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Introduction: Lumbar puncture is an important medical procedure for various

diagnostics and therapies, but it can be hazardous due to individual variances

in subcutaneous soft tissue, especially in the elderly and obese. Our research

describes a novel robot-assisted puncture system that automatically controls

and maintains the probe at the target tissue layer through a process of tissue

recognition.

Methods: The system comprises a robotic system and a master computer. The

robotic system is constructed based on a probe consisting of a pair of concentric

electrodes. From the probe, impedance spectroscopy measures bio-impedance

signals and transforms them into spectra that are communicated to the master

computer. The master computer uses a Bayesian neural network to classify the

bio-impedance spectra as corresponding to di�erent soft tissues. By feeding the

bio-impedance spectra of unknown tissues into the Bayesian neural network,

we can determine their categories. Based on the recognition results, the master

computer controls the motion of the robotic system.

Results: The proposed system is demonstrated on a realistic phantom made of

ex vivo tissues to simulate the spinal environment. The findings indicate that the

technology has the potential to increase the precision and security of lumbar

punctures and associated procedures.

Discussion: In addition to lumbar puncture, the robotic system is suitable for

related puncture operations such as discography, radiofrequency ablation, facet

joint injection, and epidural steroid injection, as long as the required tissue

recognition features are available. These operations can only be carried out once

the puncture needle and additional instruments reach the target tissue layer,

despite their ensuing processes being distinct.

KEYWORDS

electrical impedance spectroscopy, surgical application instrumentation design, soft

tissue, bio-impedance, Bayesian neural network, lumbar puncture, epidural steroid

injection

1. Introduction

Lumbar puncture (LP), sometimes called a spinal tap, is a critical step in accessing the

spinal region and is irreplaceable in many medical diagnosis and treatment procedures, such

as sampling spinal fluid for meningitis tests. The procedure has two main steps: the insertion

of the spinal needle into the subarachnoid space filled with cerebrospinal fluid (CSF) and

the subsequent therapeutic or diagnostic operations (Frederiks and Koehler, 1997). A study

by Vickers et al. (2018) showed that ∼363,000 LP procedures are performed in the USA

every year.
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In a proper LP procedure, referring to Figure 1, the needle

must be inserted into either the L3–L4 or L4–L5 interspinal

spaces. The L1–L2 and L2–L3 interspinal spaces should be avoided

due to the risk of injury to the conus medullaris (Roos, 2003).

After penetrating the skin tissue, the needle passes through

the supraspinous ligament, interspinal ligament, and ligamentum

flavum. When the needle tip touches the dura mater outside the

arachnoid membrane, the operator should feel a sudden resistance.

Overcoming this resistance indicates that the needle tip has reached

the subarachnoid space between the arachnoid and pia mater,

where CSF can be sampled.

Although LPs are widely performed in clinical procedures,

they do not always go smoothly. The individual physique of each

patient is different, and obesity increases the risk of LP failure

(Edwards et al., 2015). A physician’s lack of experience may result

in trauma at the perivertebral plexus of veins and blood vessels

that accompany the latter in the subarachnoid space (Dripps and

Vandam, 1951). In rare cases, the spinal cord may be injured by the

needle if the procedure is performed at an improper level (Evans,

1998). Overall, there is potential for patients to suffer from various

traumas in the LP procedure. Doctors could be confused about

whether blood in the CSF is pathological or has been caused by

extra trauma (Solomon, 1935).

Several methods have been developed to ensure the accurate

insertion of the puncture needle into the subarachnoid space

where CSF is located to avoid unnecessary injuries. One common

method is fluoroscopically guided LP, which uses X-ray imaging

to guide the needle. However, this method has some drawbacks,

such as ionizing radiation (Cauley, 2015) and side effects from

the contrast agent (Samkoe et al., 2018). Therefore, fluoroscopy

guidance is often used as a backup option for failed LPs, requiring

an extra procedure (Edwards et al., 2015). Another method is

ultrasound-guided LP, which uses sound waves to visualize the

soft tissues (Pierce et al., 2018). This method has the advantages

of being non-radiative and noninvasive. However, both methods

require bulky and costly equipment, which limits their availability

in remote and low-resource settings.

As a low-cost and portable method, electrical bio-impedance

(EBI) technology has manifested its value in different applications.

EBI technology is a cluster of methods which aims to analyze

EBI data from biological tissues. By fitting the Fricke and Morse

(1925)’s bio-electricity model, Guermazi et al. (2014) quantify

the composition of biological tissue. In eye surgery for puncture

detection, Schoevaerdts et al. (2019) integrate electrodes in a

puncture needle to monitor the bio-impedance variance. Halter

and Kim (2014) generate electrical bio-impedance tomography for

abnormal tissue detection. And Van Assche et al. (2023) use EBI as

proximity sensing in neuroscience research.

We refer to some related studies using various approaches to

detect the subarachnoid space. Several methods use tactile devices

that monitor the force feedback and its change or derivative as

the needle tip penetrates through different soft tissue layers (Singh

et al., 1994; Ambastha et al., 2016; Li et al., 2021; Wang and Li,

2022). A different CSF detection method proposed by Sievänen

et al. (2021) uses a bio-impedance needle, which measures the

electrical impedance of the tissues as a function of time by applying

and sensing an alternating current. Both methods have shown

feasibility for use in LP.

Unlike Sievänen’s CSF detection system, our work focuses on

robotic engineering and tissue identification. A clear advantage of

the robotic system is that it can stop at any specified target tissue

layer. Another advantage is that the robot is highly stable when

controlled to stop and remain in place. Therefore, this system has

the potential to automate various procedures besides LP, such as

epidural steroid injection (ESI), radiofrequency ablation (RFA), and

discography. When applied to ESI, users only need to detect the

epidural fat layer. As for RFA and discography, the needle can stop

at the corresponding position.

In our research, we developed a robotic system with one

degree-of-freedom that uses a bio-impedance needle as the sensing

unit. Instead of finding a proper frequency, our system acquires

the whole impedance spectrum as the feature of the tissues. We

developed a method for classifying and identifying soft tissue

layers based on sampling bio-impedance spectrum data from 1 to

349 kHz and applying a Bayesian neural network (BNN) to the

sampling data. Halonen et al. (2019) has proved that vivo tissues

can be accurately identified by bio-impedance needles using bio-

impedance spectrum scanning technology. Another investigation

by Denkçeken et al. (2020) implied that the bio-impedance

spectrum is sufficiently reliable and precise to reveal the presence

of different bacteria in CSF, even under the challenging condition of

CSF samples with similar electrical properties. However, our work

focused on the identification algorithm and application in robot-

assisted LP. Our design combines the robotic system with a master

computer. We further investigated the characteristics of the system

through a series of phantom experiments.

To avoid traumatic puncture, the needle tip should not travel

too far into the subarachnoid space, which is a very thin ring-

shaped layer inside the spinal column. We define the comfortable

travel distance (CTD) as the distance from the first contact

of the needle tip with the CSF and its final stopping point.

According to Holsheimef and Barolat (1998), the minimum width

of the dorsal CSF layer in 106 patients ranges from 2 to 3 mm.

Therefore, we set our CTD to be <2 mm, taking into account

engineering redundancy.

The remainder of this paper is organized as follows. Section

2 describes the robotic system in detail and tests its performance.

Section 3 illustrates how the BNN is implemented on the master

computer. Section 4 presents the results of phantom experiments

for the preliminary verification of the tissue-identifying system

for robot-assisted LP by operating and recording the needle

penetration process. Finally, Section 5 concludes the paper with

a discussion of the test results and expectations for future

applications and development.

2. Robotic system

Robot-assisted surgery has developed rapidly since the first

platform was used in 1985 (Morrell et al., 2021). Robot assistance

offers surgeons greater efficiency and stability. In this paper, we

present a robotic system that uses a bio-impedance needle to

identify different tissue layers and stop at the desired depth. As

shown in Figure 3, the system consists of a bio-impedance needle,

an impedance spectrum analyzer, a closed-loop stepper motor, and
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FIGURE 1

Overview of the system. Our system identifies di�erent tissue layers during the puncture procedure by content, such as the epidural space, which is

filled with fat, and the subarachnoid space, which contains CSF.

a master control panel. Our design improves the accuracy of LP by

stopping the needle as soon as it reaches the subarachnoid space.

2.1. Needle probe design

Inspired by Cheng et al. (2016, 2019), the bio-impedance needle

for LP is formed of a stainless-steel cannula and an inner needle

with two electrodes. The inner needle is a concentric electrode,

as shown in Figure 2. An insulator separates the electrodes and

covers most of the outer electrode’s surface. This prevents the outer

electrode from touching the metal cannula. The cannula protects

the inner needle from the tough ligament during LP. The sensor is

a two-wires configuration and only the inner needle connects to the

impedance spectrum analyzer.

2.2. Robotic system structure

The robotic system, shown in Figure 3, consists of a

puncture needle, stepper motor, motor driver, Arduino MEGA

board (Arduino Inc., Italy), impedance spectrum analyzer, and

mechanical structures. The stepper motor drives the lead screw,

which moves the slider horizontally on the slide track. This limits

the bio-impedance needle’s movement to one degree-of-freedom.

The Arduino MEGA board generates an impulse current to control

the stepper motor. The impedance spectrum analyzer (Quadra

Impedance Spectroscopy, designed by Eliko.cc, Estonia) measures

the impedance spectrum from the bio-impedance needle and sends

data to themaster computer when commanded. The robotic system

follows the process illustrated by the flow diagram in Figure 3.

Once the cannula is in position, users can replace the

inner needle with other surgical devices for sampling, anesthesia,

or curing.

2.3. Robotic performance

To verify the robotic performance, we measured the CTD 1

in Figure 4, which is the distance between the first contact of the

needle tip with the saline solution and its final stop. We mounted

the robotic system vertically, as shown in Figure 4, and drove

the bio-impedance needle from the air into a container of saline

solution. We used an Arduino program to record the depth of the

needle movement by counting the impulses of the stepper motor.

The counter increases by 1 for each forward impulse and decreases

by 1 for each backward impulse.

The detection process started with two preparation steps. In

step 1, we set the needle at a specified height above the liquid

surface, as shown in Figure 4(a), marked as the initial position,

and reset the counter to 0. In step 2, we manually controlled the

stepper motor to lower the needle to the liquid surface.We adjusted

the needle carefully by turning the stepper motor clockwise or

anticlockwise until the needle tip just touched the liquid surface,

as shown in Figure 4(c). We marked this as the zero position and

recorded its value as N1. The depth from the initial position to the

zero position is H1. Taking Hs to be the distance that the stepper

motor moves in a single step, we have

H1 = N1Hs (1)

Using a homing function in Arduino, we drove the needle back

to the initial position by a command from the master control

panel. We then began the detection process. Similar to the first

experiment, the needle stopped when the master control panel
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FIGURE 2

Bio-impedance needle. The diameter of the inner needle is 0.90mm. The external diameter of the cannula is 1.60mm and the internal diameter is

1.10mm.

FIGURE 3

Construction of the robotic system and flow diagram of its operation. The robotic system feeds bio-impedance data to the master computer and

moves according to the master computer’s identification from the data.
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FIGURE 4

Performance test of the robotic system to measure the CTD. We set up three marked positions to measure the CTD.

detected CSF. We marked this position as the terminal position N2

in Figure 4(c). The depth from the initial position to the terminal

position is H2. Thus, we have

H2 = N2Hs (2)

Then,

1 = H2 − H1

= (N2 − N1)Hs

(3)

where 1 is the difference between H1 and H2, which reflects the

detection distance of this robotic system. The value of 1 depends

on Hs, which can be adjusted by the motor driver from 0.08 to

0.22mm, and the difference between N1 and N2, which challenges

the system’s performance. After 20 repeated experiments, the mean

difference between N1 and N2 was found to be 21.65 and STD

is 1.93. As we configured the stepper motor to the most accurate

mode, the CTD 1 turns out to be 1.732± 0.154mm, satisfying the

requirement for a maximum of 2mm.

3. Programs on the master computer

This section discusses the GUI and functions implemented

on the master computer. The master computer’s tasks mainly

concern receiving data from the robotic system, data processing,

classifying the tissue type, and sending commands to the

robotic system.

First, the user should set a target on the GUI. Having

started the robotic system, the master computer continually

receives data. The uploaded data are processed in the Data

Remapping Function and then sent to the BNN classifier. The

output from the BNN is the current tissue layer. Once the

target tissue layer has been identified, the master computer

sends a stop command to the robotic system so that the bio-

impedance needle halts at the right position. The main challenge

for the master computer is to correctly identify CSF from the

bio-impedance spectrum.

BNNs effectively solve the overfitting problem, especially in

the case of small datasets. In a standard artificial neural network,

the dataset should be divided into a training set and a test set,

where the test set should be large enough to reduce the signal-

to-noise ratio in the test error. However, BNNs do not need to

sacrifice part of the data to the test set (MacKay, 1992b) because

the Bayesian evidence provides a reference to validate. Another

problem of standard artificial neural networks is overfitting. For

BNNs, overfitting is difficult because they are mainly trained

using the necessary weights in the network (Burden and Winkler,

2009), while the unnecessary weights converge to zero during the

training procedure.

Different to standard neural networks, BNNs treat the weight

as a random variable instead of an assigned value. The initial

weights (or priors) are usually defined as a standard normal

distribution. Therefore, the trained parameters are the mean and

standard deviation of the normal distribution. Instead of maximum

likelihood estimation, the learning process identifies the maximum

a posteriori of the probability of random weights (MacKay, 1992a).

Serving as a classifier, the output units from the BNN

are also random. However, we choose the maximum from

the means of the output units to determine the classification

result. The error corresponding to the maximum mean value

determines the confidence level. For a classifier, a popular cost

function for the back-propagation method is the cross-entropy

of the dataset.

3.1. Graphical user interface

The GUI in the master computer is based on the Qt framework

and plays the role of control panel and monitor. As shown in

Figure 5, the buttons on the left side are designed to control

functions running in our experiment. On the right side, there is a

monitor displaying the impedance spectrum in the form of a bode

plot. The monitor allows the user to visually check abnormal results

and manually stop the robotic system.
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FIGURE 5

GUI on the master computer. Our data collection and real-time detection are called up using this GUI.

3.2. Feature remapping function

To generate a BNN classifier, we must first build a dataset. The

dataset includes samples with labels and features. In the dataset, the

samples are recorded by rows while their labels and features are

arranged in columns.

Impedance spectroscopy captures the bio-impedance of the

tissues, but it is the conductivity of the tissues that leads to different

bio-impedance. Moreover, the captured bio-impedance data are

influenced by different concentric needle electrodes and their

manufacturing tolerances. To calibrate the differences introduced

by such deviations, our previous research (Cheng et al., 2020)

developed a calibration method whereby the captured impedance

values |Z| are remapped to the conductivity σ . The remapping

function of a concentric electrode is generated by measuring

the impedance of a saline solution of known concentration |ZS|,

because conductivity σS is a dielectric constant of saline solutions

that only varies according to concentration.

In other words, the remapping function involves the extraction

of the correlation between |ZS| and σS. As vivo tissues share

the same correlation as saline solution, the Z value of the target

tissue can be remapped to its conductivity σ through the same

remapping function.

We used eight salinecenter solutions with different

concentrations (0.00, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.9%,

where 0.00% salinity corresponds to distilled water with a

conductivity of 5 µS/cm) to cover the impedance range of the

target tissues. Figure 6 shows their theoretical values (Stogryn,

1971) as a function of frequency. We measured the saline

solutions and generated a remapping function for our device

based on Table 1, which lists the conductivity values and

captured impedance values. The conductivity values are given

in microsiemens per centimeter (µS/cm) and are independent

of the excitation current frequency. The impedance values are

measured in ohm (�) and vary with frequency. Each impedance

value is the median of 500 samples from the corresponding

saline solution.

The feature remapping function works as follows. From

Table 1, we find that the conductivity σS increases and the

impedance |ZS| decreases with increasing concentration at

each frequency. Therefore, if we plot the impedance along

the x-axis and the conductivity on the y-axis, we obtain

a monotonically decreasing function for each frequency.

When the master computer receives the bio-impedance

spectrum data from impedance spectroscopy, it linearly

interpolates the bio-impedance values into the saline

impedance values at their corresponding frequency and obtains

their conductivity.

To summarize, the remapping function converts the

impedance spectrum |Z| to the conductivity spectrum

σ using linear interpolation according to Table 1. For

the soft tissue dataset and the BNN classifier, we

use the conductivity spectra from 1 to 349 kHz as

15 features.
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FIGURE 6

Theoretical conductivity values of saline solution relating to excitation current frequency. The theoretical value remains constant at all frequencies.

The exact conductivity value is given in Table 1.

TABLE 1 Remapping table.

FREQ Concentration of saline solution

0.00% 0.01% 0.1% 0.2% 0.3% 0.4% 0.5% 0.9%

COND 5 200 1,987 3,850 5,650 7,450 9,238 16,000

1 kHz 305,009 30,744 8,657 6,607 5,547 4,885 4,453 3,856

2 kHz 238,883 27,665 7,087 5,198 4,257 3,619 3,260 2,709

3 kHz 210,094 26,599 6,599 4,776 3,891 3,278 2,939 2,404

7 kHz 119,218 23,260 5,395 3,755 2,970 2,408 2,121 1,638

11 kHz 83,554 21,773 4,959 3,403 2,658 2,120 1,853 1,389

17 kHz 55,698 19,764 4,589 3,118 2,417 1,902 1,651 1,204

23 kHz 42,127 17,997 4,340 2,941 2,270 1,776 1,537 1,105

31 kHz 31,820 16,183 4,100 2,775 2,135 1,658 1,432 1,015

43 kHz 23,303 14,031 3,840 2,604 2,000 1,543 1,332 929

61 kHz 16,604 11,576 3,550 2,423 1,863 1,431 1,236 851

89 kHz 11,498 8,897 3,207 2,215 1,707 1,305 1,130 766

127 kHz 8,066 6,634 2,845 2,005 1,555 1,188 1,033 692

179 kHz 5,706 4,889 2,461 1,784 1,401 1,075 939 623

251 kHz 4,055 3,563 2,077 1,558 1,242 961 844 557

349 kHz 2,939 2,630 1,734 1,349 1,097 859 759 503

3.3. Dataset preview

Using the feature remapping function, our device is able to

identify the target tissues of skin, fat, ligament, and CSF. These soft

tissues can be sampled from a pig’s foot. The soft tissue dataset

presented in Table 2 was formed using data from eight pig feet.

Figure 7 visualizes the soft tissue dataset, showing the conductivity

spectra of the samples in terms of their range and median values.

3.4. Design and fitting of BNN

This section describes the preparation, design, and fitting

of the BNN classifier. the BNN was developed in Python 3.10

using PyTorch (version 1.13.1), torchbnn (version 1.2), an Nvidia

3070ti GPU, and CUDA11.7 (GPU toolkit). Thus, the BNN was

trained using a GPU. The fitting process is described in the

following steps:
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1. We set up a BNN with two hidden layers, and set the weight

priors to obey a standard normal distribution using the torchbnn

framework. This neural network has one input layer with 15 units,

one output layer with four units, and two hidden layers. Each of

the hidden layers contains 10 units. Under a Bayesian approach

with a forward function, the weights are assumed to be normally

distributed, and all weights are set to mean = 0 and std = 1 as the

prior distribution. As a classification task, the output is a one-hot

encoding categorical variable marked by units in the output layer,

so there are four units corresponding to the four targets.

2. The loss function is regularized by the Kullback–Leibler

divergence (KLD), also called the relative entropy, from the

weights. A popular way of regularizing the loss function is to

add the KLD multiplied by a coefficient of influence to the

cross-entropy (CE):

cost = CE+
1

batch_size
KLD,

where batch_size is the number of samples in a training batch. These

functions are integrated in the torchbnn framework. As the dataset

is small, we take the whole dataset as a single batch. Thus, the batch

size is the number of samples.

3. The fitting process is iterated over 2,000 epochs using the

back-propagation method, as shown in Figure 8. The cost function

decreases on each iteration and converges to a constant. Figure 8

shows the cost after each iteration. The fitting result can be

described using a confusion matrix, as shown in Figure 8. The

TABLE 2 Soft tissue dataset.

No. Tissue name No. of samples

1 Skin 150

2 Fat 81

3 Ligament 149

4 CSF 146

confusion matrix reveals the misclassification relationship between

the tissues.

4. Preliminary phantom experiments

This section describes the results of phantom experiments

performed to check the performance of the robotic system and the

BNN classifier in a simulation environment.

4.1. Lumbar puncture phantom

As shown in Figure 9, we created a simulation environment

for LP and ESI using a pig’s foot, a spinal model, and a balloon

filled with 0.9% saline solution. The pig’s foot consists of soft tissues

and bone, but we collected the skin, fat, and ligament to simulate

the human soft tissues. The balloon represents the subarachnoid

space that contains CSF.We used saline solution instead of real CSF

because, with a high-frequency excitation current, the conductivity

of CSF is close to that of 0.9% saline solution, namely 16,000µS/cm.

4.2. Experiment I

In experiment I, we simulated part of the LP procedure.

The target is CSF, so the needle did not stop moving forward

until it arrived inside the balloon. The operator could start the

procedure and check the needle tip position in real time through

the graphical bio-impedance spectrum and textual real-time results

on the monitor of the master computer. The master computer

also generated a log file of the detection data and textual results

during the experiment. The detection data and results are visually

presented in Figure 10.

It can be seen that the saline solution has leaked out in

Figure 11A, at which point the classification result shows “CSF” and

the needle has stopped. Over 10 repeated experiments, our system

was able to penetrate the soft tissues and then stop precisely at the

FIGURE 7

Conductivity spectra of the tissues and CSF. This chart records the conductivity remapped from impedance over frequencies from 1 to 349 kHz for

all samples in Table 2. The rhombus is the median value at one of the 15 measured frequencies. The pale blue error bar is the range of the samples.

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1253761
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lu et al. 10.3389/fnbot.2023.1253761

FIGURE 8

Training progress and results. This shows the cost function during the training process and the confusion matrix of the BNN classifier.

FIGURE 9

Phantom experiment. The balloon is used to simulate the inter-spinal space. As the balloon is elastic, it fits inside the lumbar spinal model. Fat and

ligament from a pig’s foot are placed on the spinal model.
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FIGURE 10

Real-time detection log.

FIGURE 11

Experimental results. This experiment verified the feasibility of the robot system for medical procedures. (A) Shows the results for LP and (B) shows

the results for ESI.

target within the expected CTD. Two of the 10 experiments failed

because of needle bias; the other eight experiments all succeeded.

This indicate that the cannula structure of the needle is not

sufficiently robust for real surgery.

4.3. Experiment II

In experiment II, we simulated the puncture procedure of ESI.

In this experiment, the balloon should not be impaled, the needle

tip should stop at the epidural fat layer and the final position of

the needle tip is marked by ink. We set fat as the target tissue

and introduced a time delay for the tissue-identifying program to

avoid detecting subcutaneous fat. Once the needle had stopped, we

injected a small drop of ink into the cannula to mark the tissue. We

then disassembled the phantom environment to check the location

of the ink, as shown in Figure 11B.

5. Conclusion and discussion

This study has presented a novel tissue identification system

for robot-assisted LP. The system can distinguish different tissues

during LP procedures by measuring the bio-impedance spectrum

at the needle tip. This multi-classification method provides more

information to the users, as they know exactly which tissue layer

the needle tip has reached in real time. We performed preliminary

experiments simulating LP and ESI on a realistic phantom made of

ex-vivo animal tissue, and showed that the system was feasible and

effective for tissue identification.
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One problem encountered in the preliminary experiment was

the deformation of the bio-impedance needle. In further research,

a stronger structure should be considered for the junction between

the cannula and the slider. The robotic performance of this system

is also limited in the absence of robotic motion compensation for

respiratory movement.

Further developments will include improvements to the needle

probe design, refinement of the mechanics, and a more persuasive

experimental environment. Regarding the needle probe, a refined

electrode design of the inner needle would contain three or four

electrodes so that the voltage signal could be sampled without any

excited current interference in the measurements (Grimnes and

Martinsen, 2015). Regarding the mechanics, further research will

focus on a faster andmore precise structure. Simulations of the bio-

electric interference in living bodies would make the experiments

more realistic.
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