development of BCI-driven PMFR (Mihara et al., 2012). In terms

of a closed-loop, the sensory side of the motor control system

can be greatly compensated by multisensory feedback provided by

BCI-controlled external devices (Bolognini et al., 2016).

2.3. Motor imagery/observation ability

Based on the theory of mirror neuron system, mirror therapy,

action observation, and motor imagery therapy have been widely

explored in conventional motor rehabilitation practice (Iacoboni

andMazziotta, 2007). Motor imagery (MI) can be defined as mental

rehearsal of a certain movement without physical performance. As

a self-paced mental practice to improve motor performance, MI

has been gained prominence as a trigger of motor commands for

BCI-mediated PMFR. Studies have shown that ERD/ERS can be

intercepted in both the process of physical action andMI in healthy

subjects (Pfurtscheller et al., 2006). This neural basis provides an

opportunity for further research, i.e., even if the stroke-affected

limb was too weak to move to generate adequate motor signals,

BCI can alternatively use brain signals generated from MI. Many

studies have demonstrated the efficacy of MI-based BCI technology

in robotic rehabilitation. However, not all stroke survivors can

reliably perform MI due to impaired cortex function. Interestingly,

however, the impaired motor imagery ability seems to prevent

patients only slightly from successfully operating the MI-BCI

system (Ang et al., 2011; Braun et al., 2017). The firing of the mirror

neuron system during action observation can also be reduced

after stroke, EEG studies found that Mu suppression (attenuation

in alpha band power strength) recorded over the sensorimotor

cortex during action observation was reduced in the stroke-affected

hemisphere (Frenkel-Toledo et al., 2014). The characteristics of

these results suggested that it is imperative to assess the motor

imagery/observation ability prior to related BCI procedures.

2.4. Mental status

Approximately one-third of post-stroke patients suffered mood

disorders such as depression, anxiety, stress, etc. Although the

clinical manifestations may be a mixture of these disorders, the

post stroke depression (PSD) has been the most extensively

studied and reported in the literature. The emotional changes

in stroke patients can be a result of the brain physical damage

to the mood regulation systems (Grajny et al., 2016), but more

common be a result of difficult or traumatic life experiences

(e.g., post-stroke disability, unsatisfactory treatment outcomes,

too difficult rehabilitation goals, etc.). The hallmark of PSD that

threatens PMFR is a lack of motor motivation, resulting in less

patient participation in rehabilitation activities (Nannetti et al.,

2005). Even the true neurobiological mechanism behind post-

stroke emotional disturbance cannot be elucidated in the available

scientific evidence, but it does indeed cause the motor control

circuitry to operate in a retarded state. Nevertheless, solving

this problem again opens a window for the utility of BCIs

(Dannenbaum and Dykes, 1988).

2.5. Task-specific and environmental
condition exercise

In terms of PMFR, task ability is more significant than

movement performance without goal guidance. The fulfillment of

the rehabilitation goal should not rely only on the ability of the

remaining motor neurons or motor cortexes to fire, but rather on

the connection or the ability of the connectivity of the elements

to perform the motor output as task accomplishment (Young

et al., 2014). From a neuroscience perspective, task-specific training

refers to a voluntary behavioral process that integrates information

from the environment and translates intention into a series of

actions, which appears to be perceptual and cognitive rather than

purely motor in nature. There is a growing body of evidence

supporting the efficacy of intensive task-specific (Jeffers et al., 2020).

However, the regained ability to perform a task in the vicinity of

a clinic or laboratory may not improve performance in a patient’s

daily life at home. One explanation is that sensory feedback from

environmental factors plays an important role in inducing the

optimal response of stroke survivors. Thus, separating motor skills

from an individual’s integrated function or separating the task from

the corresponding environment in task-specific training may be

simplistic and incorrect (Sigrist et al., 2015). The neural rationale of

task-specific training for functional recovery after stroke involves

the neuroplasticity that occurs in many brain parts and circuits that

perform the function of selecting, planning, and even inhibiting

motor actions. According to imaging studies, these areas include

the parietal lobe, precentral motor cortex, visual cortex, and

associated subcortical pathways, etc. Neuroimaging findings in

animals suggest that injuries in unique regions may be related to

impairment in a particular task after stroke (Jeffers et al., 2020).

Although there is limited evidence of such anchored mapping in

humans, this leaves room for further studies of region-specific BCIs

in conjunction with task-specific training for stroke survivors.

3. Discriminating the brain signal for
BCI mediated PMFR

As a starting point of the closed-loop in BCI-mediated

PMFR, the acquisition methods of brain activity signals can
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currently be divided into noninvasive and invasive. Non-invasive

methods include electrocorticography (EEG), functional magnetic

resonance imaging (fMRI), magneto-encephalo-graphy (MEG),

and near-infrared spectroscopy (NIRS), while invasive methods

include electrocorticogram (EcoG) and intracortical decoding with

penetrating electrodes (Tam et al., 2019). Surface EEG is commonly

used in BCI because of its high temporal resolution, cost-

effectiveness, transferability, and non-invasiveness (Teo and Chew,

2014). Among BCI studies using EEG methods, sensorimotor

rhythm (SMR) is the most commonly used signal to control

external devices, which is discussed in this paper with a focus on

protocol modification and technology advancement (Hwang et al.,

2013).

3.1. Fundamental principles of SMR-based
EEG

EEG is a method that measures electrical signals from the

brain at the surface of the scalp. Traditionally, EEG signals are

divided into several frequency bands, including δ (0–4 Hz), θ

(4–7.5 Hz), α (8–13 Hz), β (13–30 Hz), γ (30–100 Hz). Of

these bands, the most important for movement decoding is

the oscillation in the alpha band in sensorimotor cortex, also

known as µ-rhythm (Chatrian et al., 1959; Schomer and Lopes

da Silva, 2017). It has been shown that the signal power in the

alpha band decreases when subjects engage in motor execution

or imagery, and similar changes are observed in the beta band

(Yuan and He, 2014). SMR is the modulation of the signal band

power in the sensorimotor region. The reduction in band power

coincides with the event is called event-related desynchronization

(ERD). In contrast to ERD, event-related synchronization (ERS)

is the increase of band power that coincides with an event (Tam

et al., 2019). ERD changes usually begin before movement, are

concentrated in the contralateral sensorimotor region, and then

spread to the ipsilateral side, becoming bilaterally symmetric before

movement onset, and remaining bilaterally symmetric during

movement. After movement ceases, ERS changes may manifest

as increased beta band power in the contralateral sensorimotor

areas, also referred to as “beta rebound” (Graimann et al.,

2002).

3.2. Neural aspects related to resolution of
EEG

Due to the potential complexity and non-stationarity of EEG,

the accuracy of BCI control still needs to be improved. One of the

most critical signal processing steps in SMR-based motor decoding

is the estimation of signal power in the α and β bands. There

are various techniques to achieve this. One of the simplest and

most efficient methods is band-pass filtering (Tam et al., 2011).

The adaptive auto-regressive model (AAR) is another widely used

detection technique that can help to choose the most appropriate

frequency band to perform the filter (McFarland and Wolpaw,

2008). In this context, recent studies have identified many aspects

that have the potential to improve the accuracy of EEG.

3.2.1. Neuronal populations
A better understanding of the firing pattern during motor

actions is critical for developing more effective signal extraction

and decoding strategies. Pervious brain function studies have

focused on the correlation between single-neuron activity and

associated behavior, but further studies have shown that many

corticomotoneuronal cells do not represent specific movement

covariates at the level of single neurons (Fetz et al., 1989).

Consequently, extracting information from neuronal populations

activated during a particular movement becomes an urgent

problem to be solved in the field of EEG-based BCI (Pfurtscheller

et al., 2000). A major advance of neuroscience in this area lies

in the proposals of “neural modes” and “neural manifold.” The

definition of manifold comes from computational neuroscience,

which states that the underlying network connectivity constrains

the possible patterns of activity of neuronal populations. These

patterns are restricted to a low-dimensional manifold spanned by

a few independent variables called “neural modes” (Gallego et al.,

2018). The neural manifold means neuronal population activity

tends to be in low-dimensional space (Figure 3). Using neural

population activity to reflect the user’s motor intention, manifold-

based EEG stabilizers can offer significant advantages over existing

methods for keeping the BCI systems stable under parameter

fluctuations (Gallego et al., 2018; Degenhart et al., 2020).

3.2.2. Cognitive disconnection
In MI-based BCIs, a relatively low spatial resolution of the

EEG may not match the complexity of MI tasks, leading to

cognitive disconnection during BCI operation. To address this

problem, source-based EEG approaches have been explored to

divide complex motor tasks into different manipulations, e.g.,

subdivision of hand movement into flexion, extension, supination,

and pronation (Edelman et al., 2015).More recently, offline datasets

that decode different phases of the motor task with different joints

of the same limb showed promise for facilitating the operation of

MI-based BCI and reducing the cognitive load on users (Ma et al.,

2020).

3.2.3. Hand dominance
In healthy subjects, lateralization of SMR duringmotor imagery

was observed to be associated with handedness. Left-handers

showed lower accuracy in BCI performance and poorer SMR

reduction in the alpha band (8–13 Hz) during mental simulation

of left-handed movements (Zapała et al., 2020).

3.3. Progress in EEG hardware technology

Currently, EEG is widely used in BCI, but the stability and

accuracy of EEG signals still needs further improvement due to

the instability of brain activity and susceptibility to environmental

artifacts. It should be noted that motor control processes are not

rigidly compartmentalized into distinctive neural structures or

neural populations. A major challenge in extracting motor brain

signals is mapping the topographic representation of different body

parts, which increases the difficulty of the practical application of
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FIGURE 3

Cortical population activity within a preserved neural manifold. (A) The connectivity of the cortical network leads to neuronal modes. (B) The neural

space for the three neurons (N1, N2, and N3). The time-dependent population activity is represented by a trajectory (in black, the arrow indicates

time direction) mostly confined to a two-dimensional neural manifold (gray plane) spanned by two neural modes (green u 1 and blue u 2 basis

vectors). (C) The time-dependent activity of each recorded neuron is a weighted combination of the latent activities L 1 and L 2, each the

time-dependent activation of the corresponding neural mode. (D) Neural manifolds for di�erent tasks (shown in gray and light purple) may have

similar orientation, and the latent activities for the two tasks (shown in black and purple) may be similar.

EEG in BCI. On the other hand, the bottlenecks of EEG technology

itself need to be further solved, e.g., the volume conduction effect,

the stability of electrodes, the portability of devices, etc.

3.3.1. High-density EEG
As a promising technique for brain signal extraction, high-

density electroencephalography (hdEEG) has been used for signal

acquisition during BCI operation, benefiting from its high spatial

and spectral resolution (Liu et al., 2017). The hdEEG often has 256

channels or evenmore, compared to conventional low-density EEG

(32–64 channels). It can help to study the neural signatures of hand,

foot, and even lip movements in more detail (Zhao et al., 2019).

3.3.2. Wireless EEG
Recently, wireless solutions are transforming traditional

stationary EEG systems into portable wireless systems with high

signal quality (Mihajlović et al., 2014). A wireless EEG system is

established commonly based on the Bluetooth or WIFI technology

(Zhang et al., 2014). The wireless EEG devices are a building

block of the wireless BCI system, extending their applicability from

everyday assistance to PMFR (Minguillon et al., 2017). Moreover,

with the gradual deployment of 5G wireless technology, the

wireless EEG system can become more efficient in device-to-device

communication with fewer artifacts, favoring the acceptability and

usability of the wireless closed-loop BCI system developed in the

future (Shakhakarmi, 2016).

3.3.3. Electrode-tissue interface technologies
Currently, themain obstacle to the clinical use of BCI systems is

that the signal from the neuronal activity recorded by the electrodes

can change over time (Perge et al., 2013). This is mainly due to

small movements of the electrodes relative to the surrounding brain

tissue, cell loss, and scar tissue effects. In addition, the volume

conduction effect of the skull can also lead to inaccurate source

localization.With respect to this concern, many advances have been

made in electrode-tissue interface technology. Conventional EEG

electrodes are wired wet electrodes that require the application

of gel to ensure low impedance levels (<10 kohm). However,

the conductive gel will dry out within a few hours, making the

performance of the electrodes become unstable over time (Ferree

et al., 2001). In addition, conventional electrodes are cumbersome

and rigid, which is very uncomfortable for the patient during

placement. To improve the above disadvantages, researchers have

made many efforts. Current wireless EEG system usually uses

dry electrodes, which needs shorter installation time and higher

comfort (Hinrichs et al., 2020). Ultrathin-film devices that can

laminate directly on the skin are a hot topic in dry electrode

technology. The advantages of this technology include the ability to

create a stable and accurate connection to the skin, as well as ease

of design and production (Nawrocki et al., 2018; Tian et al., 2019).
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FIGURE 4

Temporary tattoo electrodes (TTEs) for EEG. (A) The layered structure of the temporary tattoo paper permits the release of the top film on which

electrodes are fabricated. (B) Expanded view of an all-polymer printed TTE. (C) A TTE released on the scalp. (D) Close-in view of a TTE released on

the scalp after 12 h from application.

Temporary tattoo electrodes (TTEs) are one of these attempts. They

are made of organic material that adheres well to the skin and does

not cause significant discomfort to the patient (Ferrari et al., 2020).

A newer, substrate-free, tattoo-like electrode system arranged the

tattoo electrodes as transformable, filamentous serpentine lines

that offered the benefits of softness and breathability for signal

acquisition over a large area (Wang et al., 2020; Figure 4).

4. Triggering motor commands in BCI
mediated PMFR

One of the main problems of BCI-mediated PMFR is how to

conveniently start and operate the BCI system. The initiation of

motor commands at the start node is critical for the operation of

the closed-loop BCI. For PMFR, the BCI is designed to stimulate

ipsilesional activity during movement of the affected limb. In

stroke patients, however, the excitability of the cortex in the

stroke area can also be further reduced by interhemispheric and

intercortical inhibition (Xu et al., 2019). Therefore, a lack of

sufficient motor commands usually degrades BCI performance

significantly during PMFR. To solve the above problems, the

functional design of BCI should be necessary to include the strategy

of triggering self-paced motor commands, as well as the technology

of auxiliary stimulation.

4.1. Motor imagery

As a self-paced mental practice to improve motor performance,

motor imagery (MI) has gained prominence among post-stroke

motor rehabilitation topics in recent decades, especially for robotic

procedures. In stroke patients, the damaged motor network may

prevent the BCI from decoding the motor signal in real time.

Nevertheless, the MI process has a similar neural basis as the

real motor performance (Cicinelli et al., 2006). Several studies

have demonstrated the efficacy of MI coupled BCI technology

in robotic rehabilitation. In the motor imagery brain-computer

interface (MI-BCI) system, EEG signals detected during MI

can be distinguished from those in the background at rest

using specific algorithms and machine learning [e.g., Filter Bank

Common Spatial Pattern (FBCSP)]. After the MI signal acquisition

and calibration phase, these additional signals help the BCI to

control the robot to assist the subject in moving the impaired

limb toward the intended target (Ang et al., 2011). Clinical

studies demonstrated that compared with standard BCI-driven

robotic rehabilitation by coupling patients’ motor intention and

muscle control, the MI-BCI could improve motor recovery of

the extremities after stroke. In addition, modulation of brain

activity by transcranial direct current stimulation (tDCS) prior

to MI-BCI shows tendencies to improve the efficacy of MI-BCI,

suggesting that the MI-BCI could regulate cortical plasticity in

an activity-dependent manner (Ang et al., 2015; Chew et al.,

2020). One of the main factors limiting the use of MI in BCI

is the identification of MI capability in stroke survivors to

generate enough signals that EEG can detect and analyze (Zich

et al., 2015). Many tools and methods and their combinations

have been proposed to assess MI capability, including self-report

questionnaires, mental chronometry, physiological indices, and

EEG measurements (Madan and Singhal, 2014). However, due

to the subjectivity of self-report and differences in individual

characteristics, the reliability of these instruments is still under

debate, which still poses challenges for appropriate participant

selection and further use of MI for BCI control. Interestingly, some

aspects of the subject’s emotional status, such as confidence and

attitude, may influence the results ofMI assessment, suggesting that

theMImay encompassmore complex cognitive processes that need

to be further explored (Marchesotti et al., 2016; MacIntyre et al.,

2018).

In stroke survivors who have completely lost the motor

functions of their limbs, the MI can still be remedied through

neurofeedback introduced by the environment. The importance

of this process is not only in providing motor signals to the BCI,

but may also promote reorganization of the cortex by optimizing

neuroplasticity after stroke. However, the post-hoc analysis is

still rare. In a broader sense, MI includes multidimensional and

multimodal constructs, such as visual-objective imagination, spatial

imagination, kinesthetic imagination, etc. (Guillot and Collet,

2010). However, the concept of these neurally dissociable processes

derived only from different studies on MI. It’s not reasonable to

divide MI into these processes separately (Kozhevnikov et al., 2005;

Blajenkova et al., 2006).
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FIGURE 5

This design uses a 275-sensor whole-head MEG to record neuromagnetic brain activity during tDCS stimulation, with electrodes placed in the classic

unilateral M1 montage. This set-up is used in conjunction with BCI visual feedback in the form of a computer game and sensorimotor feedback via a

robotic hand orthosis that opened as target oscillations increased.

4.2. BCI-combined brain stimulation

One of the prevailing neuroscientific models of PMFR is to

provide excitation of the lesioned hemisphere with simultaneous

inhibition of the non-lesioned hemisphere (Sung et al., 2013).

Additional stimulations of the neuromotor control system at

different nodes in the closed-loop of BCI-mediated PMFR have

recently attracted interest. These stimulations can be both invasive

and noninvasive, facilitating the accurate operation of BCIs as

well as enhancing motor recovery after stroke through activity-

dependent cortical plasticity (Liew et al., 2014). Compared with

invasive methods, non-invasive brain stimulation (NIBS) such

as transcranial direct current stimulation (tDCS) and repetitive

transcranial magnetic stimulation (rTMS) is more feasible and

suitable for BCI adaptations by modulating the brain cortical

excitability with long-lasting effects (Figure 5; Table 1).

4.2.1. rTMS
The rTMS is one of the NIBS methods in which a magnetic

field produces a continuous train or periodic trains of pulses to

increased (high frequency, >3 Hz) or decreased (low frequency,

<1 Hz) the cortical excitability. Although there is a potential risk

of epilepsy with the use of rTMS in the acute phase of stroke, more

positive effects of rTMS on motor recovery have been observed

in recent studies (Kubis, 2016). It is typically recommended to

use low frequency rTMS intervention in stroke patients with an

unstable medical condition during acute stage, which aims to

inhibit the excitability of unaffected cerebral hemisphere. Once the

damaged hemisphere was relatively stabilized, reverse treatment

procedure was delivered to the patients in order to activate the

lesion side by virtue of the high frequency stimulation. As an add-

on intervention, rTMS aims to up-regulate ipsilesional excitability

through facilitatory stimulation on the ipsilesional hemisphere or

inhibitory stimulation on the contralesional hemisphere, which can

be combined with BCI to promote motor recovery (Johnson et al.,

2018).

4.2.2. tDCS
In tDCS, weak direct electrical currents are used to alter the

firing threshold of the neuronal membrane in specific parts of the

brain, modifying spontaneous activity. Depending on the direction

of the current (anodal or cathodal), it can decrease or increase

cortical excitability (Nitsche and Paulus, 2000; Thair et al., 2017).

Compared to rTMS, the tDCS device is much smaller and portable.

The tDCS can be used as a priming tool for closed-loop BCI

to facilitate the MI process to strengthen motor command (Ang

et al., 2015). A recent study showed that tDCS prior to BCI-based

motor imagery training reduced resting motor threshold (RMT) in

the ipsilesional M1 cortex and short intracortical inhibition (SICI)

in the contralesional M1, helping to improve motor function in

chronic stroke patients (Chew et al., 2020). Another promising

development is that, apart from conventional tDCS with fixed

intensity and duration, tDCS can be triggered and modulated

by online EEG, forming a closed-loop tDCS-based system. The

EEG-tDCS closed-loop system could promote motor learning with

real-time regulated tDCS (Leite et al., 2017).

4.2.3. Optogenetics
One of the drawbacks of currently clinically available brain

stimulation techniques is that they activate mixed populations
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TABLE 1 Comparison of BCI types for triggering motor commands in BCI-mediated PMFR.

BCI type Key indicators Advantages Disadvantages

Motor imagery (MI-BCI) EEG signals, FBCSP, tDCS Neural basis in MI, clinical efficacy MI capability assessment challenges

BCI-combined brain stimulation rTMS, tDCS, optogenetics Feasible, modulates cortical excitability Optogenetics in preclinical stage

Strengthening external devices Exoskeletons, neuro-prostheses Promotes motor learning, user-friendly Maturity of exoskeleton designs needed

Multimodal feedback Tactile, proprioception, auditory, VR Enhances motor learning, engagement Need for tailored feedback strategies

of neurons and astrocytes within less focal brain areas (Zhao

and Rempe, 2010). Compared with rTMS and tDCS, optogenetics

can induce selective excitation or inhibition in specific subtype

neurons which helps to bypass neural circuits impaired by stroke

(Böhm et al., 2020). More recently, optogenetic stimulation has

come into the spot-light in the field of post stroke recovery. A

study in nonhuman primates shows that noninvasive optogenetic

stimulation can activate selective neurons in the primary motor

cortex to generate forelimb movements and, in particular, induces

long-lasting modulation for voluntary movements (Ebina et al.,

2019). However, even though optogenetic stimulation is still at the

preclinical exploration stage, the noninvasive improvements of this

young technology pave the way for its application in more precise

control of BCI (Hira et al., 2009).

5. Strengthening of external devices in
BCI-mediated PMFR

The robotic devices, such as exoskeletons and manipulators

(end-effector devices), have been developed as independent and

passive machines to perform therapies that require high intensity

repetition. However, as the effector node in closed-loop BCI, these

external devices can be controlled by stroke patients through the

BCIs, according to the assistive and rehabilitative needs of the users

(Alia et al., 2017). Compared with assistive use, the rehabilitative

use of these devices is more meaningful for post stroke patients

because they promote the remodeling of the sensorimotor system

through the Hebbian-like plasticity mechanisms (Ward, 2017;

Biasiucci et al., 2018). In recent years, new functional designs

and device-controlling technologies in BCI systems have been

increasingly introduced into the clinical practice of PMFR, which

has significantly increased the utility of these external devices.

5.1. Promoting the user-friendliness

Compared to the stiff interaction mode of early immature

robotic devices for PMFR, the design of rehabilitation robots has

recently become more user-friendly. In terms of the functions they

perform, limb rehabilitation assistive robots can be divided into

two categories: (i) exoskeletons for the restoration of the functions

of limbs and (ii) neuro-prostheses for replacement of the disabled

limbs. However, for PMFR, a device to restore limb motor function

by helping the motor cortex to acquire motor control function

through motor learning is more important than a replacement of

limbs. It has been shown that repetition and prolonged training

can be beneficial for the recovery of limb strength, but have

little effect on the reorganization of the cortical map (Remple

et al., 2001; Swain et al., 2003). Therefore, unlike prostheses, the

design of exoskeletons for motor recovery requires the analysis

and consideration of critical issues, such as embodiment with the

paretic limbs and augmentation of the adaptive reorganization

of motor cortex after stroke. With the continuous advances in

materials science and design concepts, the user-friendliness of

peripheral robots for post-stroke rehabilitation is improving, such

as the soft robotic gloves, elbow sleeves, ankle exoskeletons,

and a whole limb exosuit (Laschi et al., 2016; Walsh, 2018).

Several feasibility studies of BCI-based wearable devices have been

conducted, although the results are still somewhat heterogeneous,

they offer scope for exploring future applications (Koh et al.,

2017; Cheng et al., 2020). Many sophisticated exoskeleton designs

have been performed to facilitate BCI-assisted therapy, optimizing

device features such as higher comfort, ease of use, safety, and

energy savings during rehabilitation (Awad et al., 2017).

5.2. Reinforcing the control

Ideally, in a closed-loop BCI system, the control strategy

of external devices should be in line with the theoretical basis

of voluntary motor control in the CNS. In addition to the

development of the design of the external devices, great interest has

been focused on the control strategies such as integrating feedback

sensors and electrical stimulators into robotic devices. In several

robotic assistive devices, feedback elements have been incorporated

into the wearable exoskeletons, providing active feedback (tactile,

vibrotactile, or force) to the limbs of the user. However, which

feedback would be most important and how this feedback should

be provided is still under investigation. Nevertheless, in stroke

patients with impaired proprioception and tactile sensation, the

missing sensory information can be compensated by the feedback,

which is important both for the completion of a specific task

and for the recruitment of the motor control circuit (Ben-Tzvi

and Ma, 2014; Ma et al., 2015). In BCI systems, the exoskeletons

can also be integrated with transcutaneous functional electrical

stimulation (FES). Compared to conventional FES, BCI-guided

FES can induce appropriately timed neuromuscular stimulation

through BCI command that reduces spasticity, improves range of

motion and muscular synergy, and induces durable motor recovery

by promoting targeted neuroplasticity through sensory feedback

(Mazzoleni et al., 2017; Moon et al., 2017; Biasiucci et al., 2018).

Although the design of BCI-driven assistive devices is still not yet

mature, it is developing very fast, many promising strides have been

made, such as the wireless control, the gaze-based control, and the

out-of-body control, etc. (Penaloza and Nishio, 2018; Kim et al.,

2019). In the future, external devices as closed-loop effectors may

need to be combined into a multifunctional platform that could
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TABLE 2 Comparison of feedback modalities in BCI-mediated PMFR.

Feedback modality Characteristics Advantages Disadvantages

Tactile sense Thermal, pressure, vibration Enhances sensory perception Limited feedback options

Proprioception Limb position and force feedback Improves motor control, kinesthetic Requires specialized devices

Auditory Speech, tone, music Motivational, supports motor imagery Over-familiarization may reduce motivation

Visual display Abstract signals, simulated hand, VR Enhances engagement, motion visualization Variable effectiveness across users

provide real-time motion analysis, epidural electrical stimulation,

sensory feedback, and personalized adaptive support, with the

goal of not only strengthening control but also promoting motor

learning through neuroplasticity.

6. Closing the loop with multimodal
feedback in BCI mediated PMFR

The neurofeedback is a key point that links the two ends of

an open-loop to a closed one during the operation of a closed-

loop BCI system. In the process of BCI-mediated PMFR, the

effect of neurofeedback can be two-fold: (i) close the sensorimotor

loop with self-regulation, thus facilitating the control of external

assistive robotics (ii) activate the plasticity system, thus promoting

the reorganization of the motor cortex. The neurofeedback can

induce endogenous neural stimulation to facilitated motor output.

For example, the same object can evoke different voluntary actions

through its physical properties and the behavioral salience observed

by the observer. The somatic sensory input from body receptors

can be a teaching signal during motor learning, presenting as

feedback-error learning and supervised learning. Learning a motor

skill can continually reorganize or shape a stroke survivor’s motor

map. Animal and human experiments have demonstrated that

neural activity can be self-regulated through neurofeedback. A

prevailing closed-loop modality for BCI-mediated PMFR is often

based on non-invasive EEG, it involves three steps: (i) EEG

collects neural activation signals in the M1 region to control

the surrounding prostheses or exoskeletons, (ii) terminal devices

performance generate behaviors as the source of feedback to

change the firing rates of a population of cortical neurons, (iii)

learned control of multiple neurons is presented simultaneously

to regulate EEG amplitudes, which enhances internal processing

to facilitate control of the external device or paretic limb motor

activity during task-specific actions (Collinger et al., 2013; Bouton

et al., 2016; Figure 2). Moreover, neurofeedback-based close loop

training can also be used to regulate emotion processing, such as

strengthening connectivity between cognitive control areas, and

lead to behavioral improvements (Koush et al., 2017). The main

advantage of the EEG-based BCIs with an established closed-loop

is that they can support the completion of limb motor function

while playing a role in strengthening motor control by improving

brain plasticity. Regarding the hallmarks of closed-loop BCIs, they

may be consistent with the same neural mechanisms that operate

in voluntary movement control, which is consistent with the “fire

together, wire together” principle in Hebbian learning (Soekadar

et al., 2015).

6.1. Di�erent types of feedback can be
used to close the BCI loop

One of the main goals of neurofeedback is to train users to

adapt to the BCI task by providing specific cues to task-related

brain activity. In addition to the content of the feedback, the way

in which the feedback is presented also has a major impact on its

effect (Pillette, 2019). The following feedback modalities have been

explored (Table 2).

6.1.1. Tactile sense
In the closed-loop system, the tactile sense can help the subject

to perceive hardness, texture, temperature, and vibrational stimuli

from the environment. Within the tactile interfaces between tactile

receptors of the skin and the external tactile-providing device,

the tactile feedback can be integrated into the closed-loop of BCI

mediated PMFR (Chatterjee et al., 2007; Cincotti et al., 2007). The

most commonly used tactile provider are lightweight and wearable

devices that can generate feedback from thermal cues, contact

pressure, mechanical vibration, and electrotactile (Jones and Sarter,

2008; Gabardi et al., 2016).

6.1.2. Proprioception
The function of proprioception or kinesthetic feedback for

users in the BCI-mediated loop is mainly to know the position

of the body in space and the force on the limbs (Williams,

2015; Pacchierotti et al., 2017). The sensation can be generated

from force-feedback devices embodied in external devices (e.g.,

grounded devices, exoskeletons), as well as muscle contraction

actuated by FES (Pfeiffer and Rohs, 2017).

6.1.3. Auditory
Auditory feedback has been shown to support PMFR and

activate plasticity. The auditory feedback can be presented as

speech, pure tone, and music with different sound speaker

arrangements to influencemotor imagery performance (McCreadie

et al., 2014). The auditory feedback can also use the features of

music (e.g., the volume, the tempo) to help users to operate the

BCI in a closed-loop (Kellaris et al., 1996; Daly et al., 2014). Of

note, the decreased motivation induced by over-familiarization of

the music should be considered when using music properties as

neurofeedback (Nijboer et al., 2008). In turn, however, various

music-induced emotions could support patient engagement in the

BCI system.
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6.1.4. Visual display
6.1.4.1. Abstract signal

More recently, neurofeedback has been introduced to remedy

motor imagery-based BCI training in PMFR. The expression of the

feedback is usually an abstract signal (a moving bar or a ball on the

screen) that provides the patient himself the information on how

good his performance of the MI tasks (Zich et al., 2017).

6.1.4.2. Simulated hand

In upper limb PMFR, the simulated hand has been used

more frequently compared to the abstract signal as an embodied

neurofeedback that resembles the content of the MI act. The

simulated hand can be a rubber hand, its VR-based derivatives, and

a movable robotic hand that more closely resembles the shape and

function of a human hand (Braun et al., 2014; Kalckert and Ehrsson,

2014; Pichiorri et al., 2015; Spychala et al., 2020). However, many

state-of-the-art prosthetic hands have not yet been used in this field,

which provides more room for future research (Laffranchi et al.,

2020).

6.1.5. Virtual reality
Virtual reality (VR) is an immersive computer-based

technology that places the user in simulated environments

with real objects and events. There is growing evidence that VR

may promote PMFR in combination with both conventional

therapy and BCI-mediated therapy (Silvoni et al., 2011; Fluet and

Deutsch, 2013). As a node to generate the feedback of the closed-

loop system of BCI, VR made the patient immersed in different

scenes with the feeling of embodiment of the virtual environment.

The VR system often provides multimodal feedback to the subject,

such as visual, auditory, tactile, and so on. The most commonly

used VR strategy is motion visualization, which represents

the patient’s behavior and provides performance feedback in a

virtual environment with certain contextual information. In this

circumstance, the motion can be represented by a virtual body or a

non-anthropomorphic graphic in a 2D or 3D environment (i Badia

et al., 2012; Ferreira dos Santos et al., 2016).

6.2. Neurofeedback-induced e�ects in
closed-loop BCI system

Recently, the closed-loop BCI system using neurofeedback

through online pattern has been shown to regulate the learned-

control effect in PMFR (Cano-De-La-Cuerda et al., 2015). The self-

regulation of neural activity through neurofeedback training has

been found in rodents, nonhuman primates and humans (Schafer

and Moore, 2011; Collinger et al., 2013; Clancy et al., 2014). The

consequence of this self-regulation can be represented as changes

in intracortical neuronal synchronization that facilitate the output

of EEG-based BCI (Hanslmayr et al., 2005; Blefari et al., 2015).

Moreover, neurofeedback training can also exert long-term changes

in the intrinsic functional connectivity in the visuo-spatial-motor

network, even more than 2 months after the training (Megumi

et al., 2015). These explorations demonstrated that the meaning of

this kind of brain functional changes is not only to help patients to

operate the BCI to control external devices within the closed-loop

system, but rather to activate the neuroplasticity along with amotor

learning process (Sitaram et al., 2017).

Another important effect of neurofeedback is the control of

negative emotions in the subject in the closed-loop system of

BCI-mediated PMFR. It is supposed that subjects’ motivation

and engagement may be more sustained during robotic training

than in conventional therapy (Jeunet et al., 2015). Efforts often

center on concerns of the design of external robotic devices,

but another important factor in ensuring the implementation of

robotic-mediated rehabilitation is the neuropsychological response

of the human side. There is growing evidence that people’s

interactions with multimodal feedback or environment (e.g., VR)

are more enjoyable and motivating than interaction with robots

alone (Mladenović et al., 2017; Baur et al., 2018). The motivational

state depends on the circumstance in which the subject was, for

example, a post-stroke patient may reach to grab a cup simply

because of thirst, otherwise the patient may just fulfill the entire

set of actions to achieve a goal set by the therapist. Consequently,

the purpose may affect the firing pattern of neurons in the

inferior parietal lobe, which has been demonstrated in monkey

tests (Fogassi et al., 2005). In addition, the patient’s engagement

in the stroke rehabilitation process often depends on behavioral

factors as the patient’s motivation in task-directed training, trust

in the effectiveness of therapist or equipment, and understanding

of mechanisms of rehabilitation protocols, etc. These cognitive

aspects of motor impairment after stroke often coexist in stroke

survivors and, notably have a potential impact on the outcome of

neurological rehabilitation. Thus, a pre-procedural session to assist

the users to comprehend and engage in the BCI system, protocol

and mechanism is mandatory (Remsik et al., 2018).

7. Outlook

While closed-loop technology based on BCI has gradually

matured in the application of PMFR, future research endeavors

are still needed to prioritize the following areas: (1) Understanding

CompensatoryMotor ControlMechanisms in Post-Stroke Patients:

Existing research has provided insights into compensatory motor

control mechanisms in post-stroke patients, such as neural

reorganization and adaptive processes. However, future research

should delve deeper, utilizing tools like neuroimaging, biosensors,

and computational models to precisely identify and quantify these

mechanisms. Integration of these findings into the BCI system

will be crucial for achieving more effective motor rehabilitation.

(2) Customizing Multimodal Feedback for Individual Patients:

In current research, efforts have been made to explore the

customization of multimodal feedback based on individual patient

conditions and needs. These customization methods can adapt

feedback based on the emotional state, sensory abnormalities, and

cognitive function of patients. Leveraging machine learning and

patient-specific data, such as neural signatures and behavioral

responses, will enable a more personalized approach to BCI-

mediated PMFR. (3) Advancements in BCI-Compatible Brain

Stimulation Techniques: Significant progress has been made in

developing BCI-compatible brain stimulation techniques. These

techniques leverage neurofeedback and real-time monitoring

to optimize stimulation timing and intensity. Additionally,
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advancements in non-invasive brain stimulation modalities, such

as transcranial magnetic stimulation (TMS) and transcranial

direct current stimulation (tDCS), are becoming increasingly

integrated into BCI systems for neuroplasticity induction. (4)

Enhancing Brain Motor Signal Extraction Techniques and Devices:

Recent research has focused on improving brain motor signal

extraction techniques and devices. Advanced signal processing

algorithms, including deep learning approaches, have reduced

noise and enhanced signal reliability. Portable and wireless

EEG (electroencephalogram) devices are now more accessible,

allowing for real-world applications of BCI-mediated PMFR with

greater convenience and improved signal quality. (5) Developing

Customized Soft, Wearable Exosuits: Research has led to the

development of soft, wearable exosuits tailored to individual

functional needs. These exosuits incorporate flexible materials and

ergonomic designs to ensure comfort and ease of use. Integration

with BCI technology involves optimizing the communication

interface between the exosuit and the BCI system, allowing for

seamless control of assistive devices tailored to each patient’s motor

rehabilitation requirements.
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