
TYPE Original Research

PUBLISHED 11 August 2023

DOI 10.3389/fnbot.2023.1234962

OPEN ACCESS

EDITED BY

Hang Su,

Fondazione Politecnico di Milano, Italy

REVIEWED BY

Zhaowei Liu,

Yantai University, China

Xiaorui Liu,

Qingdao University, China

Owen Omalley,

El Camino College, United States

*CORRESPONDENCE

Elishai Ezra Tsur

elishai@nbel-lab.com

RECEIVED 05 June 2023

ACCEPTED 25 July 2023

PUBLISHED 11 August 2023

CITATION

Halaly R and Ezra Tsur E (2023) Autonomous

driving controllers with neuromorphic spiking

neural networks.

Front. Neurorobot. 17:1234962.

doi: 10.3389/fnbot.2023.1234962

COPYRIGHT

© 2023 Halaly and Ezra Tsur. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Autonomous driving controllers
with neuromorphic spiking neural
networks

Raz Halaly and Elishai Ezra Tsur*

Neuro-Biomorphic Engineering Lab, Department of Mathematics and Computer Science, Open

University of Israel, Ra’anana, Israel

Autonomous driving is one of the hallmarks of artificial intelligence. Neuromorphic

(brain-inspired) control is posed to significantly contribute to autonomous

behavior by leveraging spiking neural networks-based energy-e�cient

computational frameworks. In this work, we have explored neuromorphic

implementations of four prominent controllers for autonomous driving:

pure-pursuit, Stanley, PID, and MPC, using a physics-aware simulation framework.

We extensively evaluated these models with various intrinsic parameters and

compared their performance with conventional CPU-based implementations.

While being neural approximations, we show that neuromorphic models can

performcompetitivelywith their conventional counterparts.We provide guidelines

for building neuromorphic architectures for control and describe the importance

of their underlying tuning parameters and neuronal resources. Our results show

that most models would converge to their optimal performances with merely

100–1,000 neurons. They also highlight the importance of hybrid conventional

and neuromorphic designs, as was suggested here with the MPC controller.

This study also highlights the limitations of neuromorphic implementations,

particularly at higher (> 15 m/s) speeds where they tend to degrade faster than in

conventional designs.

KEYWORDS

autonomous driving, neuromorphic control, spiking neural networks, path-tracking

controllers, neural engineering framework (NEF), energy e�ciency, motion planning,

computational frameworks

1. Introduction

Path and motion planning are crucial aspects of autonomous driving systems (ADSs)

(Huang et al., 2019b). ADSs encompass a wide range of approaches, ranging from classic

control theory (Alcala et al., 2018) to machine learning (Qureshi et al., 2019). Typically,

ADSs consist of three main components: environment sensing and localization (Ji et al.,

2019), path planning (Artuñedo et al., 2018), and path tracking (Sun et al., 2019). ADSs are

realized using problem formulation (Arkin, 1990), and optimization criteria (Liu et al., 2022,

2023a) (such as vehicle stability Li et al., 2009 and safety Huang et al., 2019a), and typically

require significant computational and energy resources (Gawron et al., 2018).

Neuromorphic brain-inspired control systems, which are based on densely connected

spiking neural networks (SNNs) (Tsur, 2021), offer a promising alternative with greater

energy efficiency and comparable accuracy and latency (DeWolf et al., 2020), DeWolf (2021)

to system control. In this work, we propose a neuromorphic implementation of four well-

established path-tracking control models for autonomous driving (Samak et al., 2021),

within a physics-aware computational framework. Our proposed ADSs utilize a LiDAR

sensor to estimate the vehicle’s position along the track.We used LiDAR readings to generate

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1234962
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1234962&domain=pdf&date_stamp=2023-08-11
mailto:elishai@nbel-lab.com
https://doi.org/10.3389/fnbot.2023.1234962
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1234962/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

a reference trajectory and employs neuromorphic approaches

for path tracking through the implementation of the following

controllers: 1. Pure-pursuit (Coulter, 1992)—A widely adopted

path-tracking controller (Morales et al., 2009), which geometrically

pursues a point on the reference trajectory by adjusting the vehicle’s

steering angle; 2. Stanley (Hoffmann et al., 2007) controller, a

controller that was instrumental in the first-place victory of the

2005 DARPAGrand Challenge for autonomous driving (Hoffmann

et al., 2007). It adjusts the vehicle’s steering to minimize both cross-

track error (CTE; defined as the distance between the front axle

of the vehicle to the closest point on the reference (or ideal) path)

and heading error (defined as the angle between the vehicle and the

trajectory headings); 3. PID controller, a commonly used controller

that continuously decreases the CTE by applying corrections based

on the error’s proportional, integral, and derivative terms; and 4.

Model predictive control (MPC), which employs a predictivemodel

to evaluate the system’s future state and optimizes the control policy

accordingly. In contrast to conventional artificial neural networks-

based controllers, which optimize long-term policies but may pose

unexplained, unsafe, and harmful consequences in the short term

(Alcala et al., 2018), we chose these control models as they are

widely utilized in reliable strategies (Samak et al., 2021) and offer

comfortable, safe, explainable, and interpretable motion control

(Berkenkamp et al., 2017).

We employed the neural engineering framework (NEF),

a widely adopted neuromorphic computing framework, for

designing our neuromorphic implementations (Eliasmith and

Anderson, 2003; Tsur, 2021). NEF provides mathematical

constructs that enable encoding, decoding, and transformation

of numerical values using spiking neurons, facilitating the

implementation of functional large-scale SNNs (Eliasmith and

Anderson, 2003). NEF has been used in the design of various

neuromorphic systems spanning robotics control (DeWolf et al.,

2020) and visual processing (Tsur and Rivlin-Etzion, 2020) to

perception (Cohen Duwek and Ezra Tsur, 2021; Cohen-Duwek

et al., 2022). Additionally, the framework has been demonstrated

on prominent digital neuromorphic hardware architectures,

including TrueNorth (Fischl et al., 2018), the Loihi (Lin et al.,

2018), the NeuroGrid (Boahen, 2017), and the SpiNNaker (Mundy

et al., 2015), as well as deployed on dedicated analog circuitry

(Hazan and Ezra Tsur, 2022). We utilized Nengo (Bekolay et al.,

2014), a Python-based neural compiler built on NEF principles,

to translate high-level functional descriptions to low-level neural

models (Bekolay et al., 2014).

This work aims to assess the viability of neural approximation

methods for controlling ADSs and offer guidelines for designing

neuromorphic control strategies.

2. Methods

In this section, we present NEF, which serves as the theoretical

foundation of our neuromorphic designs, and the kinematic bicycle

model (KBM) with which we modeled the vehicle. We also describe

the path-tracking controllers and the simulation environment

we employed in this study. Generally, the goal of the path

tracking controllers is to enable an autonomous vehicle to follow

a reference trajectory while minimizing errors and maintaining

desired performance; and the simulation environment serves as a

platform for testing and comparing the performance of the different

controllers (Figure 1).

2.1. Neural engineering framework

The NEF defines three principles for designing neuromorphic

spiking neural networks: representation, transformation, and

dynamics. It is described in length in Eliasmith and Anderson

(2003) and Tsur (2021).

2.1.1. Principle 1 - representation
An ensemble of neurons represents a time-varying vector of

real numbers through nonlinear encoding and linear decoding. The

encoding is responsible for representing numerical constructs as

spikes. The encoding of an input vector x is defined by:

δi(x) = Gi

[

αi〈φ̃i, x(t)〉 + Jbiasi

]

, (1)

where Gi is a nonlinear function that represents a neuron model

(here, we use the leaky-integrate-and-fire (LIF) (Burkitt, 2006)

model), α is a gain term, φ̃ is the neuron’s preferred stimulus (the

value for which the neuron is firing at the highest rate), and Ji
is a bias fixed current. The estimated represented vector x̂ can be

decoded using a linear decoder:

x̂(t) = 6i(hi(t) ∗ δi(t))dxi , (2)

where di are linear decoders that were optimized to reproduce x by

using least squared optimization, and hi is a filter that convolved

with δi for representing the spiking activity.

2.1.2. Principle 2 - transformation
The decoders di can be optimized to reproduce any f (x)

using least squared optimization (Eliasmith and Anderson, 2003).

Similarly to (2), f̂ (x) can be decoded using:

f̂ (x(t)) = 6i(hi(t) ∗ δi(t))dfi . (3)

f (x) can be calculated using a set of weighted synaptic connection

wij, connecting two neural ensembles A and B:

f (x) = wij = di · ei, (4)

where di are the decoders of ensemble A and ej are the encoders of

ensemble B. This allows the neuromorphic approximation of any

function in a SNN.

2.1.3. Principle 3 - dynamics
A canonical form of a linear error-correcting feedback loop can

be described using:

ẋ = Ax(t)+ Bu(t), (5)

where A is a dynamics matrix and B is the input matrix, x is the

state vector, and u is the input vector.

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

FIGURE 1

Schematic system design. The AirSim’s SUV inside the FST Driverless Environment, senses the environment with LiDAR (The green lines). The control

module computes the desired control signal.

This standard control can be realized in NEF by using:

ẋ = A′x(t)+ B′u(t), (6)

where A′ is a recurrent connection and B′ is the input connection.
These matrices can be related to the standard dynamics and input

matrix using A′ = τA + I and B′ = τB (Eliasmith and Anderson,

2003).

Such a recurrent connection is defined, by the previous

principles, using

x(t) = f (x(t)) ∗ h(t). (7)

This neural implementation can also be used to implement a

neuromorphic integrator. An integrator that integrates u to define

x where ẋ = u, can be defined as A = 0,B = 1 in terms of (5)

and A′ = 1,B = τ in a neuromorphic system with a recurrent

connection in terms of (6). The utilization of NEF’s dynamics for

data integration is further described in detail in Tsur (2021) and

Zaidel et al. (2021).

2.2. The kinematic bicycle model

We used the KBM to model the steering of our 4 wheels car.

The KBM is a simplified vehicle model commonly used in control

and robotics applications to describe the motion of a vehicle. It

approximates the vehicle as a rigid body with two wheels, one at

the front and one at the rear, connected by a fixed wheelbase. KBM

represents the vehicle’s state as [x, y, θ , δ], where x and y represent

the vehicle’s position, θ is the vehicle’s heading angle, and δ is the

vehicle’s steering angle. The model’s input is [v,ϕ], where v is the

vehicle’s velocity, and ϕ is its steering rate. The vehicle’s position

was represented in two-dimensional space in reference to one of

the following points: the center of the front axle, the center of the

rear axle, and the vehicle’s center of gravity. When using the center

of the rear axle as a reference point, the new state of the vehicle is

obtained by:

x(t + 1) = x(t)+ v cos(θ(t))1t,

y(t + 1) = y(t)+ v sin(θ(t))1t,

θ(t + 1) = θ(t)+ v tan δ(t)1t,

δ(t) = δ(t)+ ϕ1t.

(8)

When using the center of the front axle as a reference point, the

new state of the vehicle is:

x(t + 1) = x(t)+ v cos(θ(t)+ δ(t))1t,

y(t + 1) = y(t)+ v sin(θ(t)+ δ(t))1t,

θ(t + 1) = θ(t)+ v sin δ(t)1t,

δ(t) = δ(t)+ ϕ1t.

(9)

A detailed description, as well as a description of the model’s

advantages and limitations, are described in Polack et al. (2017).

2.3. Path tracking controllers

Path tracking controllers are essential components of

autonomous vehicle systems, responsible for generating steering

and throttle commands to follow a reference trajectory. In

this study, we investigate four different controllers: Pure-

pursuit, Stanley, PID, and MPC. Each controller features a

unique architecture, with its own unique set of parameters

and performance. We provide below a brief introduction

to each controller, followed by a description of their

neuromorphic implementations.

2.3.1. PID controller
A PID controller is widely utilized in systems that require

continuous error-correcting control. A PID controller reduces

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

an error e(t) by providing a control signal u(t) that applies the

required corrections based on the error’s proportional, integral, and

derivative terms, using:

u(t) = Kpe(t)+ Ki

∫ t

0
e(t)dt + Kd

de

dt
, (10)

where Kp, Ki, and Kd are the proportional, integral, and derivative

gain coefficients, respectively.

Our neuromorphic PID implementation was described in

length in Shalumov et al. (2021). In short, The vehicle’s current

configuration (e.g., speed) was introduced through a neuron

ensemble. We subtracted it from the desired configuration signal

(e.g., target speed) to derive an error signal. This error signal

was propagated to the output ensemble through three paths: 1.

A proportional path in which the error is multiplied through a

gain factor; 2. An integration path in which the error is integrated

using a neuromorphic integrator (see Section 2.1.3) and scaled by a

gain factor; and 3. A derivative path, implemented by connecting

the error ensemble to a 2D derivative ensemble. To implement

derivation, the error was propagated through slow and fast synapses

which were sequentially subtracted and scaled by a gain factor.

These three error signals were summed in an output ensemble and

delivered to the vehicle.

Our vehicle’s PID controller was implemented by using two PID

controllers. One PID was used as a cruise control, responsible for

throttle adjustment and the second one was used for steering. For

controlling the steering, the error signal was calculated using:

u(t) = e(t)+ v(t) sinψ(t), (11)

where e(t) is the CTE (the distance between the front axle of the

vehicle to the closest point on the reference path), v(t) is the vehicle’s

speed, andψ(t) is the vehicle’s heading error (the angle between the

vehicle and the trajectory headings). The error signal combines the

CTE and the heading error in such a way that the PID is used to

reduce the error by adjusting the control signal accordingly. The

PID model scheme is illustrated in Figure 2C.

As a baseline, we set the steering PID gains to Kp = 0.7,Ki =
0.1,Kd = 0.3, and the synaptic time constants to τp = 5ms, τi =
200ms, τd = 500ms. For the CPU-based implementation, we chose:

Kp = 0.2,Ki = 0.01,Kd = 0.3. We evaluated the model with 10,

25, 50, 100, 250, 500, 1000, and 2500 neurons per ensemble. The

steering PID synapses (τp, τi, τd) were evaluated with time constants

of 5, 10, 50, 100, 300, 500, 700, 900, and 1100 ms. The rest of the

synapses were set to have a time constant of 5 ms (low pass filter).

All ensembles were configured with a radius of 1.

2.3.2. Pure-pursuit controller
The Pure-pursuit controller is a path-tracking controller, which

geometrically chases a point on a reference trajectory some distance

ahead of the vehicle. It uses the vehicle’s rear axle as the reference

point and a constant distant point on the reference trajectory as a

target point. Steering angle δ at time t is calculated using

δ(t) = arctan

(

2L sinα

ld

)

, (12)

where ld is the distance between the vehicle’s reference point and

the target point (look-ahead distance), L is the distance between the

vehicle axles, and α is the angle between the vehicle’s body and the

target point.

Our neuromorphic implementation of the pure-pursuit

controller was based on one one-dimensional neuronal ensemble

that represents α. Its decoders were optimized to calculate the

steering angle from Equation (12). The pure-pursuit controller

does not control the vehicle’s speed. Therefore, to maintain the

vehicle’s velocity, we utilized a neuromorphic PID-based cruise

control as described above. The pure-pursuit model scheme is

illustrated in Figure 2A.

We set the PID gains for the CPU implementation a:s Kp =
0.5,Ki = 0.02,Kd = 1, and for the neuromorphic implementation

as Kp = 1.3,Ki = 0.9,Kd = 0.5’, with the synaptic filters τp =
0.005s, τi = 0.2s, τd = 0.3s. We evaluated the model with 10,

25, 50, 100, 250, 500, 1,000, and 2,500 neurons per neuromorphic

ensemble. The output synapses were set as low-pass filters. We

evaluated the steering synapses with time constants of 5, 10, 50, 100,

300, 500, 700, 900, and 1,100 ms. The rest of the synapses were set

to have a time constant of 5 ms (low pass filter). The neuromorphic

ensembles were set with a radius of 1. This representational radius

determines the range of the ensembles’ acceptable input values. We

set the controller’s look-ahead to 8 m and set the synaptic filter (τ )

of the output synapse connections to 10 ms.

2.3.3. Stanley controller
The Stanley controller (Hoffmann et al., 2007) is a path-

tracking controller, which instead of chasing a path, strives to

minimize the CTE (e(t)) and heading (ψ(t)) errors through

geometrical calculations. The Stanley controller uses the front axle

of the vehicle as the reference point. The required steering angle

δ(t) was calculated using:

δ(t) = ψ(t)+ tan−1

(

ke(t)

ks + v(t)

)

, (13)

where k and ks are adjustable softening coefficients for the

controller. k is the error’s gain factor, and ks provides the means

for controlling the vehicle at low speeds when the denominator

becomes small and the steering becomes too aggressive.

The neuromorphic implementation of the Stanley controller

comprised one three-dimensional neuronal ensemble that

represents e(t), ψ(t), and v(t). Its decoders were optimized

to calculate the steering using Equation 13. Similarly to the

pure-pursuit controller, the Stanley controller does not control

the vehicle’s speed, which is maintained using neuromorphic

PID-based cruise control. The Stanley model scheme is illustrated

in Figure 2B.

The Stanley neuromorphic implementation requires a three-

dimensional ensemble with a larger radius of
√
3, and as a result, a

higher number of neurons. The other 1-dimensional synapses were

configured with a radius of 1. We evaluated the model with 100,

250, 500, 1,000, 2,500, 5,000, and 10,000 neurons per neuromorphic

ensemble. The model’s output steering synapses were set with time

constants of 5, 10, 50, 100, 300, 500, 700, 900, and 1,100 ms. The

rest of the synapses were set to have a time constant of 5 ms (low

pass filters). We set the k and ks softening coefficients to 1.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

FIGURE 2

Schematic design of the controllers implemented as an SNN. (A) Pure-pursuit, (B) Stanley, (C) PID, (D) MPC.

2.3.4. MPC controller
TheModel Predictive Control (MPC) controller is an advanced

optimization-based feedback loop control paradigm, which uses a

model to predict the state of the system in the future and uses it to

find the optimal driving policy for a given goal. MPC can handle

multiple inputs and outputs that might interact with each other

(e.g., steering and throttle values), increasing the potential for better

overall performance. MPC can also handle constraints, allowing it

to avoid undesired or impossible scenarios, like increasing throttle

values to physically-impossible levels.

The MPC controller derives N predictions for a given elapsed

time 1t. N · 1t represents the controller’s prediction horizon,

which determines how far the model can look ahead into the

future. Although the controller provides N prediction, only the

first prediction, which represents the next timestamp, is used as the

control command. Once that command is executed, the controller

will retrieve the new state of the system and provide another set

of predictions.

Here, to implement the MPC controller we defined the

cost function:

Cost =506k∈Ne
2
k + 1006k∈Nψ

2
k+

1006k∈N(vref − vk)
2 + 1006k∈Nδ

2
k+

16k∈Na
2
k + 2006k∈N(δk − δk−1)

2+
106k∈N(ak − ak−1)

2,

(14)

where e is the CTE,ψ is the heading error, vref is the target velocity,

v is the vehicle velocity, and δ and a are the chosen steering and

throttle policies, respectively. The four last components in Equation

14 reduce the actuators’ usage and rate of change. The MPC’s

prediction horizon comprises the steering and the throttle values

for each timestamp, yielding 2N parameters to optimize.

To implement the MPC in a CPU, we used the Sequential

Least Squares Programming (SLSQP) minimization algorithm

as an optimizer, an iterative method for constrained nonlinear

optimization (Boggs and Tolle, 1995). Our neuromorphic

controller is a hybrid controller that uses an SNN for optimization

and a CPU to accurately resolve the required mathematical

calculations. The neuromorphic model of the MPC was defined

as a closed-loop network, comprising 2N neural ensembles that

represent the required steering and throttling control signals

for N predictions. Each ensemble was defined as an integrator

with a recurrent synapse, which acts as a memory. All these

ensembles were connected through synapses to a CPU block that

calculates the cost function. The cost function is resolved by a

CPU, applying root mean squared propagation (RMSprop) on

the estimated partial derivative of the cost function. RMSProp is

a gradient descent-driven algorithm that uses a decaying moving

average of partial gradients to adapt the step size of each optimized

variable, emphasizing recent partial gradients over early gradients,

overcoming the limitation of more conventional implementations

(Kurbiel and Khaleghian, 2017). Notably, since the neuromorphic

model works continuously without a clock, unlike the CPU

implementation, the optimization is done continuously by

updating the policies based on the current state without redoing

the optimization from scratch at each timestamp.

We configured the RMSprop algorithm with a decay rate of

0.9. The partial derivative of the cost function (Equation 14) was

estimated using:

∂f

∂xk
= f (x1, ..., xk − ε, ..., xn)− f (x1, ..., xk, ..., xn)

ε
, (15)

where ε was set to 0.01.

Once RMSprop was executed, the step values were transferred

back to the neuromorphic integrators. Each integrator receives

the cost derivative as an input and has a recurrent connection

that persists in its spiking dynamic. Each neuromorphic integrator

represents a single value and their decoders were optimized to

realize an identity function, realizing amemory cell. The integrators

values increase and decrease per the continuous realization of the

represented cost. The MPC is illustrated in Figure 2D.

We evaluated the model with 10, 25, 50, 100, 250, 500,

1,000, and 2,500 neurons per ensemble. The model’s output

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

synapses were set with time constants of 5, 10, 50, 100,

300, 500, 700, 900, and 1,100 ms. The recurrent synapse of

each integrator was set with a time constant of 200 ms.

The rest of the synapses were set to have a time constant

of 5 ms (low pass filter). All neuromorphic ensembles were

defined with a radius of 1. Interestingly, the PID’s integral

ensemble radius prevents the integral windup problem (PID’s

integral term might accumulate errors and overshoots due to its

unwound value).

2.4. Simulation Environment

We used the AirSim simulator (Shah et al., 2017), a

physics-aware Unreal Engine-based, open-sourced, cross-platform

framework, which was developed by Microsoft to simulate a

controlled vehicle in a realistic racecourse environment. The race

course was based on the FST Driverless Environment (Zadok et al.,

2019) and we added solid, wall-like sides, lining a 15 meters width

road (Figure 3).

We used AirSim’s plausible physical model of an SUV vehicle

(Shah et al., 2017) and a LiDAR sensor, covering a 180◦ field of view
in a half-degree resolution a 40-meter range, working at 40 scans

per second.

The Neuromorphic NEF-based controllers were implemented

using the Nengo library (Bekolay et al., 2014), and the conventional

CPU-based controllers were implemented using Python. We

designed an adapter to allow synchronized communication

between the Nengo and the AirSim environments, allowing the

exchange of LiDAR readings and control signals (car’s steering

and throttle values). Scenarios were executed synchronously with

a 5-millisecond interval, emulating 200 control signals per second.

Driving policies require a reference trajectory to follow. Here,

we used the race course’s mid-line as a reference. The path was

generated in real-time, using the LiDAR readings (detecting the

race course’s lining walls), and represented using a third-degree

polynomial. This polynomial was derived by calculating the center

point between the boundaries at evenly spaced intervals. To reduce

any non-deterministic effect, we run each experiment 10 times and

set a constant seed value for the random mechanism.

Given the intrinsic time-dependent nature of SNNs, we have

our framework also had to handle time-space synchronization

between the AirSim and Nengo simulators. To do so, we

designed a software adapter layer, which facilitates synchronized

communication between Nengo and AirSim. The adapter aids in

the reciprocal exchange of LiDAR readings and controls signals,

which encompasses the values of a car’s steering and throttle. We

coordinated these scenarios to run concurrently with a minimal

interval of 5 milliseconds, thereby imitating 200 control signals per

second. This process effectively involves alternating between the

two simulators every 5 milliseconds, during which one simulator

operates while the other remains still. The Nengo simulator was

calibrated with a physics delta time of 0.001 s to ensure an

exceedingly accurate simulation. The intercommunication between

Nengo and AirSim was made possible through the utilization

of the AirSim API, which fundamentally operates on a TCP

socket connection.

3. Results

This work’s results span numerous neuromorphic and

conventional models. The pure pursuit, Stanley, PID, and MPC

controllers were implemented both neuromorphically using

ensembles of spiking neurons and conventionally using a CPU.

Each model’s performance was evaluated using four matrices:

the percentage of completed drives (getting from the startline to

the finish regardless of collisions), the percentage of collision-

free drives, the CTE, and average velocity. The performance

of neuromorphic implementations was evaluated with varying

numbers of neurons to provide insights regarding the required

resources for adequate performance. The controllers’ performances

vary across different target velocities. We therefore further

evaluated each model with different target speeds ranging from

2 to 20 m/s. The PID and MPC performances are also critically

dependent on the value of the neuromorphic synaptic time

constants (tau; the PID features three time constants and MPC has

one). Therefore, the percentages of completed and collision-free

drives were also evaluated with different time constants, and the

results are given in the tables.

3.1. Pure-pursuit controller

The results indicate that the CPU-based model completed the

race course in all the evaluated scenarios. Our neuromorphic design

was able to successfully complete a lap in all scenarios as well, with

the exception of a few attempts to drive the vehicle at a high 20

m/s speed (Figure 4A). This result corresponds with the controller’s

reliance on ms-scale synaptic time constants. We note that at high

speeds, both neuromorphic and CPU-based implementations hit

the road’s lining walls. The results indicate that with< 100 neurons,

the neuromorphic-controlled vehicle touched the walls even at

lower speeds, portraying the importance of neuronal resources for

handling the car at high velocities (Figure 4B).

The results indicate that the RMS of the CTE is higher at

high speeds, in both CPU and neuromorphic implementations. The

CTE performance in the neuromorphic implementation converged

at 100 neurons, where additional neurons did not improve its

performance, suggesting a sweet spot for neuronal resources and

efficiency. In lower velocities (5–10 m/s) and with sufficient

>100 neurons, the neuromorphic model performed comparably

well (0.12 to 0.23 meters) with the CPU-based implementation.

At higher speeds (15–20 m/s), the CTE performance of the

neuromorphic implementation increased up to 0.66 meters

(Figure 4C). We show that with the exception of a high 20

m/s target speed, the CPU-based implementation was able to

keep its target, while the neuromorphic design was less accurate

(Figure 4D).

An important aspect of our neuromorphic design is the

specified synaptic time constant (τ ). We further tested the model’s

performance with 2 to 1,100 ms time constants, using 100 neurons

and a 15 m/s target speed configuration. We show that when τ >

10 ms the vehicle could not respond fast enough to successfully

complete the race course (Table 1). The results indicate that

the CPU-based implementation outperformed the neuromorphic

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

FIGURE 3

A top view of the FST driverless environment.

FIGURE 4

Pure-pursuit controller results. The CTE (RMS) and average velocity of experiments that were able to complete the lap. The dotted line is the average

result of the CPU implementation as a reference line. (A) Completed drives. (B) Collision-free drives. (C) Cross track error (RMS). (D) Average velocity.

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

version (time constant of 5 milliseconds, 15 m/s target speed), with

a CTE of 1.68 m compared to 2.02 m (Table 1). In both CPU and

neuromorphic implementations, the pure-pursuit model is steering

aggressively at higher speeds, resulting in high CTE. However, at

lower speeds, the neuromorphic implementation is comparable

with the CPU implementation, while being powered by merely 100

spiking neurons.

3.2. Stanley controller

Like in the pure pursuit model, our neuromorphic design of

the Stanley controller comprises a single neuron ensemble, which

TABLE 1 Results per di�erent τ values for pure-pursuit neuromorphic

implementation.

τ [ms] 5 10 >10

Completed Laps 100% 100% 0%

Collision-Free 100% 100% 0%

CTE [m] 2.02 2.03 –

resolves Equation 13 and a dedicated neuromorphic PID controller

that sets the vehicle’s target speed. As a baseline, we set the output

synaptic time constant to 10 ms.

The results indicate that both the CPU-based implementation

and our neuromorphic design were able to complete the race

course in all of the tested scenarios (Figure 5A). However, while

the CPU model completed each lap without collision with the

road’s boundaries, the neuromorphic implementation did touch the

boundaries at 20 m/s in all experiments. However, it was able to

drive without collision at 15 m/s when driven by >1,000 neurons

(Figure 5B).

As expected, CTE performance was higher at higher speeds

in both CPU and neuromorphic implementations. In a slow 5

m/s velocity, the 1000-neuron neuromorphic controller achieved

a CTE of 0.90 m, comparable to the CPU performance of 0.92

m CTE on average. Surprisingly, as more neurons were allocated

to the neuromorphic design, its performance shifted further away

from the reference CPU’s CTE (Figure 5C). However, looking

carefully at the vehicle’s diving path, we can see that with a

low number of neurons, the car drove aggressively to keep the

reference trajectory with sharp turns and Zig-Zag movement

patterns. This is due to its insufficient capacity to accurately realize

the Stanley driving equation (Equation 13). With 10,000 neurons,

FIGURE 5

Stanley controller results. The CTE (RMS) and average velocity of experiments that were able to complete the lap. The dotted line is the average result

of the CPU implementation as a reference line. (A) Completed drives. (B) Collision-free drives. (C) Cross Track Error (RMS). (D) Average velocity.

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

FIGURE 6

Zig-Zag patterns introduced in the neuromorphic Stanley controller with 2,500 neurons.

TABLE 2 Results per di�erent τ values for Stanley neuromorphic

implementation.

τ [ms] 5 10 50 >50

Completed Laps 100% 100% 100% 0%

Collision-Free 100% 100% 10% 0%

CTE [m] 1.72 1.39 3.23 –

the vehicle driving path was much smoother, looking similar to the

CPU implementation. However, we observed some drift from the

reference trajectory. From the derived trajectories we conclude that

with 2,500 neurons, the controller could drive the vehicle relatively

smoothly with small Zig-Zag patterns (Figure 6).

Our results suggest that both CPU and neuromorphic-based

implementations were generally able to maintain their target speed.

However, our neuromorphic implementations were slightly less

accurate. With >1,000 neurons, the vehicle was able to maintain

speeds of 14 and 19 m/s on average, with 15 and 20 m/s target

speeds, respectively (Figure 5D).

We further tested the effect of the synaptic time constant τ

on the model’s performance, evaluated on 1000 neurons and a 15

m/s target speed configuration. We show that in a neuromorphic

controller with a > 50 ms τ , the controlled vehicle could not

complete the race course successfully, indicating the importance of

fast response time in neuromorphic systems. We show that while

with a time constant of 50 ms, 90% of the drives were collision-free,

with a time constant of≤ 10m, 100% of the drives were absent from

collisions (Table 2). Overall, the performance of the neuromorphic

Stanely controller was good but less accurate at 20 m/s, requiring at

least 2,500 neurons to drive smoothly.

3.3. PID controller

Our controller is comprised of two PID constructs, one

responsible for steering and the other for speed. Our results show

that with > 50 neurons per neuron ensemble, our neuromorphic

PID controllers were sufficient to allow the vehicle to complete

all drives with no collisions in the 5 to 20 m/s velocity range

(Figure 7A). Our > 100 neurons configuration outperforms the

CPU-based controller at a high 20 m/s velocity, perhaps suggesting

a need to further optimize the prescribed PID gain coefficients

(Figure 7B). With < 100 neurons our neuromorphic PID was not

able to successfully complete a lap, even at a 5 m/s target speed.

This is due to its limited capacity to represent small steering

and throttle values to initiate movement (Figure 7D). We show

that the CTE performance of the CPU-based PID implementation

was high (with the exception of the 20 m/s target speed). The

performance of the neuromorphic implementation plateaued with

>100 neurons per ensemble, suggesting a more fundamental limit

to the model’s performance, probably the time-limiting synaptic

constraints imposed on the computing of the PID’s derivative

and integral terms (Figure 7C). When considering target speed

maintenance, the 500 neurons model was the closest to the 5 m/s

target speed with a 4.8 m/s velocity, and the 100 neurons model

was the closest to the 10, 15, and 20 m/s target speeds, with 10.12,

14.91, and 19.38 m/s velocities, respectively (Figure 7D).

We further tested our neuromorphic design with a 100 neurons

steering PID controller and various synaptic time constants (for

each of the proportional τp, integral τi, and derivative τd neural

ensembles), at a 15 m/s target speed. Our results show that the

lower these time constants get, the better the vehicle performance

is, where with < 100 ms time constant, all drives were completed

successfully. Results are summarized in Tables 3–5.

3.4. MPC Controller

To evaluate a neuromorphic MPC, we set the steering KBM-

based MPC model to neuromorphically optimize the cost function

(Equation 14), allowing simultaneous control of both steering and

speed. Thus, in contrast to the previously implemented models,

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

FIGURE 7

PID controller results. The CTE (RMS) and average velocity of experiments that were able to complete the lap. The dotted line is the average result of

the CPU implementation as a reference line. (A) Completed drives. (B) Collision-free drives. (C) Cross Track Error (RMS). (D) Average velocity.

MPC controls the vehicle’s velocity by considering several driving

aspects. For example, the controller might reduce the vehicle

velocity to allow for more accurate turns. With the exception of

one drive, our neuromorphicMPCmodels were able to successfully

complete all drives in the 5 to 20 m/s target velocity range

(Figure 8A). However, at a high 20 m/s speed, the neuromorphic

controllers failed to complete the race course without hitting

the road’s boundaries (Figure 8B). The CTE performance of the

neuromorphic implementation was comparable with its CPU

counterpart for all speeds with the exception of 20 m/s (Figure 8C).

The neuromorphic and CPU-based implementations were able

to maintain 4.63-4.74 m/s, 9-9.2 m/s, 13.69-13.91 m/s speeds on

average, at target speeds of 5, 10, and 15 m/s, respectively. However,

at 20 m/s, the CPU was able to maintain 18.87 m/s on average,

while the neuromorphic implementation was able to only maintain

a speed of 15.54-17.17 m/s on average (Figure 8D).

We further tested the effect of the synaptic time constants on

the neuromorphic model performance using a 100-neuron, 15 m/s

configuration. With > 300 ms time constants, our neuromorphic

model could not complete the race course successfully. With time

constants of 10, 50, and 100 ms we measured the lowest CTE values

of 1.04. Results are summarized in Table 6.

TABLE 3 Results per di�erent τp values for the steering PID

neuromorphic implementation.

τp [ms] 5 10 50 100 300

Completed Laps (rounded) 100% 100% 100% 100% 89%

Collision-Free (rounded) 59% 56% 68% 48% 34%

CTE [m] 2.66 2.62 2.54 2.65 3.18

τp [ms] 500 700 900 1100

Completed Laps (rounded) 89% 77% 69% 52%

Collision-Free (rounded) 25% 0% 0% 0%

CTE [m] 3.46 3.58 3.77 3.81

Uniquely, we were able to implement an MPC-hybrid model

by realizing the mathematical computation on a CPU and using

the neuromorphic model as the optimizer that chooses the policy.

This hybrid model shows how the advantages of two processing

units could be integrated: a regular CPU for accurate numerical

calculations and a neuromorphic processor for low power and

continuous optimization, without an internal clock. We show

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

that the MPC-hybrid implementation performs well even with

10 neurons per ensemble (with the exception of a high 20 m/s

target speed).

4. Discussion

The results of our experiments demonstrate the potential of

neuromorphic control in the context of autonomous driving. We

TABLE 4 Results per di�erent τi values for the steering PID neuromorphic

implementation.

τi [ms] 5 10 50 100 300

Completed Laps (rounded) 84% 80% 89% 85% 86%

Collision-Free (rounded) 36% 30% 30% 30% 36%

CTE [m] 2.98 2.98 3.11 3.05 3.06

τi [ms] 500 700 900 1100

Completed Laps (rounded) 85% 90% 88% 88%

Collision-Free (rounded) 36% 32% 33% 32%

CTE [m] 3.06 3.11 3.13 3.06

showed that the neuromorphic implementations of the Pure-

pursuit, Stanley, PID, and MPC controllers were able to perform

competitively with their CPU-based counterparts, particularly at

lower speeds. This highlights the viability of using neuromorphic

control systems for autonomous driving applications, offering

energy-efficient alternatives to traditional methods.

One key finding from our experiments is the importance of

tuning parameters, such as the synaptic time constant and the

TABLE 5 Results per di�erent τd values for the steering PID

neuromorphic implementation.

τd [ms] 5 10 50 100 300

Completed Laps (rounded) 79% 77% 91% 100% 100%

Collision-Free (rounded) 0% 0% 0% 43% 69%

CTE [m] 3.97 3.91 3.64 2.86 2.46

τd [ms] 500 700 900 1100

Completed Laps (rounded) 100% 96% 88% 44%

Collision-Free (rounded) 63% 44% 35% 33%

CTE [m] 2.52 2.74 3.12 2.28

FIGURE 8

MPC controller results. The CTE (RMS) and average velocity of experiments that were able to complete the lap. The dotted line is the average result

of the CPU implementation as a reference line. (A) Completed drives. (B) Collision-free drives. (C) Cross track error (RMS). (D) Average velocity.

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

TABLE 6 Results per di�erent τp values for steering MPC neuromorphic

implementation.

τ [ms] 5 10 50 100 300 >300

Completed Laps 100% 100% 100% 100% 100% 0%

Collision-Free 100% 100% 100% 100% 100% 0%

CTE [m] 1.06 1.04 1.04 1.04 1.10 –

number of neurons to achieve optimal performance, suggesting a

sweet spot for neuronal resources and efficiency. For example, our

results show that while the neuromorphic Pure-pursuit controller’s

performance converges at 100 neurons, Stanley controller requires

more than 1000 neurons to converge. PID and MPC controllers

require lower neuronal resources (10 neurons per ensemble) but

are prone to time-constant adjustments. Additionally, the results

indicate that the choice of synaptic time constant can significantly

impact the controller’s ability to respond quickly and accurately

to environmental changes. All neuromorphic models performed

well within the 0 to 15 m/s target velocity range, wherein higher

velocities their performances degrade. Another important aspect of

our research is the use of hybrid neuromorphic-CPU controllers,

such as theMPC implementation. These hybrid controllers leverage

the strengths of both neuromorphic and traditional computing

systems, providing a promising avenue for future research in the

field of autonomous driving.

Despite the promising results, there are several areas that

warrant further investigation. Our study highlights the limitations

of neuromorphic implementations, particularly at higher speeds.

With high target velocities, the performance of the neuromorphic

controllers tends to degrade faster than the CPU implementation,

with higher cross-track errors and less accurate velocity control.

This result is not surprising when rate-coded neuromorphic

representation is used. Therefore, architectural insights from

conventional neural circuits (Tian et al., 2023) or more advanced

neuromorphic designs, which incorporate other representation

modalities, such as time to spike, should be explored. The

incorporation of further feedback from visual sensing (Shi et al.,

2023b) and other sensing modalities (Shi et al., 2023a) could

be used to improve the car’s ability to adaptively respond the

environmental changes.

The derivation of real-life vehicle performance might highlight

additional concerns, such as hardware compatibility and safety

concerns. Furthermore, the performance of the models on real

neuromorphic hardware and physical cars could assess their

scalability and power performance. Mainly, hardware deployment

is highly dependent on software-hardware compliance. The

neuronal architecture could be further optimized for the specific

hardware optimization, which was recently demonstrated using

various learning strategies (Liu et al., 2023b; Wang et al., 2023).

In conclusion, our study provides insights into the potential of

neuromorphic control for autonomous driving applications. The

competitive performance of the neuromorphic implementations

compared to their CPU-based counterparts demonstrates the

promise of this approach. Future research should focus on

addressing the limitations of neuromorphic controllers at high

speeds and exploring the potential of hybrid neuromorphic-CPU

systems for improved performance and energy efficiency.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Funding

This research was funded by the Open University of Israel

research grant.

Acknowledgments

The authors would like to thank the members of Neuro and

Biomorphic engineering Lab of the Open University of Israel for

the fruitful discussions.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Halaly and Ezra Tsur 10.3389/fnbot.2023.1234962

References

Alcala, E., Puig, V., Quevedo, J., Escobet, T., and Comasolivas, R. (2018).
Autonomous vehicle control using a kinematic lyapunov-based technique with
lqr-lmi tuning. Control Eng. Pract. 73, 1–12. doi: 10.1016/j.conengprac.2017.
12.004

Arkin, R. C. (1990). Integrating behavioral, perceptual, and world knowledge
in reactive navigation. Rob. Auton. Syst. 6, 105–122. doi: 10.1016/S0921-8890(05)
80031-4

Artu nedo, A., Godoy, J., and Villagra, J. (2018). A primitive comparison for traffic-
free path planning. IEEE Access 6, 28801–28817. doi: 10.1109/ACCESS.2018.2839884

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D.,
et al. (2014). Nengo: a Python tool for building large-scale functional brain models.
Front. Neuroinform. 7, 1–13. doi: 10.3389/fninf.2013.00048

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause, A. (2017). Safe model-
based reinforcement learning with stability guarantees. Adv. Neural Inf. Process. Syst.
30.

Boahen, K. (2017). A neuromorph’s prospectus. Comp. Sci. Eng. 19, 14–28.
doi: 10.1109/MCSE.2017.33

Boggs, P. T., and Tolle, J. W. (1995). Sequential quadratic programming. Acta
numerica 4, 1–51. doi: 10.1017/S0962492900002518

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input. Biol. Cybernet. 95, 1–19. doi: 10.1007/s00422-006-0068-6

Cohen Duwek, H., and Ezra Tsur, E. (2021). Biologically plausible spiking neural
networks for perceptual filling-in. In Proceedings of the Annual Meeting of the Cognitive
Science Society, volume 43.

Cohen-Duwek, H., Slovin, H., and Ezra Tsur, E. (2022). Computational modeling
of color perception with biologically plausible spiking neural networks. PLoS Comput.
Biol. 18, e1010648. doi: 10.1371/journal.pcbi.1010648

Coulter, R. C. (1992). “Implementation of the pure pursuit path tracking algorithm,”
in Technical Report CMU-RI-TR-92-01. Pittsburgh, PA: Carnegie Mellon University.

DeWolf, T. (2021). Spiking neural networks take control. Sci. Robot. 6, eabk3268.
doi: 10.1126/scirobotics.abk3268

DeWolf, T., Jaworski, P., and Eliasmith, C. (2020). Nengo and low-power
ai hardware for robust, embedded neurorobotics. Front. Neurorobot. 14:568359.
doi: 10.3389/fnbot.2020.568359

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. Cambridge, MA: MIT Press.

Fischl, K. D., Andreou, A. G., Stewart, T. C., and Fair, K. (2018). “Implementation
of the neural engineering framework on the truenorth neurosynaptic system,” in 2018
IEEE Biomedical Circuits and Systems Conference (BioCAS). Cleveland: IEEE, 1–4.
doi: 10.1109/BIOCAS.2018.8584720

Gawron, J. H., Keoleian, G. A., De Kleine, R. D., Wallington, T. J., and Kim, H.
C. (2018). Life cycle assessment of connected and automated vehicles: sensing and
computing subsystem and vehicle level effects. Environm. Sci. Technol. 52, 3249–3256.
doi: 10.1021/acs.est.7b04576

Hazan, A., and Ezra Tsur, E. (2022). Neuromorphic neural engineering framework-
inspired online continuous learning with analog circuitry. Appl. Sci. 12, 4528.
doi: 10.3390/app12094528

Hoffmann, G. M., Tomlin, C. J., Montemerlo, M., and Thrun, S. (2007).
“Autonomous automobile trajectory tracking for off-road driving: controller design,
experimental validation and racing,” in 2007 American Control Conference. New York:
IEEE, 2296–2301. doi: 10.1109/ACC.2007.4282788

Huang, X., Hong, S., Hofmann, A., and Williams, B. C. (2019a). Online risk-
bounded motion planning for autonomous vehicles in dynamic environments. Proc.
Int. Conf. Autom. Plan. Sched. 29, 214–222. doi: 10.1609/icaps.v29i1.3479

Huang, Y., Ding, H., Zhang, Y., Wang, H., Cao, D., Xu, N., et al. (2019b). A motion
planning and tracking framework for autonomous vehicles based on artificial potential
field elaborated resistance network approach. IEEE Trans. Ind. Electron. 67, 1376–1386.
doi: 10.1109/TIE.2019.2898599

Ji, C., Li, Y., Fan, J., and Lan, S. (2019). A novel simplification method for
3d geometric point cloud based on the importance of point. IEEE Access 7,
129029–129042. doi: 10.1109/ACCESS.2019.2939684

Kurbiel, T., and Khaleghian, S. (2017). Training of deep neural networks
based on distance measures using rmsprop. arXiv [Preprint]. arXiv:1708.01911.
doi: 10.48550/arXiv.1708.01911

Li, L., Song, J., Kong, L., and Huang, Q. (2009). Vehicle velocity estimation
for real-time dynamic stability control. Int. J. Automot. Technol. 10, 675–685.
doi: 10.1007/s12239-009-0080-7

Lin, C.-K., Wild, A., Chinya, G. N., Cao, Y., Davies, M., Lavery, D. M., et al.
(2018). Programming spiking neural networks on intel’s loihi. Computer 51, 52–61.
doi: 10.1109/MC.2018.157113521

Liu, X., Jiang, W., Su, H., Qi, W., and Ge, S. S. (2022). A control strategy of robot
eye-head coordinated gaze behavior achieved for minimized neural transmission noise.
IEEE/ASME Trans. Mechatron. 28, 956–966. doi: 10.1109/TMECH.2022.3210592

Liu, X., Li, X., Su, H., Zhao, Y., and Ge, S. S. (2023a). The opening workspace control
strategy of a novel manipulator-driven emission source microscopy system. ISA Trans.
134, 573–587. doi: 10.1016/j.isatra.2022.09.002

Liu, Z., Yang, D., Wang, Y., Lu, M., and Li, R. (2023b). Egnn: Graph structure
learning based on evolutionary computation helps more in graph neural networks.
Appl. Soft Comput. 135, 110040. doi: 10.1016/j.asoc.2023.110040

Morales, J., Martínez, J. L., Martínez, M. A., and Mandow, A. (2009). Pure-pursuit
reactive path tracking for nonholonomic mobile robots with a 2d laser scanner.
EURASIP J. Adv. Signal Process. 2009, 1–10. doi: 10.1155/2009/935237

Mundy, A., Knight, J., Stewart, T. C., and Furber, S. (2015). “An efficient spinnaker
implementation of the neural engineering framework,” in 2015 International Joint
Conference on Neural Networks (IJCNN). Killarney: IEEE, 1–8. IEEE.

Polack, P., Altché, F., d’Andréa Novel, B., and de La Fortelle, A. (2017). “The
kinematic bicycle model: A consistent model for planning feasible trajectories for
autonomous vehicles?,” in 2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles:
IEEE, 812–818.

Qureshi, A. H., Simeonov, A., Bency, M. J., and Yip, M. C. (2019). “Motion planning
networks,” in 2019 International Conference on Robotics and Automation (ICRA),
2118–2124.

Samak, C. V., Samak, T. V., and Kandhasamy, S. (2021). “Control strategies for
autonomous vehicles,” inAutonomous Driving and Advanced Driver-Assistance Systems
(ADAS). Boca Raton, FL: CRC Press, 37–86. doi: 10.1201/9781003048381-3

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2017). “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service Robotics: Results
of the 11th International Conference (Springer International Publishing), 621–635.

Shalumov, A., Halaly, R., and Tsur, E. E. (2021). LiDAR-driven spiking neural
network for collision avoidance in autonomous driving. Bioinspirat. Biomimet. 16,
066016. doi: 10.1088/1748-3190/ac290c

Shi, Y., Li, H., Fu, X., Luan, R., Wang, Y., Wang, N., et al. (2023a). Self-
powered difunctional sensors based on sliding contact-electrification and tribovoltaic
effects for pneumatic monitoring and controlling. Nano Energy 110, 108339.
doi: 10.1016/j.nanoen.2023.108339

Shi, Y., Li, L., Yang, J., Wang, Y., and Hao, S. (2023b). Center-based transfer feature
learning with classifier adaptation for surface defect recognition. Mech. Syst. Signal
Process. 188, 110001. doi: 10.1016/j.ymssp.2022.110001

Sun, C., Zhang, X., Zhou, Q., and Tian, Y. (2019). A model predictive controller
with switched tracking error for autonomous vehicle path tracking. IEEE Access 7,
53103–53114. doi: 10.1109/ACCESS.2019.2912094

Tian, C., Xu, Z., Wang, L., and Liu, Y. (2023). Arc fault detection using
artificial intelligence: Challenges and benefits.Mathemat. Biosci. Eng. 20, 12404–12432.
doi: 10.3934/mbe.2023552

Tsur, E. (2021). Neuromorphic Engineering: The Scientist’s, Algorithm Designer’s and
Computer Architect’s Perspectives on Brain-inspired Computing. Boca Raton: CRC Press.
doi: 10.1201/9781003143499

Tsur, E. E., and Rivlin-Etzion, M. (2020). Neuromorphic implementation
of motion detection using oscillation interference. Neurocomputing 374, 54–63.
doi: 10.1016/j.neucom.2019.09.072

Wang, Y., Liu, Z., Xu, J., and Yan,W. (2023). Heterogeneous network representation
learning approach for ethereum identity identification. IEEE Trans. Comput. Soc. Sys.
10, 890–899. doi: 10.1109/TCSS.2022.3164719

Zadok, D., Hirshberg, T., Biran, A., Radinsky, K., and Kapoor, A. (2019).
Explorations and lessons learned in building an autonomous formula SAE car from
simulations. arXiv [Preprint]. arXiv:1905.05940.

Zaidel, Y., Shalumov, A., Volinski, A., Supic, L., and Ezra Tsur, E. (2021).
Neuromorphic nef-based inverse kinematics and pid control. Front. Neurorobot. 15,
631159. doi: 10.3389/fnbot.2021.631159

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1234962
https://doi.org/10.1016/j.conengprac.2017.12.004
https://doi.org/10.1016/S0921-8890(05)80031-4
https://doi.org/10.1109/ACCESS.2018.2839884
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/MCSE.2017.33
https://doi.org/10.1017/S0962492900002518
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1371/journal.pcbi.1010648
https://doi.org/10.1126/scirobotics.abk3268
https://doi.org/10.3389/fnbot.2020.568359
https://doi.org/10.1109/BIOCAS.2018.8584720
https://doi.org/10.1021/acs.est.7b04576
https://doi.org/10.3390/app12094528
https://doi.org/10.1109/ACC.2007.4282788
https://doi.org/10.1609/icaps.v29i1.3479
https://doi.org/10.1109/TIE.2019.2898599
https://doi.org/10.1109/ACCESS.2019.2939684
https://doi.org/10.48550/arXiv.1708.01911
https://doi.org/10.1007/s12239-009-0080-7
https://doi.org/10.1109/MC.2018.157113521
https://doi.org/10.1109/TMECH.2022.3210592
https://doi.org/10.1016/j.isatra.2022.09.002
https://doi.org/10.1016/j.asoc.2023.110040
https://doi.org/10.1155/2009/935237
https://doi.org/10.1201/9781003048381-3
https://doi.org/10.1088/1748-3190/ac290c
https://doi.org/10.1016/j.nanoen.2023.108339
https://doi.org/10.1016/j.ymssp.2022.110001
https://doi.org/10.1109/ACCESS.2019.2912094
https://doi.org/10.3934/mbe.2023552
https://doi.org/10.1201/9781003143499
https://doi.org/10.1016/j.neucom.2019.09.072
https://doi.org/10.1109/TCSS.2022.3164719
https://doi.org/10.3389/fnbot.2021.631159
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Autonomous driving controllers with neuromorphic spiking neural networks
	1. Introduction
	2. Methods
	2.1. Neural engineering framework
	2.1.1. Principle 1 - representation
	2.1.2. Principle 2 - transformation
	2.1.3. Principle 3 - dynamics

	2.2. The kinematic bicycle model
	2.3. Path tracking controllers
	2.3.1. PID controller
	2.3.2. Pure-pursuit controller
	2.3.3. Stanley controller
	2.3.4. MPC controller

	2.4. Simulation Environment

	3. Results
	3.1. Pure-pursuit controller
	3.2. Stanley controller
	3.3. PID controller
	3.4. MPC Controller

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


