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Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle

cost and minimal human risk, resulting in their widespread use in recent years.

In the UAV swarm cooperative decision domain, multi-agent deep reinforcement

learning has significant potential. However, current approaches are challenged

by the multivariate mission environment and mission time constraints. In light

of this, the present study proposes a meta-learning based multi-agent deep

reinforcement learning approach that provides a viable solution to this problem.

This paper presents an improved MAML-based multi-agent deep deterministic

policy gradient (MADDPG) algorithm that achieves an unbiased initialization

network by automatically assigning weights to meta-learning trajectories. In

addition, a Reward-TD prioritized experience replay technique is introduced,

which takes into account immediate reward and TD-error to improve the

resilience and sample utilization of the algorithm. Experiment results show that

the proposed approach e�ectively accomplishes the task in the new scenario,

with significantly improved task success rate, average reward, and robustness

compared to existing methods.

KEYWORDS

UAV, meta learning, multi-agent reinforcement learning (MARL), Model Agnostic Meta
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1. Introduction

As a reusable vehicle, Unmanned Aerial Vehicles (UAVs) do not need to be piloted.

Instead, they are capable of accomplishing the given tasks by remote control or autonomous

control (Silveira et al., 2020; Yao et al., 2021). This has received much attention from the

industry in recent years. UAVs have several advantages, including low life-cycle cost (Lei

et al., 2021), low personnel risk (Rodriguez-Fernandez et al., 2017), long duration of flight

(Ge et al., 2022; Pasha et al., 2022), and maneuverability, size, and speed (Poudel and Moh,

2022). These UAVs are increasingly being used in various fields such as tracking targets

(Hu et al., 2023), agriculture (Liu et al., 2022b), rescue (Jin et al., 2023), and transportation

(Li et al., 2021) for “Dull, Dirty, Dangerous, and Deep" (4D) missions (Aleksander, 2018;

Chamola et al., 2021). The applications of UAVs are illustrated in Figure 1. During a

mission, UAVs typically operate in swarms to accomplish their objectives. Consequently,

the cooperative control and decision-making methods used by UAV swarms have become

increasingly critical. Effective collaborative decision-making techniques can enhance the

efficiency and effectiveness of mission accomplishment. However, it is important to note

that current cooperative decision-making methods, including non-learning methods and

traditional heuristics for UAVs, have limited capacity to effectively manage conflicts between
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multiple aircraft and maintain a balance between adapting to

variable mission environments and meeting time constraints.

Therefore, this area has received significant attention from

researchers seeking to develop more robust and versatile methods

for UAV cooperative decision-making.

At present, methods for cooperative control and decision-

making of UAV swarms are typically classified into two main

categories: top-down and bottom-up (Giles and Giammarco,

2019). Top-down approaches are primarily utilized for centralized

collaborative control and decision-making, while bottom-up

approaches are mainly applied to distributed collaborative

decision-making and control (Wang et al., 2022).

The main advantage of the top-down approach is its ability

to decompose complex tasks into smaller, more manageable

components. In the context of UAV swarm collaborative decision-

making, this approach can be used to break down the task into

a task assignment problem, a trajectory planning problem, and a

swarm control problem (Tang et al., 2023). For example, Zhang

et al. (2022) proposed a method for assigning search and rescue

tasks to a combination of helicopters and UAVs. They analyzed the

search and rescue level of each point and the hovering endurance of

the UAV using principal component analysis and cluster analysis.

They then constructed a multi-objective optimization model and

solved it using the non-dominated sorting genetic algorithm-

II to assign tasks to the UAVs. Liu et al. (2021) utilized the

“Divide and Conquer” approach to create a hierarchical task

scheduling framework that decomposed the UAV scheduling

problem into several subproblems. They proposed a tabu-list-based

simulated annealing (SATL) algorithm for task assignment and a

variable neighborhood descent (VND) algorithm for generating

the scheduling scheme. In another study, Liu et al. (2022a)

proposed a particle swarm optimization algorithm for cluster

scheduling of UAVs performing remote sensing tasks in emergency

scenarios. While centralized decision-making methods have better

global reach and simpler structures, their communication and

computational costs increase significantly with an increase in the

number of UAVs in the swarm. Therefore, there is a need to

develop a distributed cooperative decision-making method for

UAV swarms.

The bottom-up approach facilitates cooperative decision-

making of UAV swarms through the observation, judgment,

decision-making, and distributed negotiation of individual

UAVs. This approach aligns well with the observe-orient-decide-

act (OODA) theory and is particularly suited for distributed

decision-making scenarios (Puente-Castro et al., 2022), which are

increasingly becoming the future trend (Ouyang et al., 2023).

Wang and Zhang (2022) proposed a UAV cluster task allocation

method based on the bionic wolf pack approach, which decomposes

task allocation into three processes: task assignment, path planning,

and coverage search. The UAV swarm is modeled according to

the characteristics of a wolf pack, and distributed collaborative

decision-making is achieved through information sharing within

the UAV swarm. Yang et al. (2022) presented a distributed task

reallocation method for the dynamic environment where tasks

need to be reassigned among a UAV swarm. They proposed a

distributed decision framework based on time-type processing

policies and used a partial reassignment algorithm (PRA) to

generate conflict-free solutions with less data communication

and faster execution. Wei et al. (2021) introduced a distributed

UAV cluster computational offloading method that leverages

distributed Q-learning and proposes a cooperative exploration-

based, prioritized experience replay method using distributed

deep reinforcement learning techniques. This approach achieves

distributed computational offloading and outperforms traditional

methods in terms of average processing time, energy-task efficiency,

and convergence rate (Ouyang et al., 2023).

In recent years, deep reinforcement learning has shown

promising results in various fields, such as training championship-

level racers in Gran Turismo (Wurman et al., 2022), achieving all-

time top-three Stratego game ranking (Perolat et al., 2022), and

optimizing matrix multiplication operations (Fawzi et al., 2022).

However, when addressing the challenge of cooperative decision-

making in UAV swarms, reinforcement learning suffers from weak

generalization ability, low sample utilization, and slow learning

speed (Beck et al., 2023). To address these challenges, researchers

have turned to meta-reinforcement learning, which is currently a

hot topic in machine learning.

Meta-learning, also referred to as learn to learn, is a

technique that involves training on a relevant task to learn meta-

knowledge, which can then be applied to a new environment.

This approach reduces the number of samples required and

increases the training speed in the new environment (Hospedales

et al., 2022). Researchers have proposed meta-reinforcement

learning methods by combining meta-learning with reinforcement

learning techniques. Meta-reinforcement learning enhances the

generalization ability and learning efficiency by utilizing the

acquired meta-knowledge to guide the subsequent training process

and achieve cross-task learning with limited samples (Beck et al.,

2023). Despite its successful implementation in various fields (Chen

et al., 2022; Jiang et al., 2022; Zhao et al., 2023), meta-reinforcement

learning has not yet been widely adopted in the field of cooperative

decision-making for heterogeneous UAV swarms.

The experience replay mechanism is a critical technique in deep

reinforcement learning, first proposed in the deepQnetworkmodel

(Mnih et al., 2015). It improves data utilization, increases policy

stability, and breaks correlations between states in the training

data. To measure the priority of experience, Hou et al. (2017)

proposed a method that uses the Temporal-Difference (TD) error,

which improves the convergence speed of the algorithm. Pan

et al. (2022) proposed a TD-Error and Time-based experience

sampling method to reduce the influence of outdated experience.

Li et al. (2022) introduced a Clustering experience replay (CER)

method that clusters and replays transition using a divide-and-

conquer framework based on time division, effectively exploiting

the experience hidden in all explored transitions in the current

training. However, prioritized experience replay algorithms that

only consider TD-error in the learning process tend to ignore

the role of immediate payoffs and experience with small time-

differential errors, and the learning effectiveness of the algorithm

is susceptible to the detrimental effects of temporal error outliers.

In this paper, we propose an improved MAML-based

MADDPG algorithm to enhance the generalization capability,

learning rate, and robustness of deep reinforcement learning

methods used in UAV swarm collaborative decision-making for

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1243174
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhao et al. 10.3389/fnbot.2023.1243174

FIGURE 1

Unmanned aerial vehicles (UAVs) application scope diagram. UAVs have been widely utilized across various fields due to their numerous advantages.

heterogeneous UAV swarms. The proposed algorithm incorporates

a Reward-TD prioritized experience replay mechanism and

buffer experience forgetting mechanism to improve the overall

performance of the system. Firstly, the paper describes the problem

of cooperative attack on ground targets by UAV swarms, models

the UAV motion model, and formulates the cooperative decision-

making problem as a POMDP model. Next, inspired by the

Meta Weight Learning algorithm (Xu et al., 2021), the paper

proposes an improved meta-weight multi-agent deep deterministic

policy gradient (MW-MADDPG) algorithm to obtain an unbiased

initialization model by setting playback weights for trajectories and

updates the meta-weights by gradient and momentum. To increase

the effectiveness of the experience replay mechanism, the paper

proposes a Reward-TD prioritized experience replay method with a

forgetting mechanism. Finally, experiments are conducted to verify

the generalization, robustness, and learning rate of the proposed

approach. The main contributions of this paper include:

1. Proposing the meta-weight multi-agent deep deterministic

policy gradient (MW-MADDPG) algorithm for UAV swarm

collaborative decision-making, which achieves end-to-end

learning across tasks and can be applied to new scenarios quickly

and stably after training.

2. Introducing the Reward-TD prioritized experience replay

method to improve the convergence speed and utilization of

experiences in the MW-MADDPG algorithm. The proposed

method determines the priority of experience replay based on

immediate reward and TD-error, thereby enhancing the quality

of experience replay.

3. Employing a forgetting mechanism in the proposed MW-

MADDPG algorithm to improve algorithm robustness and

reduce overfitting. A threshold of sampling times is set to reduce

the repetition of a small number of experiences during the

experience replay process.

2. Background

2.1. Reinforcement learning

Reinforcement learning is a trial-and-error technique for

continuous learning, where an agent interacts with its external

environment. The objective of the agent is to obtain the maximum

cumulative reward from the external environment. Typically,

reinforcement learning models the problem as a Markov decision
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process (MDP) or a partially observable Markov decision process

(POMDP), which allows the agent to make decisions based on

current states and future rewards, without requiring knowledge of

the full environment model. Through repeated interactions with

the environment, the agent learns through experience to select

actions that lead to higher cumulative rewards, thereby improving

its performance over time. A Markov reward process is usually

represented by the tuple M =< S,A,T,R, γ >, where: S =

(s1, s2, · · · , sn), S is the set of all possible states in the MDP; A =

(a1, a2, · · · , am), A denotes the set of all possible actions in the

MDP, γ ∈ [0, 1], is the discount factor, which indicates the degree

of influence of future rewards on the current behavior of the agents.

γ = 1 indicates that the future reward has the same effect as

the current reward. γ = 0 indicates that the future reward does

not affect the current intelligence’s action. In the reinforcement

learning process, at each time step t, the intelligence is in state st ,

observes the environment, takes action at , gets feedback from the

environment Rt , andmoves to the next state st+1. In anMDP, a state

is called a Markov state when it satisfies the following conditions:

P[ st+1| st] = P[ st+1| s1, · · · , st , ] (1)

The property that the state of the next moment is independent

of the state of the past moment is known as the Markov property.

In a Markov decision process (MDP), the state transition matrix

P (also known as the state transition probability matrix) specifies

the probability of transitioning from the current state s to the

subsequent state s′. Specifically, each element Pss′ represents the

probability of transitioning from state s to state s′ under a

given action.

Pss′ = P[ st+1 = s′
∣

∣ st = s] (2)

The reward Rt is also called cumulative reward, which is the

sum of all rewards from the beginning to the end of the round:

Rt =

∞
∑

k=0

γ krt+k+1 (3)

The reward function indicates that the agent takes action a, and

the expected reward after the transfer:

ras = E [rt+1 | st = s, at = a] (4)

2.2. Multi-agent reinforcement learning

In a multi-agent system, each agent has a limited observation

range and can only obtain local information, making it challenging

to observe the global environment. This problem is modeled as a

Decentralized Partially Observable Markov Decision Process (Dec-

POMDP) defined by the tuple M =< N, S,A, P,R,O, γ >. Here,

N represents the set of agents, S represents the set of agent states,

A = A1 × A2 × · · · × AN represents the joint action set of agents,

where the action set of agent i is Ai, with i ∈ [1,N]. The state

transition function P : S×A×S→ [0, 1] represents the probability

of equipment transition. R is the reward function for all agents, and

O = O1 × O2 × · · · × ON represents the joint observation value of

agents, where Oi denotes the observation value of agent i. Finally,

γ ∈ [0, 1] is the discount factor.

In Dec-POMDP, all agents select actions based on their own

observations Oi in the state st , leading to a transition to the next

state st+1 and receiving an environmental reward value ri. The goal

of each agent is to maximize the cumulative reward G =
T
∑

t=0
γ trti .

This paper employs the classical MARL algorithmMADDPG, with

further details provided in Section 4.1.

2.3. Meta-learning

Meta-learning, also known as learn-to-learn, is a recent

research direction aimed at training an initial model to quickly

adapt to new tasks with fewer data. Meta-learning comprises three

phases: meta-training, meta-validation, and meta-testing. In the

meta-training phase, a neural network uses support set data to train

for a set of tasks and learn general knowledge for these tasks. In the

meta-validation phase, the neural network selects query set data

to verify model generalization and adjust hyperparameters used

in meta-learning. Finally, in the meta-testing stage, the model is

tested on new tasks to evaluate its training effect. Themeta-learning

paradigm is depicted in Figure 2. The formal definition of meta-

reinforcement learning is presented below, whereas the learning

task of reinforcement learning is:

T = {LT , PT (s) , PT (st+1|st , at) ,H} (5)

Here, LT represents the loss function that maps a given

trajectory τ = (s0, a1, s1, r1, . . . , aH , sH , rH) to a loss value. PT(s)

denotes the initial state distribution, while PT(st+1|st , at) refers to

the state transition probability distribution. H corresponds to the

trajectory length.

This paper discusses Model Agnostic Meta Learning (MAML),

which is a model-independent general meta-learning algorithm

that can be applied to any algorithm trained using gradient descent.

MAML is adapted to deep neural network models through the

use of meta-gradient updates and can be used for various neural

network architectures such as convolutional, fully connected,

recurrent neural networks, and more. Additionally, it can be

applied to different types of machine-learning problems, such

as regression, classification, clustering, reinforcement learning,

and others.

The main idea of Model-Agnostic Meta-Learning (MAML)

is to obtain an initial model that can be applied to a range of

tasks and requires only a small amount of task-specific training to

achieve good performance. Specifically, the strategy πθ is obtained

by interacting with the environment through the strategy πθ ,

collecting K trajectories τ 1 :Kθ , with the goal of minimizing the loss

on the new task distribution D(T) and obtaining the strategy πφ .

MAML updates the parameters φ of the strategy πφ by

computing the gradient of the loss function LT(τ
1 :K
θ ) w.r.t. the

parameter θ , and updating φ as:

φ = θ − β∇θLT(τ
1 :K
θ ) (6)
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FIGURE 2

Schematic diagram of the meta-learning process. Meta-learning facilitates rapid adaptation to new tasks by leveraging knowledge acquired from

previous tasks.

Here, LT(τ
1 :K
θ ) is the average loss over K trajectories, where

τ kθ ∼ PT(τ |θ). The loss function LT(τθ ) for each trajectory τθ is

defined as:

LT (τθ ) = −Est ,at∼πθ ,PT (s)

[

H
∑

t=1

r (st , at)

]

(7)

where β is the meta-learning rate.

3. Problem formulation

3.1. Task description

The objective of the UAV in the paper is to destroy the

opponent’s (blue side) strategic key location and ensure the survival

of our side as much as possible while achieving this objective.

The blue’s strategic location is protected by Surface-to-air missiles

(SAMs), which have a longer detection and attack range than

our UAVs. Thus, it is imperative for the Red UAVs to exhibit

cooperative behavior to successfully achieve the mission objective,

which may involve the strategic “sacrifice” of detecting UAVs for

locating SAM positions when necessary while minimizing the loss

of attack UAVs. The neural network’s strategy generation through

learning is reliant on the adversary’s strategy during training.

Typically, the opponent’s strategies are formulated by humans,

which limits the samples to encompass the entire situation. To

circumvent this issue, this work incorporates a large number of

random variables into the SAM strategy modeling, such as the

randomization of firing timing, firing number, and firing units.

These variations introduce a dynamic battlefield environment in

each confrontation, posing a challenge for the neural network.

Although we know the location of the blue’s strategic key location

beforehand, we do not know the location of their SAMs, which

can vary from mission to mission. Therefore, the red-side UAV

algorithm needs to have fast adaptation capability. Figure 3 in the

paper shows the experimental environment.

3.1.1. Force setting
Red side:

• Attack UAV: 3, detection range 35 km, attack range 30 km

each carrying four anti-radiation missiles (ARM), four air-to-

ground missiles (ATG);

• Detect UAV: 4, detection range 10 km.

Blue side:

• Strategic key location: command post, airport;

• SAM: three sets, each set is called a fire unit, attack range 35

km, with a guidance radar detection range of 40 km.
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FIGURE 3

Experimental environment diagram. The objective of the red UAV swarm is to eliminate the blue airports and command posts, while the blue SAM is

tasked with defending these targets.

3.1.2. Winning rules
Red side:

• Victory condition: command post is destroyed;

• Failure condition: command post is not destroyed at

the endgame.

Blue side:

• Victory condition: command post is not destroyed at

the endgame;

• Failure condition: command post is destroyed.

3.1.3. Battlefield environment settings
• The red side is unable to detect the position of the blue side’s

SAMs until the guidance radar of the blue side’s fire unit

is activated;

• The information collected by the Red Detect UAV regarding

fire units is automatically synchronized and shared with other

Red UAVs;

• In each game, the position of the fire unit will

remain‘unchanged;

• The guidance radar of the fire units must be activated before

they are able to launch their missiles;

• Once the guidance radar of the fire units is turned on, it cannot

be turned off again;

• If the guidance radar of the fire unit is destroyed, the fire unit

becomes inoperable and unable to launch missiles;

• The guidance radar must be activated during the

guidance procedure;

• If the guidance radar of a fire unit is destroyed, any missiles

launched by that unit will immediately self-destruct;

• The ARM and ATG have a shooting range of 30 km and an

80% hit rate;

• In the kill zone, ARM, ATG have a high kill probability of 75%

and a low kill probability of 55%.

3.2. UAV kinematic model

Typically, the flight control of UAVs involves considering

their six degrees of freedom, such as heading, pitch, and roll.

However, in this paper, we focus on studying the application of deep

reinforcement learningmethods inmulti-UAV cooperative mission

planning while taking into account the maneuvering performance

of UAVs, which generally do not perform large-angle maneuvers or

drastic changes in acceleration. Therefore, we establish a simplified

UAV motion model as follows:











ẋi(t)

ẏi(t)

ϕ̇i(t)

v̇i(t)











=











vi(t) cosϕi(t)

vi(t) sinϕi(t)

̟i(t)

ūi(t)











(8)

where (xi, yi) denotes the position of UAV i, ϕi andvi denote

the heading angle and velocity of UAV i, and ̟iand ūi denote the

angular velocity and acceleration of UAV.
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The UAV motion model has the following motion constraints:



















0 ≤ xi ≤ xmax

0 ≤ yi ≤ ymax

vmin ≤ vi ≤ vmax

ϕmin ≤ ϕi ≤ ϕmax

(9)

3.3. POMDP model

This section models the decision problem for the UAVs as

a POMDP and defines the observation space, action space, and

reward function.

3.3.1. Observation space
In this paper, the state space for the UAV decision-making

process includes the necessary information for the UAVs. For UAV

i, the observation space is defined as Oi = (xi, yi,ϕi, vi, cij, oik).

Here, cij = (xj, yj,ϕj, vj, a
t−1
j ) represents the information obtained

by UAV i from UAV j within its observation range. The action of

UAV j at the previous moment is denoted by at−1j = (̟j(t −

1), ūj(t− 1),Mj(t− 1)), whereMj(t− 1) represents the action taken

by UAV j in firing a missile. Additionally, oik = (xk, yk,R
t−1
k

,Mt−1
k

)

represents the information of fire unit k within UAV i’s observation

range. Here, Rt−1
k

denotes the state of the radar of fire unit k at

the previous moment, while Mt−1
k

denotes the last moment of

missile-firing action taken by fire unit k.

Let the set of all UAVs be defined as D =

{UAV1, . . . ,UAVi . . . ,UAVn}. Here, UAVi represents the UAV

numbered i and n is the total number of UAVs. Similarly, let the

set of all fire units be defined as F = {F1, . . . , Fk . . . , Fh}, where

Fk denotes the fire unit numbered k, and h is the total number of

fire units.

3.3.2. Action space
The action space in this paper includes angular velocity,

acceleration, launch missile, and radar state. The specific action

space is defined as shown in Table 1.

3.3.3. Reward function
The reward design should account for a large number of units

on both the blue and red sides, resulting in a significant amount

of status and action space. Providing a single reward value at

TABLE 1 Actions definition.

Action
variable

Description

̟i(t) Angular velocity of UAV i at moment t

ūi(t) Acceleration of UAV i at moment t

Mi(t) The target number of missile attacks fired by UAV/launch

unit i at time t, which has an initial value of 0

Rt
k Fire unit k radar state at moment t (0 for off, 1 for on)

the end of each battle round may result in sparse rewards and

make it difficult for agents to explore winning states independently.

Therefore, it is essential to create a well-designed reward function

that can guide the agent’s learning process effectively.

The approach is to assign a reward value for each type of unit

on both the red and blue sides, such that the loss or victory of a

unit during the battle triggers an appropriate bonus value (negative

for losses suffered by our side, positive for those suffered by the

opposing side). Additionally, to encourage the UAV to approach

the fire unit, a reward is provided when the UAV moves closer to

the target.

Providing rewards solely based on wins and losses can result

in long training times and sparse rewards, particularly due to

the duration of each round. To expedite the training process

and enhance the quality of feedback provided during training,

additional reward types such as episodic rewards, key event-driven

rewards, and distance-based rewards are incorporated. The detailed

reward design is presented in Table 2.

4. Method

4.1. MADDPG-based collaborative
decision-making method

Traditional single-agent reinforcement learning algorithms

face challenges when dealing with collaborative multi-UAV tasks,

such as large action spaces and unstable environments. In a multi-

agent system, the increase in the number of agents leads to a

larger state and action space. In addition, each agent’s actions

dynamically affect the environment in a way that does not exist

in a static environment. For these reasons, traditional single-agent

reinforcement learning algorithms are ineffective in a multi-agent

environment. To address this problem, this paper employs the

TABLE 2 UAV reward definition.

Categories Event
name

Weights Description

Episodic Win 10 Win

Reward Loss 0 Loss

Event Destroyed

command

post

5 UAV destroys opponent’s

command post

Based Destroy

airport

3 UAV destroy opponent’s airport

Reward Destroy fire

unit radar

2 Destroy a fire unit Radar

Detect UAV

destroyed

−0.5 One of detect UAV was destroyed

Attack UAV

destroyed

−1 One of attack UAV was destroyed

Distance based reward λ · di di =

min(

√

(xi − xk)
2 +

(

yi − yk
)2
,

i ∈ D, k ∈ F) Weighting factor λ

determines the magnitude of the

distance-based reward
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MADDPG algorithm in the framework of centralized training and

decentralized execution. This approach alleviates the difficulties

associated with fully centralized or fully decentralized algorithms

by striking a balance between the two.

In contrast to traditional DRL algorithms, the MADDPG

algorithm can leverage global information during training while

utilizing only local information for decision-making. The following

method is employed:

Suppose there areM agents in themulti-agent system, with a set

of strategy networks denoted as µ = (µ1,µ2, · · · ,µM), where µi

represents the strategy network of the i-th agent. Additionally, there

is a set of value networks denoted as q = (q1, q2, · · · , qM), where

qi represents the value network of the i-th agent. The parameter

set for the strategy network is denoted as θ = (θ1, θ2, · · · , θM),

where θi represents the strategy parameters of the i-th agent.

Similarly, the parameter set for the value network is denoted as

ω = (ω1,ω2. · · · ,ωM), where ωi represents the value network

parameters of the i-th agent. The objective function for the i-th

agent is expressed as follows:

Ji(θ) = ES

[

q
(

S,
[

µ1(O1, θ1),µ2(O2, θ2), · · · ,µM(OM , θM)
])]

(10)

For the deterministic strategy µi, the strategy gradient can be

expressed as:

∇θi J(µi) (11)

= ES

[

∇θiq
(

S,
[

µ1(O1, θ1),µ2(O2, θ2), · · · ,µM(OM , θM)
])

;ωi

]

Here, ∇ represents the gradient operator.

A state is sampled from the experience pool D as follows: st =
(

o1t , · · · , o
M
t

)

, which can be used as an observation of the random

variable. The agent’s action is obtained from the policy network as:

a1t = µ
(

o1t ; θ1
)

, · · · , aMt = µ
(

oMt ; θM
)

(12)

The gradient of the objective function is:

giθ = ∇θiµi

(

oit; θi
)

· ∇aiq
(

st ,
[

a1t , · · · , a
M
t

]

;ωi

)

(13)

The updated formula for the policy network parameters is:

θi ← θi + β1g
i
θ (14)

Here, α1 represents the Actor learning rate.

The value network is updated through the TD algorithm

as follows:

For the value network qi(s, a;ωi) of agent i, given the tuple

(st , at , rt , st+1), the computational action according to the policy

network is given by:

a1t+1 = µ(o
1
t+1; θ1), · · · , a

M
t+1 = µ

(

oMt+1; θM
)

(15)

Let at+1 =
[

a1t+1, · · · , a
M
t+1

]

. The TD target is computed as:

yit = rit + γ q (st+1, at+1;ωi) (16)

The TD-error is calculated as:

δit = qi(st , at;ωi)− yit (17)

The value network parameters are then updated using gradient

descent w.r.t. ωi.

Update target network parameters for each agent i:

θ
′

i ← τ1θi + (1− τ1)θ
′

i (18)

Here, τ1 is the soft update parameter.

4.2. Improved algorithm for MAML

This paper presents an improvement to the traditional MAML

algorithm. The original MAML algorithm employs an average

update method during gradient updates for each task in the

task distribution. However, this can lead to biased models that

perform better on one task than others. To overcome this issue,

we propose an improved MAML method that introduces weights

during the gradient update of different trajectories and incorporates

an automatic weight calculation method. This approach aims to

obtain an unbiased initialized network model.

The traditional MAML method updates the gradients of

different trajectories without any distinction during the trajectory

update process. This paper proposes a trajectory weighting method

that leverages the concept of Adam’s algorithm and utilizes gradient

and momentum values to set the weights. This approach addresses

the issue of subjective weight assignment and accelerates the

convergence of the objective function to its minimum value.

The objective function for meta-learning in this paper is

expressed as:

LT
(

τ 1 :Kξ

)

: =

K
∑

k=1

WkLT

(

τ kξ

)

, τ kξ ∼ PT(τ |ξ ) (19)

Here, to satisfy the normalization condition, let Wk =
wk

w1+w2+···+wK
be the weight of the k-th trajectory, where K is the

total number of trajectories.
To obtain the optimal weights w∗

k
that minimize the objective

function, we update the weights wk by computing their gradient.
The gradient of the objective function w.r.t. the weights wk is given
as:

gtk =
∂LT

(

τ1 :K
ξ

)

∂wk
=

∂
K
∑

k=1

WkLT

(

τk
ξ

)

∂wk
=

∂
K
∑

k=1

wk
w1+w2...+wK

LT

(

τk
ξ

)

∂wk

=

K
∑

i=1

wi

(w1 + w2 . . .+ wK )
2
LT

(

τkξ

)

−

K
∑

i=1

wiLT

(

τ i
ξ

)

(w1 + w2 . . .+ wK )
2

=

K
∑

i=1

wi

[

LT

(

τkξ

)

− LT

(

τ iξ

)]

(w1 + w2 . . .+ wK )
2

(20)

Drawing inspiration from the Adam optimization algorithm,

we set the following parameters:

First-order momentum:mt
k
= β1m

t−1
k
+ (1− β1)g

t
k

Second order momentum: vt
k
= β2v

t−1
k
+ (1− β2)(g

t
k
)2

Bias-corrected first moment estimate:m̂t
k
= mt

k
/(1− β1)

Bias-corrected second moment estimate:v̂t
k
= vt

k
/(1− β2)

The updated weight for the next time: wt+1
k
← wt

k
− α ·

mt
k
/(

√

v̂t
k
+ ε)
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where β1 and β2 are exponential decay rates for the moment

estimates, ε = 10−8 is fuzz factor, α is weight learning rate.

Meta update: ξ ← ξ − β∇ξ
K
∑

k=1

WkLT

(

τ kξ

)

where β is the meta-learning rate.

The proposed improved MAML algorithm is presented in

Algorithm 1.

Input: Weight learning rate α, meta-learning rate β,

and exponential decay rate β1,β2;

Input: The distribution over tasks PT (s);

1: Initialize model parameters ξ

2: for i = 1, · · · ,N do

3: Sample batch of tasks Ti ∼ PT (s)

4: for k = 1, · · · ,K do

5: Sample trajectory τ kξ from Ti using

Algorithm 2

6: Compute the gradient of LT (τ
k
ξ ) w.r.t. ξk:

∇ξkLT (τ
k
ξ )

7: Optimize ξ with gradient descent: ξ
′

i

= ξi − α∇ξkLT (τ
k
ξ )

8: Re-sample K trajectories τ 1 :K
ξ
′

9: end for

10: for all τ 1 :K
ξ
′ do

11: The objective function w.r.t. the weights

wk: gt
k

12: Compute the first-order and second-order

momentum:

mk = β1mk−1 + (1− β1)g
t
k

vk = β2vk−1 + (1− β2)(g
t
k
)2

13: Compute the bias-corrected first and

second-moment estimates:

m̂t
k
= mt

k
/(1− β1)

v̂t
k
= vt

k
/(1− β2)

14: Update the model weights:

wt+1
k
← wt

k
− α ·mt

k
/(

√

v̂t
k
+ ε)

15: Calculate Wk =
wk

∑K
k=1 wk

for each trajectory

16: end for

17: Meta update: ξ ← ξ − β∇ξ
K
∑

k=1

WkLT

(

τ kξ

)

18: end for

Algorithm 1. MW-MADDPG algorithm.

4.3. Improved prioritized experience replay
mechanism

4.3.1. Prioritized experience replay method based
on immediate rewards and TD-error

Experience replay methods typically prioritize replay based on

the size of TD-error to enhance neural network convergence speed

and experience utilization. In this approach, sampling probability is

proportional to the absolute value of TD-error, without considering

the quality of the experience in supporting task performance.

To address this limitation, this paper proposes an experience

replay method based on reward and TD-error that includes

immediate rewards from actions during the prioritization process.

By considering the immediate reward as well as the TD-error, this

improved approach can more accurately prioritize experiences that

contribute most effectively to task completion.

The priority of TD-error and immediate reward-based

experience replay is defined as:

PT(i) =
∣

∣δit

∣

∣+ ε (21)

where ε is a small constant that ensures the priority value is

not zero.

The priority based on immediate rewards is given as:

Pr(i) = rit + ε (22)

By sorting and ranking these priorities by size, we obtain

rankr(i) and rankT(i). The combined ranking takes both priorities

into account and is computed as:

rankC(i) = ρrankr(i)+ (1− ρ)rankT(i) (23)

Here, ρ denotes the coefficient of importance of the experience

which regulates the relative significance of the two experiences

under consideration.When ρ = 0, only the TD-error is considered,

while when ρ = 1, only the immediate reward is considered.

The combined priority of an experience is given as:

PC(i) =

(

1

rankC(i)

)η

(24)

Here, η is the priority importance parameter that determines

the degree of consideration given to priority. When η = 0, we have

uniform experience sampling.

The experience sampling probability of an experience is

obtained by normalizing its combined priority w.r.t. all experiences

in the replay buffer:

pi =
PC(i)

∑

j PC(j)
(25)

This probability is used to sample experiences from the

replay buffer during the learning process. Experiences with higher

combined priorities are more likely to be sampled.

4.3.2. Forgetting mechanism
The immediate reward and TD-error are used to evaluate the

learning value of experiences in the replay buffer, but excessive

sampling of high-priority experiences can lead to overfitting. To

alleviate this issue, this paper introduces a forgetting mechanism

to alleviate overfitting.

The forgetting mechanism introduced in this paper includes

setting a sampling threshold ψ . When the number of times

an experience has been sampled, denoted as mi, exceeds this

threshold, its sampling probability is set to zero. This helps prevent

overfitting by reducing the impact of experiences that have been

repeatedly sampled.

The updated sampling probability of experience i after being

processed by the forgetting mechanism is denoted as pi
′, and is

given by:

pi
′ =

{

pi, mi ≤ ψ

0, mi > ψ
(26)
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Input: Act noise Nt, discount factor γ, constant ε,

coefficient of importance ρ, priority importance

parameter η, sampling threshold ψ, actor

1: learning rate α1, and soft update parameter τ1;

2: Initialize strategy networks µ = (µ1,µ2, · · · ,

3: µM), value networks q = (q1, q2, · · · , qM) and replay

4: buffer D

5: for t = 1 to max-episode-length do

6: Observe initial state s1

7: for agent i = 1, · · · ,M do

8: choose action ait = µ
(

oit; θi
)

+Nt w.r.t.

9: current policy and exploration

10: end for

11: Execute action at and observe reward rt and

12: next state st+1

13: Add experience (st , at , rt , st+1) to replay buffer D

14: Sample a minibatch of B experiences from

15: D using reward-TD prioritized experience replay

method with forgetting mechanism

16: for i = 1, · · · ,M do

17: Compute target yit = rit + γ q (st+1, at+1;ωi)

18: Compute TD-error: δit = qi(st , at;ωi)− yit

19: Compute priority PT (i) =
∣

∣δit

∣

∣+ ǫ

20: Compute priority Pr(i) = rit + ǫ

21: Compute rank rankT (i) and rankr(i) based on PT (i)

and Pr(i), respectively

22: Compute combined rank rankC(i) = ρrankr(i)+

23: (1− ρ)rankT (i)

24: Compute combined priority PC(i) =
(

1
rankC(i)

)η

25: Compute sampling probability pi =
PC(i)

∑

j PC(j)

26: if mi > ψ then

27: p
′

i = 0

28: else if mi ≤ ψ then

29: p
′

i = pi

30: end if

31: for agent i = 1, · · · .M do

32: Sample a minibatch of B samples from D

using probabilities pi

33: Compute the gradient giθ of the policy

network of agent i

34: Update policy network parameters:

35: θi ← θi + α1g
i
θ

36: Update the value network parameters by

minimizing the loss w.r.t. TD-error:

L (ωi) =
1
S

∑

t(δ
i
t)
2

37: end for

38: Update target network parameters for each

agent i: θ
′

i ← τ1θi + (1− τ1)θ
′

i

39: end for

40: end for

Algorithm 2. MADDPG with improved Prioritized Experience Replay.

Here, if mi is less than or equal to the sampling threshold ψ ,

the sampling probability of experience i remains unchanged (pi).

Otherwise, if mi is greater than ψ , the sampling probability of

experience i is set to zero. When the replay buffer reaches capacity,

experiences are removed in order of sampling replay priority from

smallest to largest, based on the grooming of new experiences. This

ensures that new experiences can enter the experience pool and

contribute to the learning process.

The MADDPG algorithm with an improved prioritized

experience replay mechanism is shown in Algorithm 2.

5. Experiment

5.1. Experiment setup

To assess the efficacy of the proposed method, the algorithm

was validated in two simulation scenarios (as depicted in Figure 4

for training scenarios and Figure 5 for test scenarios) and compared

against the MADDPG algorithm. The simulation scenarios are

designed based on the force settings and battlefield environment

assumptions described in Section 3. The primary focus of the

evaluation is on the improved MAML method and the Reward-TD

prioritized experience replay method proposed in this paper.

The simulation scenario consists of four red reconnaissance

UAVs and three attack UAVs, whose objective is to destroy the

opponent’s command post. During training, the position of the

red UAVs is fixed at the beginning of each episode, while the

positions of the opponent’s command post and SAM are changed

in the two training scenarios to enable meta-training of the neural

network. The training hardware used for the experiments includes

Intel Xeon E5-4655V4 CPU with eight cores, 512 GB RAM,

and RTX3060 GPU with 12GB video memory. The proposed

method is implemented using a standard fully connectedmultilayer

perception (MLP) network with ReLU nonlinearities, consisting

of three hidden layers. The size of the experimental environment

is 240 km × 240 km, and the hyperparameters used in the

experiments are shown in Table 3, with the settings referred to

from Xu et al. (2021). During meta-training, the meta-training

process lasts for 5 × 105 episodes to allow for sufficient learning

and optimization of the neural network.

5.2. Experiment result

This section aims to evaluate the meta-learning and cold-start

capability of the proposed MW-MADDPG algorithm in new task

environments, as well as its generalization, convergence speed,

and robustness compared to existing algorithms. Additionally, the

performance of the proposed Reward-TD prioritized experience

replay method with the forgetting mechanism is evaluated and

compared to conventional methods.

5.2.1. Cross-task performance comparison
The performance of the three algorithms (MW-MADDPG,

MAML-MADDPG, and MADDPG) is evaluated using the reward

value as the evaluation index across five random seeds in the

two scenarios, as shown in Figure 6. The results demonstrate

that the MW-MADDPG and MAML-MADDPG algorithms with

meta-learning outperform the MADDPG algorithm without meta-

learning in both scenarios from the beginning episodes. Spechis

indicates that the use of metaifically, the average reward for

the MW-MADDPG method is −1.39, for the MAML-MADDPG

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1243174
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhao et al. 10.3389/fnbot.2023.1243174

FIGURE 4

Training scenario experiment setup diagram, (A) is training scenario 1, and (B) is training scenario 2. Various training scenarios were employed to

improve the generalization capacity of the proposed algorithm.

FIGURE 5

Test scenario experiment setup diagram, (A) is test scenario 1 and (B) is test scenario 2. Various test scenarios were employed to evaluate the

generalization capacity of the proposed algorithm.

method is−1.59, while the MADDPGmethod is−4.93 in scenario

1. In scenario 2, the average reward for theMW-MADDPGmethod

is −2.25, for the MAML-MADDPG method is −2.18, and for the

MADDPG method is−4.05.

Moreover, the initial performance of both methods employing

meta-learning is significantly better than that of the MAML

algorithm without meta-learning (p<0.05). This indicates that the

use of meta-learning methods can effectively improve the initial

performance of the agent in this task.

In contrast, there is no significant difference between the initial

performance of the MW-MADDPG method and the MAML-

MADDPG method, indicating that the improvement in the

initial performance of the proposed method in this paper is

not statistically significant compared to existing reinforcement

learning methods.

However, in terms of expected performance, the MW-

MADDPG algorithm significantly outperforms the other two

algorithms in terms of rewards when convergence is reached (p

<0.05). This suggests that the MW-MADDPGmethod proposed in

this paper is capable of learning better strategies for the task at hand.

Regarding convergence rate, the MW-MADDPG algorithm

reaches convergence at around 6× 105 episodes, while the MAML-

MADDPG algorithm takes around 8.5 × 105 episodes, and the

MADDPG algorithm takes around 9 × 105 episodes to converge

for both scenarios. This indicates that the MW-MADDPG method

proposed in this paper can converge quickly in a new task
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environment and alleviate the cold-start problem, showcasing an

advantage over existing methods.

Figure 7 depicts the success rate of task execution in red, and

it is evident that the MW-MADDPG method achieves a success

TABLE 3 Hyperparameter setting for training process.

Hyperparameter Value

Replay buffer size 105

Batch size 1,024

minibatch size 32

Discount factor 0.95

Actor learning rate 0.0001

Critic learning rate 0.0005

Prioritized experience replay

parameter

0.6

Exponential decay rate 0.9

Exponential decay rate 0.999

Small constant 10−4

Act noise Uhlenbeck-

Ornstein

(UO)

Weight learning rate 0.001

Meta-learning rate 0.001

Coefficient of the importance of

the experience

0.4

Priority importance parameter 1

Sampling threshold 10

Soft update parameter 0.01

Active function ReLU

rate of 77.71 and 72.21% in the two scenarios, respectively, which is

significantly higher than the success rate of the other two methods

(p <0.05). These results indicate that the proposed method can

effectively improve the performance of the agent under new tasks.

Additionally, the variance of theMW-MADDPGmethod is smaller

than that of the MAML-MADDPG method, indicating that the

stability of the proposedmethod is better than that of the traditional

meta-learning method.

Overall, the experiments demonstrate that the MW-MADDPG

algorithm proposed in this paper can effectively learn the features

of similar tasks, and learn from historical experience to obtainmore

effective strategies. The proposed method exhibits better initial

performance, faster learning rate, better-expected performance,

FIGURE 7

Red side task execution success rate. In various test scenarios, the

proposed method exhibits a higher winning rate compared to both

the traditional meta-learning method and the non-meta-learning

method.

FIGURE 6

Test scenario experiment setup diagram, (A) is reward curve of test scenario 1 and (B) is reward curve of test scenario 2. Various test scenarios were

employed to evaluate the generalization capacity of the proposed algorithm.
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higher task success rate, and improved strategy stability in terms

of reward and task execution success rate.

5.2.2. Reward-TD and FIFO performance
This section aims to verify the effectiveness of the proposed

Reward-TD prioritized experience replay method and forgetting

mechanism. Two sets of experiments are designed to apply the

above experience replay mechanism to the MADDPG algorithm in

training scenario 1 and training scenario 2, respectively. The reward

curves obtained by the agent are analyzed across five random seeds

to evaluate the performance of the proposed method.

Figure 8 illustrates the reward curves of different experience

replay methods in scenario 1 and scenario 2, with RPER

representing the Reward-TD prioritized experience replay method,

PER indicating the use of TD-error prioritized experience replay

method, and VER standing for the random experience replay

method. It can be observed that the final rewards obtained by

using the RPER mechanism are significantly better than the other

two methods (p < 0.05), indicating that the RPER mechanism

can effectively improve the final reward level. In contrast, the

difference between the final rewards of the PER and VER methods

is not significant, suggesting that the TD-error-based preferred

experience replay method has little effect on the final reward.

Regarding robustness, the RPER mechanism outperforms the

PER mechanism, while the PER mechanism outperforms the VER

mechanism. This indicates that the prioritized experience replay

mechanism is better than the random uniform experience replay

mechanism, and the Reward-TD based experience prioritization is

better than the TD-error based experience prioritization.

In terms of convergence speed, the RPER algorithm achieves

convergence significantly faster than the PER and VER algorithms.

FIGURE 8

Reward curves for di�erent experience replay methods. (A) Training scenario 1. (B) Training scenario 2. The RPER method outperforms the other two

experience replay methods in terms of final reward, robustness, and algorithm convergence speed.

FIGURE 9

Reward curves for di�erent experience retention methods. (A) Training scenario 1. (B) Training scenario 2. The forgetting mechanism shows better

convergence speed and robustness compared to the first-in-first-out mechanism in di�erent training tasks, but the di�erence in the final reward is

not significant.
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TABLE 4 Algorithm performance comparison.

Method MADDPG MW-MADDPG

Scenario Training
scenario 1

Training
scenario 2

Test
scenario 1

Test
scenario 2

Training
scenario 1

Training
scenario 2

Test
scenario 1

Test
scenario 2

Reward 11.31± 1.31 11.52± 1.29 5.03± 1.88 5.12± 2.13 11.62± 1.14 11.58± 1.26 10.83± 1.53 10.48± 1.45

Mission

success Rate

80.74± 7.84 82.47± 7.93 13.88± 7.76 15.55± 8.94 81.39± 6.49 79.85± 7.39 78.76± 7.94 75.48± 8.93

Strategic

location Ruin

number

0.93± 0.44 0.91± 0.36 0.12± 0.09 0.13± 0.08 0.85± 0.37 0.87± 0.31 0.81± 0.54 0.79± 0.66

Detect UAV

Survival

number

0.83± 0.53 0.88± 0.48 0.21± 0.13 0.19± 0.11 0.91± 0.47 0.83± 0.53 0.63± 0.37 0.71± 0.41

Attack UAV

Survival

number

1.66± 0.44 1.71± 0.39 0.37± 0.18 0.41± 0.21 1.74± 0.36 1.69± 0.41 1.38± 0.47 1.41± 0.51

Specifically, RPER reaches convergence at around 8× 105 episodes

in both scenarios, while PER and VER reach convergence only

after around 9 × 105 episodes. These results demonstrate that the

RPER mechanism helps to improve the convergence speed of the

algorithm, while PER and VER have no significant impact on the

convergence speed.

Figure 9 illustrates the graphs of different experience

retention methods reward, comparing the effects of the

forgetting mechanism (FM) and the first-in-first-out mechanism

(FIFO) while using RPER and the MADDPG algorithm.

From Figure 9, it can be observed that the training speed

using the forgetting mechanism is significantly better

than the FIFO mechanism in terms of convergence speed

(p < 0.05). This suggests that the forgetting mechanism

proposed in this paper can effectively retain experience

fragments that are beneficial to the agent and improve the

training speed.

In terms of robustness, the FM mechanism exhibits fewer

curve fluctuations and a smaller range of error bands compared

to the FIFO mechanism, as seen from the curve fluctuations

and error band shading in the figure. The data show that the

variance is reduced by 27.35% using FM compared to FIFO,

indicating that FM can improve the algorithm’s robustness during

training.

Notably, there is no significant difference between the final

rewards of the two experience retention mechanisms, suggesting

that the use of different experience retention mechanisms has no

significant effect on the final training effect.

Table 4 compares the proposed method with the original

MADDPG method in terms of task success rate, strategic

location ruin number, and other metrics to evaluate their

advantages and disadvantages. The table shows that the proposed

method outperforms the MADDPG method on both training

and testing tasks. Specifically, the MW-MADDPG method

exhibits significantly better attack UAV survival than detect

UAV survival on testing tasks, indicating that it can learn

an efficient strategy for attacking UAVs. These results suggest

that the MW-MADDPG method proposed in this paper can

effectively learn the common knowledge among tasks from

training tasks and apply it to test scenarios, showcasing better

cross-task capability.

Furthermore, the proposed Reward-TD prioritized

experience replay method with the forgetting

mechanism can improve the algorithm’s robustness,

exhibiting less variance and greater robustness for the

MW-MADDPG method.

6. Conclusion

In summary, this paper proposes the MW-MADDPG

algorithm for the cross-task heterogeneous UAV swarm

cooperative decision-making problem. The proposed

algorithm includes the improved MAML meta-learning

method and the Reward-TD priority reward replay method

with a forgetting mechanism, enabling cross-task intelligent

UAV decision-making based on the MADDPG algorithm

and achieving the expected goals. Experimental results

demonstrate that the proposed methods can achieve better

task success rates, robustness, and rewards compared to

traditional methods, while also exhibiting better generalization

performance, overcoming the cold start problem in traditional

methods. The proposed algorithm has the potential to be

extended to larger-scale scenarios and provide a solution

to the cross-task heterogeneous UAV swarm surprise

defense problem.

In the future, further research can be done by

introducing meta-learning methods into intelligent decision-

making in air defense systems to enable self-play between

UAV penetration and air defense systems. Additionally,

combining transfer learning with meta-learning may

improve generalization performance. Furthermore, we

prepare to build a high-fidelity battlefield environment

that can provide a more accurate simulation of the

battle process and enable more realistic testing of the

proposed algorithms.
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