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Neurorobotic reinforcement
learning for domains with
parametrical uncertainty

Camilo Amaya and Axel von Arnim*

Department of Neuromorphic Computing, Fortiss-Research Institute, Munich, Bavaria, Germany

Neuromorphic hardware paired with brain-inspired learning strategies have

enormous potential for robot control. Explicitly, these advantages include low

energy consumption, low latency, and adaptability. Therefore, developing and

improving learning strategies, algorithms, and neuromorphic hardware integration

in simulation is a key tomoving the state-of-the-art forward. In this study, we used

the neurorobotics platform (NRP) simulation framework to implement spiking

reinforcement learning control for a robotic arm. We implemented a force-torque

feedback-based classic object insertion task (“peg-in-hole”) and controlled the

robot for the first time with neuromorphic hardware in the loop. We therefore

provide a solution for training the system in uncertain environmental domains by

using randomized simulation parameters. This leads to policies that are robust to

real-world parameter variations in the target domain, filling the sim-to-real gap.

To the best of our knowledge, it is the first neuromorphic implementation of

the peg-in-hole task in simulation with the neuromorphic Loihi chip in the loop,

and with scripted accelerated interactive training in the Neurorobotics Platform,

including randomized domains.

KEYWORDS
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1. Introduction

Neuromorphic hardware is characterized by high energy efficiency, low latency, and

adaptability. These characteristics are of critical importance in robot control tasks, where

real-time decision-making is a key factor, where energy is a constraint, and where

environments are dynamic.

This hardware can efficiently run brain-inspired models known as spiking neural

networks (SNN) (Hodgkin and Huxley, 1952; Arthur and Boahen, 2011). However,

optimally training these networks remains an open question, partly on account of a lack

of understanding for how the human brain learns (Lillicrap et al., 2020).

Different approaches have been proposed in the last years to cope with this challenge.

Studies such as Bellec et al. (2020) and Yang et al. (2023) have investigated biologically

plausible learning approaches. The same authors provide new perspectives for efficiently

learning in SNNs by using (a) the minimum error entropy criterion (Yang et al., 2022) and

(b) the information theoretic learning approach (Yang and Chen, 2023). In any case, how the

brain manages to efficiently learn with its local constraints remains a conundrum.

Furthermore, training neural networks becomes specially challenging in the case of non-

static or interactive learning, wherein the dataset distribution depends on the model being

optimized itself. This is true of complex robot control tasks, where reinforcement learning

(RL) is an usual approach for model fitting. When those models are SNNs, the formalism is
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known as spiking reinforcement learning. Recent such as Tang

et al. (2020, 2021) have investigated this formalism for learning in

environments with continuous state and action spaces, as usually

seen in robotics.

Robot learning can be complicated by the additional challenges

of limited hardware resources, time and cost constraints, both

leading to too few learning data. Therefore, simulators are a

key element for collecting non-static data. However, simulations

may not model reality with sufficient accuracy, and the learnt

behaviors may not generalize to the real domain. With additional

effort though, this problem, known as the sim2real gap, can be

dealt with. System identification, domain adaptation, and domain

randomization are techniques that have been proposed in literature

(Inoue et al., 2017; Weng, 2019; Beltran-Hernandez et al., 2020;

Kaspar et al., 2020) to reduce this gap.

To approach these issues, a number of integration frameworks

have been developed. The most relevant may be the neurorobotics

platform (NRP), developed as part of the Human Brain Project. The

NRP is an open source integration framework for robot and SNN

simulators, intended for in-silico neurorobotic experimentation

(Falotico et al., 2017). Herein, we extend its functionalities

to integrate neuromorphic hardware (Loihi) in the loop to

use gradient information from multiple simulations in learning

algorithms and to randomize environments to learn in situations

characterized by domain uncertainty or variability. Using the Loihi

chip in the simulation loop of the NRP has been previously

implemented (without learning) by Angelidis et al. (2021); however,

this was using the Nengo framework which adds considerable

overhead and architectural constraints. In this study, the network

architecture is customizable, the synapric weights are learned, and

we use a direct integration with Loihi’s low-level SDK NxSDK over

multiple simulation episodes.

In this study, as a proof of concept, we also solve a model-

free robotic force-guided object insertion task. Object insertion has

most of the elements of a traditional robotic task, and therewith,

our approach can be easily generalized to a wide array of robotic

use cases. The programming of robot systems to handle object

insertion tasks in modern manufacturing scenarios (e.g., plugging

in connectors in electronic devices for the automotive industry or

clipping elements in industrial assemblies) is challenging due to

complex contact dynamics and friction.

There are still many knowledge gaps around spiking RL

for robotics. Integrating neuromorphic hardware with robot

simulation environments and reinforcement learning algorithms

is a key step to facilitate research in this emerging and promising

field of study. Doing this can contribute in the near future to solve

Abbreviations: ANN, Artificial Neural Network; CIC, Cartesian Impedance

Controller; CLE, Closed Loop Engine; CUBA-LIF, Current-Based synapse

Leaky-Integrate-and-Fire; HBP, Human Brain Project; IBA, Integrated

Behavior Architecture; LfD, Learning from Demonstration; LIF, Leaky

Integrate and Fire; MDP, Markov Decision Process; NRP, Neurorobotics

Platform (v3.x); PopSAN, Population encoded spiking actor network;

RateSAN, Rate encoded spiking actor network; RL, Reinforcement Learning;

ROS, Robot Operating System; SAC, Soft Actor Critic; SNN, Spiking Neural

Network; VC, Virtual Coach.

challenging real robotic tasks in innumerate robotic fields from

industrial to assistive robotics.

2. Materials and methods

In Subsections 2.1 and 2.2, we describe the simulation and

integration environment as well as the neuromorphic hardware.

Then, the methods are described, including the spiking neural

networks used, the reinforcement learning algorithm, the robot

control and simulation setup, as well as the connectivity between

these and the setup for training neurorobots in domains with

parametric uncertainty.

2.1. Simulation tools and frameworks

The neurorobotics platform v3 (NRP)1 is used in this

study as an integration environment for running simulations

and defining learning schemes. The NRP has been developed

as a major deliverable of the Human Brain Project (Falotico

et al., 2017). It allows to connect customized SNNs (brain

models) to robot environments. Additionally, experiments can be

performed on a cluster of high-performance computers. These

simulations can be run on a local or remote machine; in both

cases, users can create experiments, simulate them, visualize

them, and interact with them through an intuitive graphical

users interface.

The NRP consists of six main components:

• the brain simulator, which runs a spiking neural network over

different possible backends, including hardware,

• the world simulator (based on Gazebo2),

• the brain interface and body integrator (BIBI) for building a

communication channel between the former two,

• the closed loop engine (CLE) for orchestrating them,

• a backend exposing a web server with a RESTful API,

• a frontend to provide a graphical interface.

Figure 1 shows the frontend view and some of its

functionalities, while Figure 2 shows how all the NRP elements

are timely orchestrated by the CLE. The NRP adds two optional

components for more flexible and advanced integration with

external software:

• the Integrated Behavioral Architecture (IBA) to execute

external code within the simulation loop

• the Virtual Coach (VC): a python interface to the NRP that

enables to script simulations

These two extensions of the NRP will be described later.

1 We will use the abbreviation NRP to refer to NRP 3. Although the NRP 4

is the latest release, we used exclusively v3 in this work.

2 Gazebo is a well-known open source robotic 3D simulator.
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FIGURE 1

NRP v3 frontend view including environment rendering,

performance monitoring, plotting tool, log console, object library,

and ROS terminal.

FIGURE 2

Synchronization between the components of a simulation and user

code (robot-to-neuron functions, referred as “R-to-N TF” and

neuron-to-robot functions), as orchestrated by the CLE.

Reproduced from Falotico et al. (2017).

2.1.1. Brain simulation: the model
The NRP supports executing brain code from a set of

frameworks including Nest, PyNN, and Nengo. These supported

frameworks are run in the simulation loop and can exchange

information with the other components at every execution step. For

this study, the SNNs used were defined in PyTorch and NxSDK.3

Since these frameworks are supported, we made use of the IBA

mechanism to run them as the external code in the NRP.

2.1.2. IBA: embedding external code
The integrated behavioral architecture (IBA) is a mechanism

for the execution of external code, including AI frameworks such

as PyTorch. With it, unsupported libraries can be embedded in the

NRP. For example, it can run Tensorflow code synchronized with

the world simulation. The IBA is implemented as a ROS launch file

that loads GazeboRosPackages modules. These modules are called

3 SDK developed by Intel for the Loihi 1 chip.

by the Closed-Loop Engine (CLE) within each loop iteration of a

simulation. We used this mechanism to embed our reinforcement

learning algorithm, in both versions, PyTorch on CPU and NxSDK

on Loihi 1.

2.1.3. World simulation: the environment
The environment is defined as a Gazebo model simulated in the

NRP-backend. Interactions between the world simulation and the

brain can be defined via “transfer functions” in the NRP or, in our

case, via ROS communication over topics for the IBA brain code.

The world environment modeled for this manuscript is described

in detail in Section 2.3.

2.1.4. Virtual coach: scripted interactions
between simulations

The Virtual Coach is a tool for scripting front-end interactions

in the NRP, which allows for defining and running simulations

automatically, as well as interacting with them. This python API

enables to edit experiments, clone them, launch and control

simulation runs, and retrieve data. In this study, we use those

capabilities to script closed-learning loops within the NRP.

2.2. Neuromorphic hardware

The neuromorphic processor used for running the SNNs

in this study is the first generation Loihi research chip (Davies

et al., 2018). Loihi is a digital discrete-time neuromorphic

chip with a specialized scalable architecture optimized to run

and train programmable SNNs. Each Loihi chip contains over

131 thousand neurons partitioned over 128 cores connected

in a mesh; every core contains 1,024 neurons, with the

cores responsible for allocating synaptic states (128 kB) and

managing routing tables (20 kB). The neurons are current-

based-synapse leaky-integrate-and-fire neurons (CUBA-LIF).

The weights are stored in the neuromorphic core in a

compressed format to enable efficient allocation. Additionally,

the synapse weights can have variable precision (from one to

nine bits).

Neurons communicate to each other between cores based

on the routing tables and via spikes, which are 32 bit

messages that contain destination addresses, source addresses,

and payloads. Both the mesh and the cores are built with

asynchronous circuits and communicate event-driven data; even

though Loihi has no clock, periodic wave fronts are used

for inter-core spike synchronization. Each Loihi chip also has

three microcontroller-class x86 processors which can be used

for different proposes such as data format conversion and

bridging encodings.

More specifically, the neuromorphic hardware used in

this study was a Kapoho Bay device with two Loihi chips.

It has 256 neuromorphic cores with 262,144 neurons, and

260,000,000 synapses.
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FIGURE 3

Simulated world setup.

2.3. The experiment—robotic
force-torque-based object insertion

The robotic peg-in-hole task has been established as a

benchmark for interactive control strategies in academic and

industrial research. This task consists of two phases: search and

insertion. The search phase consists in finding the hole position

and reaching an initial pose4 with the manipulator. The insertion

phase involves not only motion but also force interaction with

the environment and can be approached through either model-

based or model-free strategies. In the case of contact model-based

strategies, a contact model analysis decomposes the peg-in-hole

task into contact-state recognition and compliant control. On the

other hand, contact model-free strategies treat both components as

a whole (Xu et al., 2019). In this study, we approach the searching

phase from a model-free perspective.

2.3.1. World setup
The world setup for the peg-in-hole task is depicted in Figure 3.

We used a round peg with a flat end and a round hole with a

0.5 mm clearance depicted in Figure 4. The platform with the hole

is attached to a horizontal plane inside the dexterous space of the

robot, and the peg is connected to a force-torque sensor attached

to the robot as an end-effector. Both the robot and the insertion

platform are located on a cabinet with the robot controller.

2.3.2. Robot and control
The robot used in simulation is a Kuka LBR iiwa 7 R800, a

redundant lightweight manipulator equipped with torque sensors

at each of its seven joints. A simulated Cartesian Impedance

4 The initial pose was located above the insertion pose with some added

gaussian noise in all three coordinates. Themean and covariance of the noise

distribution were treated as hyper parameters and have a strong influence in

learning speed.

FIGURE 4

Zoomed-in picture of a sectional cut of the insertion-hole, the peg,

the force-torque sensor, and the last joint of the robot.

Controller (CIC) was implemented to soften contact interactions in

the task space. The CIC controller leads the closed-loop response

of the system to simulate the desired spring-damper dynamics in

the Cartesian coordinates with respect to the target position and

velocities. The control law is given by Equation 1, which can be

simplified by setting the desired apparent inertia matrix to match

the real Cartesian inertia matrix as in Equation 2.

τ =M(q)J−1a (q)
{

ẍd − J̇a(q)q̇+M−1m

[

Dm(ẋd − ẋ)

+ Km(xd − x)
]}

+ C(q, q̇)q̇+ g(q)

+ JTa (q)
[

Mx(q)M
−1
m − I

]

Fa

(1)

τ =M(q)J−1a (q)
{

ẍd − Ja(q)q̇
}

+ C(q, q̇)q̇+ g(q)

+ JTa (q) [Dm (ẋd − ẋ)+ Km (xd − x)] ,

(2)

where τ is the torque command for the robot, M is the robot

inertia matrix, Mm the desired apparent inertia matrix, Mx the

real Cartesian inertia matrix, C the Coriolis matrix, Ja denotes the

robot analytic Jacobian, Dm the desired damping, Km is the desired

stiffness, q is the joint positions, x is the current Cartesian pose, xd
is the desired Cartesian pose, and the dot notation denotes the first

and second time derivatives.

The Cartesian impedance framework is introduced in Hogan

(1985). Albu-Schaffer and Hirzinger (2002) provides an extension

of the CIC to lightweight robots with flexible links such as the Kuka

iiwa LBR, while Albu-Schaffer et al. (2003) provides an extension of

the CIC to redundant manipulators with null space considerations.

Additionally, the latter presents two different strategies for tuning

the CIC. The second tuning scheme presented therein has been

used to tune the controller in this study.
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2.3.3. Sim-to-real gap
Simulationmodels can significantly differ in their behavior with

respect to their corresponding real systems. Models of reality used

for simulations can diverge from real data. Some of the most critical

variables leading to these differences in the field of robotics include

object position, dimensions and masses, robot link masses and

inertia, surface friction coefficients, controller gains, and damping

factors (Weng, 2019). Alternatively, disturbances and sensor noise

represent a further source of discrepancies between modeled and

real environments.

2.4. Implementation of the learning scheme

In order to teach the arm to insert the peg, we make use

of RL. We first outlined the Markov decision process (MDP)

formalization as well as the associated reward function. The chosen

RL approach is then described. With these, we then used the

Virtual Coach (Section 2.1.4), together with the IBA (Section 2.1.2),

to define complex learning environments requiring software and

hardware not supported natively in the NRP.

2.4.1. Utilized Markov decision process
TheMDP can be defined as a tuple in the form 〈S ,A,R,P , ρ0〉,

where S is the state space,A is the action space,R :S ×A× S →

R is the reward function, P :S × A → P(S) is the transition

probability function, and ρ0 is the initial state distribution.

For the insertion task, the state space S is a 13-dimensional set

of continuous variables including the robot’s current coordinates,

alongside the measured forces and torques. The action spaceA is a

6-dimensional set of continuous variables, namely, the target values

for the Cartesian impedance controller described in the former

sections. The reward functionR is defined as

R = w1||fd − f ||2 + w2||τd − τ ||2 + w3||zd − z||2 (3)

Here fd, τd, and zd are the desired force, torque, and depth.

Similarly f , τ , and z are the measured values for these three

quantities. The weights w allow us to adjust the importance we

assign to each of these terms. Recall that the goal is to learn insertion

based on the force-torque profile measured by a sensor attached to

the end-effector (the peg). This is the motivation behind the first

two terms. The third term serves to quickly teach the arm to remain

on the table. Without this term, the number of training episodes

becomes impractically large.

The transition probability function P is given by the world

dynamics of the randomized domain set, and the initial state

distribution ρ0 is defined by a normal distribution centered on the

approach pose.

2.4.2. Reinforcement learning implementation
We now describe the implementation and the detailed learning

setup. The reinforcement learning cycle is composed of the agent

interacting with the environment. The latter has been described

in Section 2.3.1 and is simulated in Gazebo within the NRP. The

simulator takes an action a, and after one step, it generates the next

FIGURE 5

Learning architecture scheme in the NRP. Refer to the pseudo-code

in Algorithm 1 and to the schema in Figure 8 for a more detailed

description.

state s. Meanwhile, a policy dictates the actions a for the agent based

on s to maximize a reward. The policy is implemented with the

IBA to run spiking neural networks in classical and neuromorphic

hardware both in inference and in training modes. For this, we

activated a special virtual environment in the IBA start process

and run the models (with NxSDK for On-Chip spiking actor

network, and pytorch, scikitlearn for the other networks) at every

simulation/CLE step.

This reinforcement learning loop repeats until it completes

an episode, then the virtual coach script handles the beginning

and end of multiple simulations, gathers the data to feed them

to the reinforcement learning algorithm, and updates the models

accordingly, as sketched in Figure 5. This includes updating the

policy and the value function. The specific update rules, models,

and further details are described in the following sections.

2.4.3. Soft actor critic
In this study, the reinforcement learning algorithm used is a

version of soft actor critic (SAC) (Haarnoja et al., 2018), which

optimizes a stochastic policy in an off-policy fashion. The policy

is trained to maximize a trade-off between expected return and

entropy. The intuition behind entropy-regularized RL is succeeding

at the task while acting as randomly as possible. This contributes to

preventing the policy from prematurely converging to an undesired

local optimum.
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FIGURE 6

Learning scheme. “R” is the reward function. 5 is the policy. 8

represents the parameters of the policy. “C” stands for “critic,” and

depending on the actor-critic architecture, it could be a di�erent set

of value functions and action-value functions. 9 represents the

parameters of the critic-model(s).

π∗ = argmax
π

E
τ∼π

[ ∞
∑

t=0

γ t(R (st , at , st+1)

+αH (π (· | st)))

]

(4)

SAC achieves state-of-the-art performance that surpasses

previous on-policy and off-policy methods in sample efficiency and

asymptotic performance. Moreover, SAC is more stable and shows

more robustness to different random seeds than other off-policy

algorithms. Therefore, SAC is a promising candidate that could

learn in real robotic applications.

Figure 6 roughly illustrates the structure of an actor Critic

RL algorithm.

2.4.4. Spiking implementation—PopSAN
Tang et al. (2020) uses SNNs to implement continuous deep RL.

Competitive performance is shown through the use of a spiking

version of DDPG (Deep Deterministic Policy Gradient). Note that

although the actor network is spiking, the critic is non-spiking

since its not used for inference and thus does not have to be

ported to neuromorphic hardware. PopSAN (Tang et al., 2021)

expands upon the results of RateSAN (Tang et al., 2020) with,

among others, a spiking version of SAC incorporating population

coded input instead of rate coded input networks.5 Our study is

based on the PopSAN architecture, which we adapt for the NRP

and the robotic insertion task. The networks are architectured as

follows. The spiking actor network is a fully connected SNN with

LIF neurons and layer sizes 160×256×256×60. The critic networks

5 Encoding in the context of a SNN refers to various methods to

represent non-event-based information as spiking data. Real numbers can

be represented as spiking-rates, spiking-times, or spiking-populations. For

full detail refer to Dupeyroux et al. (2021).

are fully connected ANNs with ReLU activation functions in the

hidden layers and hyperbolic tangent activation functions in the

output layer. Both Q-networks have sizes 22 × 256 × 256 × 1.

This hybrid training architecture is best implemented on cpu with

conventional frameworks. After training, the spiking actor is then

ported to the Loihi chip for testing in real neuromorphic hardware

for inference, while we do not need the critics anymore.

2.4.5. Domain randomization for robust agents
Domain randomization in the field of robotics is commonly

used as a strategy for closing the simulation-to-reality gap

(sim2real). It involves multiple training runs, each with

randomized parameters to mirror the distribution of the

real world domain. In other words, the agent is trained to

perform well over a range of situations. Typical dynamic

parameters that are commonly randomized include object

dimensions and masses, robot link masses and inertia,

surface friction coefficients, controller gains, and damping

factors (Weng, 2019). Alternatively, disturbances can be

added during the training process to reach a similar result.

Perturbations could be applied on sensor values, rewards, or

even on other parameters that are not generally susceptible

to perturbations (i.e., gravity). This can also result in more

robust learning.

This study implements parametric domain randomization in

the NRP via the Virtual Coach (Section 2.1.4). The training script

requires a list or a multidimensional array (defined in numpy)

with the experiment IDs. Figure 7 depicts a list of environments in

which all dimensions are already sampled from the distributions

and collapsed to one dimension. However, it is also possible to

use a multidimensional array as an input, where the elements

ijk represent the experiment-ID of the environment with the

corresponding ijk parameters. For instance, the x, y, z coordinates

could represent the friction coefficient µ = i ∈ X =

{0.08, 0.36, 0.80}, end-effector mass m = k ∈ Z = {κ/2 | κ ∈

[1..5]}, and controller gain kp = j ∈ Y = {2υ + 1 | υ ∈ [0..4]}.

In the simplest case, a list with experiment IDs could be

used instead of an array. This list or multidimensional array

could be generated by hand or via scripts. Given the environment

list, the training script selects domains based on four sampling

schemes: sequential, uniform, normal, and custom defined. In

the case of sequential sampling, the order in the list is used

to choose the environments. In the uniform case, all source

environments have the same likelihood to be chosen, but there is

no imposed order. In the normal case, the sampling parameters

are chosen from a Gaussian distribution and then approximated

to the closest environment with that parameter as there is no

continuum of environments (notice that this will result only in

an approximation of strict normal sampling). Finally, additional

sampling distributions could be defined and passed as functions to

the method.

Furthermore, the definition of the environments could be used

to generate more complex sampling distributions: for instance,

if the parameters are equidistant in a logarithmic space and a

Gaussian sampling strategy is selected, then the sampling scheme

would actually be based on a log-normal distribution.
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FIGURE 7

Sampling mechanism: each variable is a parameter that can be

randomized. For each dimension of the parameter space, Gaussian

and log-Gaussian distributions can be selected as sampling

schemes.

More specifically, to test the approach, we trained single models

with extreme friction parameters µ1 = µ2 = 0.08 and µ1 = µ2

= 0.8. A generalized agent trained for the characterized friction

parameters µ1,2 = 0.38 ± 0.4 with domain randomization and we

compared the results.

We also implemented a sampling scheme in which wider

distributions with more domain variability are progressively

selected based on the epoch-number or epoch-performance. This

allows the agent to first learn in an easy environment, and

once a successful behavior has been reached, the complexity is

incremented by progressively extending the variance over the

source domain parameter set. One can imagine this as a sort of

“training wheels,” which are removed when an agent becomes more

adept, inspired from Heim et al. (2018). However, there may be

scenarios which benefit from preemptively consideration of the

whole range of domain variability. Figure 8 shows an overview of

the whole learning approach.

2.4.6. Injecting prior knowledge
As soft actor critic is an off-policy algorithm, the data used for

the training can be collected by an arbitrary sampling distribution.

We use this fact to bootstrap training with a memory buffer

collected by a teacher-agent and relabel it for the new agent. We

use a policy trained on a simpler setup with additional hints and

information that are not available to the real agent. The teacher

agent is able to visit regions of the state space that a random

agent at the beginning would not be able to visit.6 Even though

the policies differ, pre-training with this data provides at least a

notion of the values related to the states. This would be equivalent

to transferring the value functions if the state spaces of both agents

were to overlap completely.

6 Notice that this is only possible when a function to map the state spaces

is available F :Sexpert → Sagent . This mapping could be an approximation,

however, no convergence analysis has been done concerning this.

2.4.7. Consideration of neuromorphic hardware
constraints

Once the architecture of the SNN and the synaptic weights

have been decided on, implementing the SNN can be easily done

in neuromorphic hardware. More specifically, for porting to Loihi

1, we implement the network architecture with NxSDK and load

the equivalent synaptic values from the PyTorch models, as done

previously in Tang et al. (2021).

One important consideration is the discrepancy in the trained

model and the one implemented in hardware. Different hardware

alternatives present different resource limitations and discrepancies

between their ideal SNN models and simulated versions. For

instance, Loihi, being a digital chip, uses neuron states and synaptic

weights which accuracy is typically limited to 8 bits, while the LIF

model is continuous and its PyTorch simulated version has full

precision weights (32 bits).

To deal with this problem, Akl et al. (2021) implements a

spiking version of DQN where the weights are kept quantized in

the forward pass but treated as real values during the backward

pass. This is achieved by using a technique known as the straight-

through estimator. Even though this method can only be applied

in environments with discrete action spaces and does not consider

the neuron state quantization, its results show considerable on-

chip performance improvements. Additionally, the concept can be

extended to other RL algorithms without major changes.

Additional hardware constraints include themaximum amount

of networks per neural core, max amount of neural cores, as well

as the max fan-in and max fan-out for core-to-core connections.

These values are described in detail in Davies et al. (2018, 2021).

Similarly, other alternative neuromorphic chips present different

constraints. It is important to consider these to ensure reliable

results when porting to hardware. In essence, the process consists

in making the model resemble the targeted hardware and consider

all its limitations before training or at least approximate the model

and assert that the discrepancies do not generate a considerable

difference in performance.

3. Results

The materials and methodology presented previously

have been used to train robust agents offline and

port them to neuromorphic hardware, leading to the

following results.

3.1. Spiking neural network—generic
training

The training was run for 100 epochs, with 500 episodes

and 2000 interactions each. Figure 9 shows the results with

training 20 agents with different random seeds in terms of

mean return and corresponding standard deviation. We found

a 100% insertion success rate across 50 runs using a trained

policy. A video of the trained agent can be found in the

Supplementary material Video 1.

Figure 9 shows the training profile of 20 different random seeds.
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FIGURE 8

Full overview of the training pipeline.

FIGURE 9

Learning curves show the results of training with 20 random seeds,

the mean performance and the standard deviation.

3.2. Inference on neuromorphic hardware

Figure 10 shows measured latency values while running on

the Loihi 1 chip. The mean time for an inference step was

1.8 ms for Loihi 1 and 1.5 ms for Loihi 2(for information). As

an additional result, the mean energy for inference was measured

on the Loihi 2 chip, resulting in a dynamic energy consumption

of 53 µJ.

3.3. Domain randomization

For domain randomization, the parameters of the friction

cone model with µ and µ2 were randomized. D1 denotes

a low friction environment with µ = µ2 = 0.2, while D2

denotes a high friction environment with µ = µ2 = 1.

DR represents a test environment with a random probability

of sampling from the given set of environments. Table 1

shows the cross-evaluation of policies trained specifically

FIGURE 10

SNN execution time on Loihi 1 measured with state probes over

nine steps—equivalent to one inference. The total is 1.8 ms.

TABLE 1 Domain randomization evaluation.

Policy D1 D2 DR

51 3.0± 3.6 1.6± 3.0 2.3± 3.4

52 2.3± 3.4 3.0± 3.7 2.7± 3.5

5R 2.9± 3.6 2.8± 4.2 2.9± 3.9

All the values refer to the expected return and are in the same order of magnitude (1e + 5).

for each environment (51 & 52) and the policy trained

with randomized environments (5R) performing in

different domains, where the values portrayed are the mean

total sum of rewards of an episode and the performance

profile, respectively.

3.4. Learning complex tasks—injecting prior
knowledge

When injecting prior knowledge with expert-

guided learning, the time needed to reach a policy that
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Input : environment(s) E, sampling distribution

S: uniform as default, training params P

Output: trained policy π†

Initialize policy π, replay buffer D, critics

Qs. Run pretraining subroutine if applicable for

ep← 1 to P[′max_episodes′] do

// Generate interactions

Sample an environment e ∼ S ∈ E

Create simulation

Start simulation

for t← 0 to P[′timeseteps_per_episodes′] do

// IBA code

encode input from the simulation state

if P[′use_Neuromorphic_Hardware′] then

// Quantized SNN - running on Loihi

Run SNN on Neuromorphic Hardware a ∼ π∗

else

// SNN running on pytorch

emulate SNN on CPU a ∼ π
Apply the action to the environment

Run a simulation step s(t + 1) ∼ P(a, s)

Store experience in the D

Stop simulation

// Learn from interactions

if time_to_update? then

for i← 0 to P[′learning_steps_per_epoch′] do

Sample batch B from D

Update critics Qs with B

Update policy π with B

if E[6r(s‖s′ ∼ P(a ∼ π), ρ0)] > E[6r(s‖s′ ∼ P(a ∼ π†), ρ0)]

then

Store best policy π† = π

return π†

Algorithm 1. General learning approach-(Main Virtual Coach

Script).

consistently inserts the peg can be sped up by a factor of

nearly five.

3.5. Consideration of neuromorphic
hardware constraints

After training the model from Section 3.1, the

performance measure was the insertion success rate.

This value did not change after porting the SNN to

neuromorphic hardware, and further considerations

(such as those presented in Section 2.4.7) were

not needed.

4. Discussion

We have presented a framework for training robust

neurorobots in domains with variable parameters, as well as

for carrying out inference using neuromorphic hardware. This

approach uses the NRP, with emphasis on features such as the

Virtual Coach and the Integrated Behavioral Architecture. With

this approach, a simulated robot was trained to insert a peg into a

hole with a small clearance based on only force-torque feedback.

The results show 100% insertion success rate after 3 s. We also

used domain randomization for addressing problems related

to learning in environments with parametric uncertainties. The

technique proved to reduce the sim-to-real gap when porting

from simulation to a real robot. We document the process of

porting these results to a real robot counterpart in a pending

separate study.

This study is limited to model-free actor-critic architectures.

Other training algorithms might create the need for restructuring

the code; however, the main idea of the approach would be

the same. Currently, it is not possible to learn during the

episode, but this could be solved with use of threads to optimize

resources and training time. Similarly, there is currently no support

for multiple backends running in parallel, which would be an

interesting feature for efficient implementations of distributed

learning approaches highly parallelizable algorithms such as PPO

(Schulman et al., 2017), or metalearning approaches (Beck et al.,

2023). Those features represent some open new avenues for future

work.

The results on the generic training show how the algorithm

reaches a stable behavior with 100% success rate. The lack of

smoothness is due to both the stochasticity of the environment

and policy but also to the non-linear reward landscape. Notice

how the variance is small at the beginning since all the

returns are small and therefore similar for untrained policies.

Once the training progresses, some runs would reach high

rewards after insertion, while others would not, which generates

high variances between runs. Finally, the variance decreases

as a 100% insertion rate is reached, and all the returns

are similar as there target is always reached. The remaining

variance is due to differences in insertion time and other

variables.

The results of the inference in neuromorphic hardware and

system profiling show that the inference (controlling the robot)

can be performed with low latency, low energy consumption, and

without meaningful performance loss, namely, accurate inferences

below 2ms with a dynamic energy consumption around 50µJ. A

more detailed overview about the energy and time profiling for

this specific setup is documented in the pending study mentioned

above. A real robot counterpart is there controlled with the tools

presented here, and more emphasis is set on the hardware.

The results from the domain randomization procedure show a

consistent inter-domain overall improvement. The policy trained

with domain randomization performs similarly to the policies

trained for specific environments in both domains, while the

specific policies have a significant performance drop while

performing other tasks.

The results when injecting and relabeling prior expert

knowledge show significant speed up for reaching a convergent

policy in complex environments. The approach does not require

a simulator that can be restarted at arbitrary states and

resembles other LfD strategies (Argall et al., 2009). However, it
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requires to have an expert agent, a mapping function, under

certain circumstances, this approach is equivalent to transferring

knowledge via value functions.

For the sake of the implemented robotic task, quantization-

aware training was not needed. One explanation for this might

be the fact that we lead the training to learn robust policies, and

therefore, the behavior was not sensible to the small changes in

weights due to quantization. This could however be an important

aspect for other learning environments.

Altogether, the NRP is arguably the most advanced integration

platform for connecting robot simulations with in-silico brains

currently available, and using adaptations as the one presented in

this study expands the horizon of possible implementable setups.

In this manuscript, we presented how we extend features such as

including neuromorphic hardware platforms (Intel’s Loihi Chips),

utilizing multi-simulation learning algorithms (SAC), and adding

elements as domain randomization to speed up research and move

forward the frontiers in neurorobotics.
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