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Introduction: Autonomous mobile robot encompasses modules such as

perception, path planning, decision-making, and control. Among these modules,

path planning serves as a prerequisite for mobile robots to accomplish tasks.

Enhancing path planning capability of mobile robots can e�ectively save costs,

reduce energy consumption, and improvework e�ciency. The primary slimemold

algorithm (SMA) exhibits characteristics such as a reduced number of parameters,

strong robustness, and a relatively high level of exploratory ability. SMA performs

well in path planning for mobile robots. However, it is prone to local optimization

and lacks dynamic obstacle avoidance, making it less e�ective in real-world

settings.

Methods: This paper presents an enhanced SMA (ESMA) path-planning algorithm

for mobile robots. The ESMA algorithm incorporates adaptive techniques to

enhance global search capabilities and integrates an artificial potential field to

improve dynamic obstacle avoidance.

Results and discussion: Compared to the SMA algorithm, the SMA-AGDE

algorithm, which combines the Adaptive Guided Di�erential Evolution algorithm,

and the Lévy Flight-Rotation SMA (LRSMA) algorithm, resulted in an average

reduction in the minimum path length of (3.92%, 8.93%, 2.73%), along with

corresponding reductions in path minimum values and processing times.

Experiments show ESMA can find shortest collision-free paths for mobile robots

in both static and dynamic environments.

KEYWORDS

autonomous mobile robots, path planning, slime mold algorithm, dynamic environment,

artificial potential field

1. Introduction

Autonomous vehicles and mobile robots represent pivotal advancements in

modern artificial intelligence, enabling applications across many industries, including

manufacturing, agriculture, and healthcare. Developing fully autonomous mobile robot

systems requires integrating diverse functionalities, from environmental perception and

planning to decision-making, behavior control, and execution. Path planning serves as

a foundation for autonomous mobile robot decision-making and controls, especially in
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intricate and unknown dynamic environments. Optimal path

planning algorithms lay the groundwork for safe navigation.

However, ensuring safety as robots traverse the real world demands

balancing global optimization with local reaction (Wang et al.,

2018). Significant research has focused on mobile robot path

planning, developing numerous theories and methods addressing

its multifaceted challenges (Hewawasam et al., 2022). Path

planning presents difficulties due to its non-linear, multi-constraint

nature within uncertain environments, making optimal solutions

elusive using traditional techniques (Sanchez-Ibanez et al., 2021).

Conventional algorithms like the A∗ (Jin et al., 2022), probabilistic

roadmaps (Kavraki et al., 1996), fuzzy reasoning (Liu Z. X. et al.,

2022), artificial potential field (Das et al., 2022), and rapidly-

exploring random trees (Zhang et al., 2021) have limitations

addressing complex environments. Swarm intelligence algorithms

excel through self-organizing population interactions informed by

mathematical rulesets (Xu et al., 2020). They generate optimal

solutions via biological cluster emulation (Rafai et al., 2022). For

example, the monarch butterfly optimization (MBO) algorithm

simulates butterfly swarms’ behavior (Bao et al., 2020). Artificial

bee colony (ABC) modeling imitates bee colonies (Liang and

Lee, 2015), while the moth flame optimization (MFO) algorithm

recreates moths’ spiral motions (Zhang et al., 2020). Such bio-

inspired techniques offer novel approaches for complex path

planning problems (Versaci et al., 2020).

Several studies confirm swarm intelligence’s benefits for

autonomousmobile robot decentralization (Fragapane et al., 2021).

Swarm intelligence algorithms establish mathematical models

using rule sets and elements. These algorithms iterate by replacing

the current solution with a newly generated one, repeating

the optimization process until optimal solutions are obtained

or a maximum number of iterations is reached. In a study

Cheng et al. (2020), a genetic algorithm (GA) accomplished

path planning for a reconfigurable hinged-Tetromino robot,

addressing multi-objective global optimization. However, the

GA optimization is susceptible to local optima and exhibits

slow convergence. To overcome this, an enhanced ant colony

optimization (ACO) algorithm incorporating a time taboo grid

strategy demonstrated success in dynamic environments (Xiong

et al., 2021). However, ACO has a lengthy calculation cycle.

Another study applied particle swarm optimization (PSO) with

two objective functions—distance and risk—to determine the safest

and shortest path by predicting random obstacle changes (Al Hilli

et al., 2021). However, PSO is prone to premature convergence in

complex problems. An improved cuckoo optimization algorithm

(COA) achieved constrained path planning in simulations and

real environments through an enhanced objective function

Abbreviations: ABC, Artificial bee colony; AGV, Automated guided vehicle;

ACO, Ant colony optimization; AGDE, Adaptive guided di�erential evolution

algorithm; BFO, Bacterial foraging optimization; COA, Cuckoo optimization

algorithm; ESMA, Enhanced slime mold algorithm; GA, Genetic algorithm;

GWO, Gray wolf optimization; LRSMA, Lévy flight-rotation slime mold

algorithm; MBO, Monarch butterfly optimization; PSO, Particle swarm

optimization; PSO_GWO, Gray wolf optimization algorithm combined with

particle swarm optimization; SMA, Slime mold algorithm; SMA-AGDE,

Slime mold algorithm combined with adaptive guided di�erential evolution

algorithm; WOA, Whale optimization algorithm.

(Mohanty, 2020). However, COA left room for improved global

convergence efficiency. In a related study Dereli (2022), the

whale optimization algorithm (WOA) enhanced convergence by

strictly following the leader to prey via Euclidean distance.

However, WOA faces frequent local optima challenges. While

swarm intelligence algorithms have proven effective in simulations

and experiments, opportunities remain to address premature

convergence, dynamically balance exploitation/exploration, and

overcome localization. Focusing on such areas could further

optimize performance. Therefore, improved meta-heuristic path

planning for autonomous mobile robots remains an active

research direction.

The performance of basic swarm intelligence algorithms

generally improved additional components or combining

algorithms (Mac et al., 2016). For instance, an enhanced diversity

PSO algorithm in the diversity PSO algorithm to ensure diverse

peaks and prevent iteration stagnation (Fernandes et al., 2022).

Another study combined the bat optimization algorithm with

CAO to select optimal qualities, reducing path calculation time

(Saraswathi et al., 2018). A new WOA variant incorporated an

artificial potential field to improve dynamic obstacle avoidance

(Dai et al., 2023). Another approach integrated the Bacterial

Foraging Optimization (BFO) algorithm with the Lévy flight

to reduce iterations and accelerate convergence (Pang et al.,

2019). Additionally, the gray wolf optimization algorithm (GWO)

combined with PSO in the PSO_GWO introduced PSO to calculate

gray wolf positions, effectively addressing local optimization

(Teng et al., 2019). Moreover, meta-heuristic optimization

processes are inherently stochastic—striking the right balance

between exploration and exploitation proves crucial in optimizing

algorithms (Mirjalili et al., 2014).

The slime mold algorithm (SMA) is a meta-heuristic inspired

by slime mold behavior in nature (Li et al., 2020). It exhibits

fewer parameters, robustness, and exploration ability, making it

promising for global optimization. In benchmark function sets

like IEEE CEC 2014, SMA outperformed algorithms such as

the WOA, MFO, and GWO. However, SMA also demonstrates

weaknesses, such as slow convergence or inability to reach global

optima in certain states or functions. Like all algorithms, SMA

has limitations in specific scenarios or problem types. Regarding

path planning, SMA surpasses particle swarm optimization (PSO)

and artificial bee colony (ABC) algorithms in static environments

(Agarwal and Bharti, 2021). Further research is needed to

address dynamic environment challenges. Improving convergence

efficiency and achieving effective dynamic obstacle avoidance

are critical for mobile robot path planning. Dedicated efforts

developing innovative techniques and algorithms that can adapt

swiftly to dynamic changes are needed.

To improve the efficiency and effectiveness of autonomous

mobile robot path planning in dynamic environments and achieve

the best paths, this paper introduces an enhanced version of the

Slime Mold Algorithm (ESMA). The proposed planning process

involves three stages: (1) Processing the navigation environment to

create a movement position map for the robot, (2) Planning the

trajectory between the start and endpoint of the desired movement,

and (3) Post-processing the determined path to ensure the shortest

route while considering the inherent limitations of the autonomous

mobile robot. The final stage will not be discussed in this article.

The main contributions of this study can be summarized as follows:
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a) Adaptive technology using a linear decreasing strategy to

increase random search and enhance the global capability.

b) Improved potential field factor incorporating attraction and

repulsion for dynamic obstacle avoidance.

The structure of this paper is as follows: Section 2 provides

an overview of the enhanced Slime Mold Algorithm (ESMA).

Section 3 presents the underlying theory of the SMA and its

improvement. Section 4 conducts experiments demonstrating

ESMA’s dynamic path planning benefits for mobile robots. Finally,

Section 5 summarizes key conclusions regarding the significance of

the findings.

2. Related work

Like other meta-heuristic algorithms, the SMA involves

three key aspects when dealing with optimization: exploration,

exploitation, and the transaction between the two stages (Cai

et al., 2020). Exploration dedicates to identifying potential areas

within the entire search space that may contain the optimal

solution, aiming to progressively narrow this region. Conversely,

exploitation focuses on finding the best solution within the

defined feasible area (Alyasseri et al., 2022). The smooth transition

between the exploration and exploitation stages plays a pivotal

role in achieving a well-balanced search strategy for the algorithm

(Rodriguez-Molina et al., 2020). Optimizing exploration and

exploitation strategies provide an important approach for swarm

intelligence algorithm optimization (Lin and Gen, 2009).

A series of proposed improved SMAs have addressed the

issues of optimization and slow convergence while also considering

obstacle avoidance in the path planning. Yu et al. (2021) proposed

a strategy combining exploration and exploitation using quantum

rotation gates and a water cycle approach to enhance convergence

speed. To mitigate premature convergence (Rizk-Allah et al.,

2022), implemented a strategy incorporating chaotic search and

cross-reverse enhancement, effectively expanding the search space

and improving non-linear convergence accuracy. Researchers

introduced reverse learning to improve global exploration ability.

Liu and Liu (2022) combined quasi-reverse learning and quasi-

reflective learning techniques to enlarge population searching

range. Additionally, they utilized the unscented transformation

sigma point to improve stability and alleviate stagnation. Nguyen

et al. (2020) proposed an enhanced SMA incorporating opposition-

based learning and adjusting individual position update weight

coefficients to enhance performance. Houssein et al. (2022)

integrated modified opposition-based and orthogonal learning

techniques to improve accuracy. These studies demonstrated

advantages in balancing exploration and exploitation stages.

However, configuring the reverse learning search space poses a

challenge directly impacting effectiveness.

The crossover and mutation operators in the adaptive guided

differential evolution algorithm (AGDE) possess strong local

optimization capabilities, making them effective for enhancing

the local search capability of SMA. Houssein et al. (2021)

utilized AGDE to promote population diversity and overcome

premature convergence, resulting in SMA-AGDE included here for

comparison. The Lévy flight strategy is a well-known approach

for improving global search ability in intelligent optimization

algorithms (Liu J. X. et al., 2022). Building on the Lévy

search (Zheng et al., 2023), introduced rotation perturbation

with local optimization ability, yielding the Lévy flight-rotation

SMA (LRSMA) with higher convergence accuracy. LRSMA

proves particularly effective for static environment path planning

problems. Consequently, LRSMA is also included as one of the

comparative algorithms in this study.

While these improved SMAs can enhance the algorithm’s

convergence speed, further research on obstacle avoidance in

dynamic environments is needed. Hence, this study proposes

an ESMA considering the environment in two dimensions and

efficiently plan autonomous mobile robot paths dynamically.

To verify the efficiency and utility of the ESMA, experimental

comparative studies evaluated it against SMA, SMA-AGDE,

and LRSMA.

3. Mathematical model of algorithm

3.1. SMA and its advanced approach

3.1.1. SMA
The SMA abstracts and simulates the foraging behavior

and morphological changes observed in slime molds through

a mathematical model. During foraging, the SMA creates

a venous network that connects various food sources. The

higher the quality and density of the food source, the

thicker the venous network. As slime molds locate food, the

SMA dynamically adjusts the cytoplasm flow rate within

veins and modifies network thickness using oscillations

from a biological oscillator. When food concentration

is higher, the wave generated by the biological oscillator

becomes stronger, resulting in faster cytoplasm flow and

thicker veins.

The SMA maintains a balance between exploration

and exploitation throughout the search process. Even after

finding food sources, there remains a probability for slime

molds to explore unknown areas, ensuring the algorithm

continues searching for potentially better solutions. The

search mechanism of the SMA can be summarized as follows

(Li et al., 2020):

X (t + 1)

=







































rand × (UB− LB) + LB, rand < z

X_best (t) + vb

× (W × Xr1 (t) − Xr2 (t)) , rand ≥ z and rand1 < p

vc× X (t) , rand ≥ z and rand1 ≥ p

(1)

W
(

SIndex(i)
)

=























1+ r2 × lg
(

bF−S(i)
bF−wF

+ 1
)

, condition

1− r2 × lg
(

bF−S(i)
bF−wF

+ 1
)

, others

(2)
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SIndex (i) = sort (N) (3)

In the SMA, the following equations and parameters

are utilized:

t: Current iterative index.

Xr1 (t) and Xr2 (t): Positions of two randomly selected

individuals from the slime molds.

X (t + 1): Updated position of the individual after the

current iteration.

X_best (t): Position of the individual with the highest food

concentration in the tth iteration (optimal position).

vc: Control parameter measuring the utilization of historical

records by individual slime molds, decreasing linearly in the range

of [1, 0].

UB and LB: Upper and lower bounds of the search

space, respectively.

rand: Random number between 0 and 1.

rand1: Random number between 0 and 1, representing the

switching probability between exploration and exploitation modes.

z: The proportion of slime molds randomly distributed in

all populations.

W: Weight coefficient, simulating the change in the biological

oscillator’s frequency with the quality and density of the food

during foraging.

r2: Random number, either 0 or 1.

SIndex (i): Index of slime mold individuals after sorting.

bF and wF: Optimal and worst fitness values in the current

iteration, respectively.

lg: Value used to slow down the rate of change.

condition: Slimemold individuals whose fitness values are in the

top half of the population.

others: Remaining slime mold individuals.

The exploration stage is active when rand1 < p, while the

exploitation stage occurs when rand1 ≥ p.

P and vb are control parameters, and the formula is as follows:

p = tanh |S (i) − DF| , i ∈ {1, 2, . . . ,N} (4)

a = arctanh

(

−
t

ITmax
+ 1

)

(5)

i: Index of slime molds.

S (i): Fitness value of the ith slime mold in the current iteration.

DF: Optimal fitness value among all iterations.

vb: Random value in [–a, a], with the range decreasing as the

value of a decreases.

ITmax: Maximum number of iterations.

Figure 1 shows the SMA detailed steps, which involves the

following processes:

(1) Initialization.

(2) Obtain each individual’s position through random

search, calculating corresponding fitness values, and local

best solution.

(3) Renew the global best consequence.

(4) Determine whether the maximum search iteration limit is

reached. If so, continue updating individuals based on value

and Equation (1) until the best solution is obtained.

FIGURE 1

The diagram of the slime mold algorithm (SMA).

3.1.2. SMA-AGDE
AGDE demonstrates robust convergence ability through

mutation, crossover and selection (Mohamed and Mohamed,

2019). In the SMA-AGDE, the initial population forms via random

sampling, hybridizing SMA and AGDE. AGDE’s mutation and

crossover process serves as SMA’s individual update method.

This integration aims to increase diversity, enhance local search

capability, and prevent premature convergence. By combining

SMA and AGDE strengths, the SMA-AGDE achieves improved

performance in exploration, exploitation, and overall optimization.

Figure 2 illustrates the SMA-AGDE search update mechanism.

The main steps are (Houssein et al., 2021):

(1) Initialization.

(2) Obtain each individual’s position through random search,

calculate fitness value, and find local best solution.

(3) Update parameters a and vb.

(4) Update the slime mold individuals according to AGDE.

(5) Repeat steps (2)–(4) until the best solution occurs when

iterations reach the maximum limit.

3.1.3. LRSMA
The LRSMA updates slime mold positions by introducing a

variable neighborhood Lévy flight strategy to improve the global

optimization ability of the SMA. The LRSMA applies a rotation

disturbance mutation approach considering local optimization

Frontiers inNeurorobotics 04 frontiersin.org
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FIGURE 2

The flow chart of the SMA combined with adaptive guided

di�erential evolution (SMA-AGDE).

tolerance to disturb each slime mold, expand population local

search range, and enhance algorithm development ability.

Figure 3 shows the diagram of the LRSMA (Zheng et al., 2023),

whose steps are as follows:

(1) Initialize.

(2) Calculate the global best solution. Calculate and sort fitness

values to obtain the best and worst fitness value. Update each

individual’s weight coefficientW
(

SIndex
)

and position.

(3) Re-update global best solution. Update optimal position

according to variable neighborhood Lévy flight strategy.

(4) Reconstruct convergence population. Judge the algorithm

convergence. If converged, rotate some individuals.

Recalculate the global best position by simulating

annealing approach.

(5) Regenerate the population.

(6) Repeat steps (2)–(5) until the iteration number reaches the

maximum limit and output the global best solution.

3.2. The proposed ESMA

The ESMA proposes a new adaptive technique that utilizes the

same weight coefficient processing as SMA. The ESMA uses the

same fitness calculation as LRSMA in path planning. However,

the ESMA’s data update method after local optimization differs

from LRSMA.

FIGURE 3

The process description of the LRSMA.

The free space method models the autonomous mobile

robot’s driving environment, where achievable space is blank

and unachievable space contains obstacle area. To simplify

calculation, a point-like object moving on a two-dimensional

platform simulates the robot. Obstacles enlarge to half robot width

on mapping to the environment, represented by circles of radius

determining obstacle space (Na et al., 2022).

This paper aims to search the drivable area in the free space

through the algorithm to obtain an effective start-end trajectory

plan. The trajectory consists of discontinuous points forming a

continuous shortest path on the map. This process solves three

problems: obstacle avoidance, global path obtaining, and local path

planning (Dai et al., 2023).

In the SMA, z represents the proportion of randomly

distributed slime mold individuals among the total population. As

iterations increases, z remains constant. Early on, the SMA quickly

approaches the best position of the current population. However,

when falling into local optimization, it may jump from local optima

through random search and explore unknown regions with certain

probability. Since z directly determines random search probability,

the fixed parameter z cannot fully meet the search requirements.

To address this, an adaptive technique linearly increases z within

a constrained interval as iterations increase. The adaptive update

process of z is as follows:

z = z∗0

(

1+
t

ITmax

)

(6)
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FIGURE 4

The schematic diagram of the annular synthetic magnetic field. Two

yellow diamonds represent the starting point and endpoint. Red

dashed line stands for the path of the robot. Rs is the range of the

gravitational attenuation zone; Rob is the threat range of the

obstacle; Rr is the range of the repulsion transition zone.

where, z0 is a fixed parameter, t is the current iteration, and ITmax

is the maximum number of iterations. The value of z is the smallest

in the early stage of the search, and the value of z becomes larger in

the later stage of the search.

In the later stage of the SMA, the population tends to converge

to the best individual, which reduces diversity and increasing

susceptibility to local optimization. When SMA falls into local

optimization, adjusting the parameter z alone may be insufficient

for escape. In the ESMA, gravitational and repulsive potential fields

are established. A synthetic potential field model is constructed

based on these, on these, combining the strengths. The gravitational

field improves local planning efficiency while the repulsive field

enables obstacle avoidance in local robot path planning. The

introduced potential integrated field serves as another ESMA

optimization variable.

Traditional artificial potential fields suffer from issues such as

unreachable targets and local minimum traps. Therefore, this paper

employs a circular synthesis-enhanced potential field method to

construct a comprehensive potential field model that neglects long-

range repulsion and weakens the attraction from obstacle points.

As shown in Figure 4, the potential synthetic field in the annular

region can provide a non-oscillatory trajectory (Liu et al., 2020).

In the robot local path planning process, the repulsive potential

field is weakened when the robot is far from obstacles to prevent

premature deviation from the trajectory. Simultaneously, the

attractive potential field is weakened when approaching obstacles

to prevent local oscillations. The synthetic potential in the annular

region is given by Liu et al. (2020).

U (X) = εa∗Ua (X) + εr∗Ur (X) (7)



































































Ua (X) = −ηa∗

(

1−
d(X,Xg)
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1, otherwise

(8)































































Ur (X) = −ηr∗

(

Rob
d(X,Xob)

)qr
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1, d (X,Xob) < Rs

1
2

(

cos
(

d(X,Xob)−Rs
Rr−Rs

· π

)

+ 1
)

, Rs ≤ d (X,Xob) < Rr

0, d (X,Xob) ≥ Rr

(9)

where U (X) is the potential synthetic field of the robot at position

x; εa is the gravitational potential field coefficient; Ua (X) is the

potential gravitational field; Ur (X) is the potential repulsive field;

εr is the coefficient of the repulsive potential field; ηa is the

gravitational field coefficient; Xob is the obstacle position; Xg is the

end position; qa is a positive integer; Rob is the threat range of the

obstacle; Rs is the range of the gravitational attenuation zone; d( )

is the Euclidean distance of two points; ηr is the repulsive field

coefficient; qr is a positive integer; Rr is the range of the repulsion

transition zone.

To smoothly navigate around obstacles and avoid local

oscillations, improvements have been made to the attractive

potential field function by introducing a weakened attractive

potential field region near obstacles. To prevent premature

deviation from the desired path, the repulsive potential field has

been enhanced through a potential field smoothing transition

strategy. The potential gravitational function Fa (X) and the

potential repulsive function Fr (X) can be obtained by deriving the

gravitational and repulsive potential functions, respectively. The

mathematical models of gravity and repulsion are as follows:

Fa (X)

=























































0, d (X,Xob) < Rob ,

1
2

(

sin
(

d(X,Xob)−Rob
Rs−Rob

· π − π
2

)

+ 1
)

∗
qa

d(Xob ,Xg)
∗

(

1−
d(X,Xg)‖X−Xg‖

d(Xob ,Xg)

)qa−1
, Rob ≤ d (X,Xob) < Rs ,

qa
d(Xob ,Xg)

∗

(

1−
d(X,Xg)
d(Xob ,Xg)

)qa−1
, otherwise,

(10)

Fr (X) =







































qr∗Rob
qr

dqr+1(X,Xob)
, d (X,Xob) < Rs ,

1
2

(

cos
(

d(X,Xob)−Rs
Rr−Rs

· π

)

+ 1
)

∗
qr∗Rob

qr

dqr+1(X,Xob)
, Rs ≤ d (X,Xob) < Rr ,

0, d (X,Xob) ≥ Rr ,

(11)

where Fa (X) represents gravity, and Fr (X)

represents repulsion.

The directions of gravity and repulsion correspond to the

fastest decreasing directions of potential gravitational and repulsive
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energies, respectively, represented by the negative gradients of

the potential gravitational field and potential repulsion field. The

resultant force acting on the robot can be obtained via vector

superposition of the gravity and repulsion acting on it.

In this paper, the robot’s position changes detect local

optimization presence in the mobile robot. When the optimal

solution of the robot oscillates near a certain point within

a small range, it is considered to have fallen into the local

optimization. Hence, it is necessary to guide the robot

with potential synthetic field local planning until escaping

local optimization.

Algorithm 1 shows the ESMA pseudocode.

1: Set the obstacle avoidance threshold

Dmin and initialize the population

2: for it = : ITmax do

3: for each individual do

4: Calculate the fitness value of each

individual

5: Update the local best solution

6: end for

7: Recalculation the global best solution

8: if the global best solution reaches the

endpoint then

9: return the global best solution

10: end if

11: if d
(

Xbest(t),Xbest(t − 1)
)

< Dmin then

12: repeat add potential field and

update the global best solution

13: until d
(

Xbest(t),Xbest(t − 1)
)

≥ Dmin

14: end if

15: Check if any individual goes out of

search space and modify it

16: Calculate the fitness of each

individual

17: Update the population

18: end for

19: return the global best solution

Algorithm 1. The pseudocode of the ESMA.

The steps of the ESMA are as follows:

(1) Initialization. Randomly generate the initial myxobacteria

population and update the fitness value of each smile

mold individual.

(2) Update the local and global best solutions according to

Equations (1)–(6).

(3) If the algorithm falls into the local optimization, re-

update the global best solution according to Equations

(7)–(11) and proceed to step (4). Otherwise, proceed to

step (4).

(4) Update the population.

(5) Continue iterating through steps (2)–(4) until the

best solution is obtained, as long as the number

of searches is less than the specified number

of iterations.

4. Experiment results and analysis

4.1. Scenarios and parameter setting

The experimental scenario simplified the obstacles as circles

with different radii. To represent the position of the robot, the

coordinates of its center point were utilized, irrespective of its size.

To verify the algorithm’s robustness, two scenarios were designed,

as shown in Figure 5, with different obstacle distributions. In

Figure 5, the obstacles are punctate in scenario 1, while in scenario

2, they have a banded distribution. The experimental area is

800∗800 cm, and the white grid represents the accessible area.

The obstacle area is depicted by a blue circle, where the size

of the circle corresponds to the extent or coverage of the obstacle.

Obstacles with larger radii indicate larger obstacles. The radii are

75 and 50 cm. The starting point and endpoint coordinates are

[−800, −800] and [800, 800], respectively, represented by a yellow

diamond. The unit of measurement is cm.

To provide a comprehensive evaluation of the algorithm’s

performance, this study conducted comparisons between the

ESMA and other algorithms, namely SMA (Agarwal and Bharti,

2021), SMA-AGDE (Houssein et al., 2021), and LRSMA (Zheng

et al., 2023). The parameter settings for all algorithms were

determined based on the reference papers. In SMA, the parameter

is z = 0.3. The parameters of SMA-AGDE are set as z = 0.3,CR1 ∈

[0, 0.05] ,CR2 ∈ [0.9, 1.0]. In LRSMA, the parameters are z =

0.3, Fmin = 1, pr = 0.5. The parameters of ESMA are set as

z ∈ [0.3, 0.6] , Fmin = 1, Dmin = 10, qa = 1, qr = 1, Rob =

200, Rs = 250, Rr = 400. The evaluation criteria in this study

included path length, planning time, and planning success rate.

The minimum value, average value, and standard deviation of these

metrics were calculated and compared to assess the algorithm’s

performance across these indices.

4.2. Simulation experiment and analysis

4.2.1. Experimental environment
The running environment of the simulation experiment

platform was as follows: the CPU was an Intel Core i7-6500U, the

frequency was 2.50 GHz, the memory was 8 GB, the programming

language was Python 3.9, the operating system was Windows10 64

bit, and the compilation software was Visual Studio Code 1.6.1.

4.2.2. Simulation experiments and analysis
The experiments conducted in static environments involved

the application of the SMA, SMA-AGDE, LRSMA, and ESMA

algorithms to two environments as shown in Figure 5. The

algorithm’s universality was confirmed through 100 simulation

experiments. Record the data for 100 successful runs (excluding

local optima), including the optimal path length and processing

time. Also, calculate the success rate in a 100-run algorithm. The

path length serves as a reflection of the algorithm’s ability to find

the optimal path, with shorter lengths indicating better solutions.

Optimization time refers to the time taken by the algorithm to find

the optimal path. Analyzing the data from 100 experimental runs

allows for the calculation of metrics such as the minimum path
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FIGURE 5

Experimental scenarios: (A) scenario 1 and (B) scenario 2. The obstacle area is depicted by a blue circle. The starting point and endpoint coordinates

are represented by a yellow diamond.

length for the best solution, the average path length, the standard

deviation of the path length, the time required to process the best

solution, and the average processing time.

Table 1 provides a performance analysis of these four

algorithms. Figure 6 shows detailed results of the four algorithms

in 100 experiments conducted in scenario 1. In terms of the path

length, from Figure 6A, it can be observed that the ESMA algorithm

yields the shortest path, measuring 2,323 cm, with the least overall

fluctuation. The SMA-AGDE algorithm, on the other hand, results

in the longest optimal path, measuring 2,423 cm. LRSMA exhibits

the most significant fluctuations in path length. Table 1 reveals that

the standard deviation of path lengths for ESMA is 194, while for

LRSMA, it is 276. The ESMA outperformed the SMA, SMA-AGDE,

and LRSMA. The evaluation indicators, i.e., minimum path length

and average path length, of the ESMA decreased by (4.26, 4.30, and

1.59%) and (0.71, 0.22, and 1.38%), respectively. During the search

process, the APF method is employed to guide the algorithm in

breaking free from local optimization and directing it toward the

desired endpoint. In situations where the SMA becomes trapped

in local optimization, the ESMA algorithm addresses this issue

by increasing the proportion of the random search population

and incorporating the APF technique. From Figure 6B, it can

be observed that the ESMA algorithm requires the least amount

of time, which is 0.093 in terms of time. From Table 1, it can

be observed that the ESMA showed a significant improvement

over the SMA, SMA-AGDE, and LRSMA, with the two evaluation

indexes of the ESMA (the time to process the best solution and the

average time) decreasing by (33.33, 67.74, and 16.13%) and (3.42,

36.75, and 0.00%), respectively, indicating that the ESMA has the

fastest convergence speed. The results suggest that ESMA is capable

of generating faster, more stable, collision-free, and shorter paths.

Figure 7 provides a detailed breakdown of the results obtained

from the 100 experiments conducted in scenario 2, showcasing

the performance of the four algorithms. When comparing the

path lengths, from Figure 7A, it can be observed that the

ESMA algorithm yields the shortest path, measuring 2,465 cm,

with relatively minor overall fluctuations compared to LRSMA.

The SMA algorithm, on the other hand, results in the longest

optimal path, measuring 2,493 cm. SMA-AGDE exhibits the most

significant fluctuations in path length. From Table 1, the ESMA

algorithm demonstrated significant improvements over the SMA,

SMA-AGDE, and LRSMA algorithms. The minimum and average

path lengths achieved by ESMA were reduced by approximately

(42.7, 18.2, and 2.1%) and (5.3, 2.0, and 1.5%), respectively,

compared to the other algorithms. The standard deviation of the

path length of the ESMA was larger than that of the LRSMA and

smaller than that of the SMA and SMA-AGDE. This phenomenon

is due to the fact that the adaptive parameters of the ESMA

increase the randomness of the algorithm, while the APF strategy

in the ESMA algorithm enhances its global search ability. When

comparing the data from Figure 7B, it can be observed that the

processing time for obtaining the best solution was comparable

between ESMA, SMA, and LRSMA, while SMA-AGDE required

a longer processing time. From Table 1, it can be seen that the

minimum required time for ESMA, SMA, and LRSMA algorithms

is all 0.077, while SMA-AGDE requires a time of 0.172. The

average time was slightly better than that of the LRSMA and

SMA, and less than that of the SMA-AGDE. However, when

the obstacles are distributed in a banded pattern, it becomes

necessary to increase the amount of continuous APF guidance,

thus reducing the ESMA’s time advantage. Overall, the ESMA

demonstrated the best comprehensive performance in terms of the
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TABLE 1 Simulation performance of the four algorithms.

Path length (cm) Planning time (s) Satisfaction

Minimum Mean Standard
deviation

Processing the
best solution

Mean Rate

Scenario 1 SMA 2,422 2,695 221 0.124 0.121 45%

SMA-AGDE 2,423 2,682 240 0.156 0.160 50%

LRSMA 2,360 2,713 276 0.108 0.117 65%

ESMA 2,323 2,676 194 0.093 0.117 98%

Scenario 2 SMA 2,493 2,726 153 0.077 0.118 40%

SMA-AGDE 2,485 2,943 299 0.172 0.180 56%

LRSMA 2,492 2,723 139 0.077 0.115 60%

ESMA 2,465 2,717 142 0.077 0.114 85%

Best results are shown in bold.

minimum and average path lengths, planning time, and stability

of the planning results, compared with the SMA, SMA-AGDE,

and LRSMA.

Table 1 shows the comparison consequences of the ESMA

planning satisfaction rate with that of the other methods. Best

results are shown in bold. The satisfaction rate of the other three

algorithms did not exceed 70 %, while the ESMA’s satisfaction

rate in both scenarios was >80%. The satisfaction rate of the

ESMA in scenario 1 was higher than that in scenario 2. This

shows that the satisfaction rate of the ESMA in scenarios with

a punctate obstacle distribution is better than that in scenarios

with a banded obstacle distribution. This phenomenon may be

due to the higher success rate of the SMA in scenario 1 than

in scenario 2. Additionally, the optimization performance of

the ESMA in scenario 2 decreased as it is an improvement of

the SMA.

The algorithm’s sensitivity in a dynamic environment can be

assessed by adjusting the obstacle’s position and observing the path

length before and after the adjustment (Dai et al., 2023). To test the

sensitivity of the ESMA, some obstacles in Figure 8 were changed

to dynamic obstacles, numbering three in scenario 1 and scenario

2. Therefore, the experiment involved resetting dynamic obstacles

along the original dynamic change path. There were two cases: one

where the original planned path was not obstructed, and another

where it was. As shown in Figure 8, the black route represents the

path planned by the ESMA in a static environment, orange circles

symbolized the dynamic obstacles in the visualization, and each

orange circle is numbered to indicate the sequence of the dynamic

obstacles. Table 2 displays all the path length results obtained in

all cases. The change rate refers to the relative change in the

average length compared to the original path. The average length

in scenario 1 is 2,676 cm, while in scenario 2, it is 2,717 cm.

Table 2 presents the sensitivity analysis of the ESMA algorithm

to the position of obstacles. In cases where the obstacle did not

obstruct the original planned path, the path length remained

unchanged. However, when the obstacle hindered the original

planned path, the path length was altered. This analysis highlights

the dependence of the path length on the positioning of obstacles

and demonstrates the impact of obstacle placement on the

effectiveness of the ESMA algorithm.

4.3. Robot experiment and analysis

4.3.1. Experimental environment
To further verify the optimization performance of the ESMA,

real machine testing was conducted using a robot system. The

robot had a length and width of 1.53 and 0.82m, respectively, and

the driving speed was 6–8 km/h, with an Ackerman wire control

driving mode. ROS 18.04 was used as the robot’s operating system,

and the pure pursuit path-tracking method was used to control

the robot (Shan et al., 2015). To simplify the calculation, the robot

drove at a constant speed of 6 km/h. The test environment used in

this study was designed to resemble the simulation environment.

It consisted of a blank area where cardboard obstacles were

strategically placed.

4.3.2. Robot experiment and analysis
The SMA, SMA-AGDE, LRSMA, and ESMA were run on

the robot system to test the 10-run satisfaction. Best results are

shown in bold. Table 3 presents various performancemetrics for the

environment depicted in Figure 5. It includes the minimum path

length, average path length, standard deviation of the path length,

time required to process the best solution, and average time of path

planning. The results indicate that all algorithms were capable of

planning collision-free paths in the given environment.

Figure 9A shows the robot tracking the best solutions in

scenario 1. Figure 10 shows the detailed path planning lengths

and times. From Figure 10A, it can be observed that, in terms

of path length, the bars corresponding to the ESMA algorithm

have the shortest height, indicating that it finds the shortest path,

measuring 2,335 cm. The bar corresponding to the SMA-AGDE

algorithm is the tallest, signifying the longest path, measuring

2,489 cm. The bars for ESMA are generally shorter than those

for SMA, SMA-AGDE, and LRSMA, implying that only some of

ESMA’s results are better than those of SMA, SMA-AGDE, and

LRSMA. Due to the randomness of the swarm intelligence random

algorithm, the planning results show some randomness. Despite the

findings mentioned earlier, it is important to note that these specific

instances where ESMA did not outperform the other algorithms

in terms of path length do not diminish the overall advantages of
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FIGURE 6

Detail simulation performance of the four algorithms in scenario 1: (A) path length and (B) planning time. The Y coordinate of the shape is the path

length in (A) and the planning time in (B). The result is the record of 100 runs in each picture.

ESMA in robot path planning. In Figure 10B, it can be seen that

the bars corresponding to the ESMA algorithm have the smallest

height. As shown in Table 3, compared to the SMA, SMA-AGDE,

and LRSMA, the ESMA reduced the minimum path length, average

path length, time to process the best solution, and average time by

(5.14, 6.60, and 2.57%), (6.69, 1.46, and 3.14%), (16.07, 49.64, and

9.35%), and (0.04, 43.48, and 4.18%), respectively. These results are

consistent with the simulation outcomes.

Figure 9B shows the robot tracking the best solutions in

scenario 2. Figure 11 shows the detailed path planning lengths and

times. From Figure 11A, it can be observed that, in terms of path

length, the bar corresponding to the minimum value achieved by

the ESMA algorithm has the smallest height, indicating the shortest

path, measuring 2,465 cm. It is relatively close to the minimum

value achieved by LRSMA. The bar corresponding to the SMA

algorithm is the tallest, signifying the longest path, measuring

2,535 cm. From Figure 11B, it can be seen that ESMA’s processing

of the best solution is close to LRSMA but outperforms SMA and

SMA-AGDE. As depicted in Table 3, compared to the SMA, SMA-

AGDE, and LRSMA, the ESMA reduced the minimum path length,

average path length, time to process the best solution, and average

time by (2.84, 1.58, and 0.32%), (3.92, 8.93, and 2.73%), (73.08,

125.64, and 1.28%), and (27.18, 68.93, and 13.59%), respectively.

The results obtained in the physical test environment surpass those
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FIGURE 7

Detail simulation performance of the four algorithms in scenario 2: (A) path length and (B) planning time. The Y coordinate of the shape is the path

length in (A) and the planning time in (B). The result is the record of 100 runs in each picture.

achieved in the simulation environment, and this discrepancy could

be attributed to the limited number of experiments conducted.

Figure 12 compares the convergence speed of the four

algorithms at the minimum path length. The fitness value is

the sum of distances from the current position to the previous

position, and from the current position to the endpoint. The

ESMA shows slow convergence because the APF guides the

global optimal point to the endpoint with a fixed step size.

Fifty iterations in all scenarios are sufficient to achieve good

performance.

5. Conclusions

This paper introduces the ESMA, a novel swarm intelligence

algorithm addressing the path-planning problem in dynamic

environments for autonomous mobile robots. The ESMA

algorithm incorporates adaptive technology and an artificial

potential field to improve the convergence speed while overcoming

local optimization issues. In comparison to the SMA, SMA-AGDE,

and LRSMA algorithms, ESMA achieved the smallest average

minimum path length and minimum path values, along with the
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FIGURE 8

Dynamic obstacles in scenarios: (A) scenario 1 and (B) scenario 2. The black route represents the path planned by the ESMA in a static environment,

orange circles symbolized the dynamic obstacles in the visualization, and each orange circle is numbered to indicate the sequence of the dynamic

obstacles. The dynamic obstacles are reset along the original dynamic change path.

TABLE 2 Comparison results of planned path lengths.

Obstacle
number

Hindered original
path (cm)

Rate of
change

Unblocked original
path (cm)

Rate of
change

Scenario 1 1 2,623 2.00 2,669 0.28

2 2,753 2.86 2,664 0.47

3 2,728 1.93 2,661 0.61

Scenario 2 1 2,785 2.51 2,714 0.11

2 2,788 2.62 2,711 0.21

TABLE 3 Performance of the robot using the SMA, SMA-AGDE, LRSMA, and ESMA.

Path length (cm) Planning time (s)

Minimum Mean Standard
deviation

Processing the best
solution

Mean

Scenario 1 SMA 2,455 2,853 336 0.121 0.115

SMA-AGDE 2,489 2,713 239 0.156 0.165

LRSMA 2,395 2,758 302 0.114 0.120

ESMA 2,335 2,674 248 0.104 0.115

Scenario 2 SMA 2,535 2,782 241 0.135 0.131

SMA-AGDE 2,504 2,916 298 0.176 0.174

LRSMA 2,473 2,750 227 0.079 0.117

ESMA 2,465 2,677 133 0.078 0.103

Best results are shown in bold.
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FIGURE 9

Robot tracking the best solutions in scenarios: (A) scenario 1 and (B) scenario 2. Four dashed lines stand for the paths of the robot in each picture.

FIGURE 10

Detail performance of the robot using the four algorithms in scenario 1: (A) path length and (B) planning time. The height of the bar is the path length

in (A) and the planning time in (B).

shortest algorithm processing time, in experiments conducted

in both simulation and real-world scenarios. Consequently,

it demonstrated that ESMA is capable of generating shorter

collision-free paths with greater accuracy and stability compared

to the other solutions. However, on one hand, determining optimal

parameters for the Artificial Potential Field (APF) is a challenge,

and automated parameter tuning is a topic for future research.

On the other hand, enhancing the practical planning stability

of ESMA remains an area for further improvement. Future

work will address these issues and also involve a comparison

of ESMA with other swarm intelligence algorithms in various

dynamic environments.
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FIGURE 11

Detailed performance of the robot using the four algorithms in scenario 2: (A) path length and (B) planning time. The height of the bar is the path

length in (A) and the planning time in (B).

FIGURE 12

Iteration curves of the four algorithms in scenarios: (A) scenario 1 and (B) scenario 2. The results are the best fitness values of the four algorithms at

the minimum path length. The fitness value is the sum of distances from the current position to the previous position, and from the current position

to the endpoint.

Practically, for ground environments, the ESMA can aid

automatic robots or slow automated guided vehicles (AGVs) path

planning. For robots, it enables food delivery, express deliveries

or automatic sales. For AGVs, it applies to port cargo handling,

airport baggage transfer and other relevant applications. However,

ESMA may be unsuitable for fast-motion scenarios like relief

supplies transportation. Additionally, one of the future research

directions is to extend the algorithm’s practical application to other

environments, such as path planning for unmanned boats, drones,

and similar contexts.
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