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In the field of Intelligent Tra�c Systems (ITS), vehicle recognition is a hot research

topic. Although di�erent types of vehicles can already be recognized, further

identification and statistics of new energy and fuel vehicles in unknown and

complex environments remain a challenging task. In this paper, we propose a

New Energy Vehicle Recognition and Tra�c Flow Statistics (NEVTS) approach.

Specifically, we first utilized the You Only Look Once v5 (YOLOv5) algorithm to

detect vehicles in the target area, in which we applied Task-Specific Context

Decoupling (TSCODE) to decouple the prediction and classification tasks of

YOLOv5. This approach significantly enhanced the performance of vehicle

detection. Then, track them upon detection. Finally, we use the YOLOv5 algorithm

to locate and classify the color of license plates. Green license plates indicate

new energy vehicles, while non-green license plates indicate fuel vehicles, which

can accurately and e�ciently calculate the number of new energy vehicles. The

e�ectiveness of the proposed NEVTS in recognizing new energy vehicles and

tra�c flow statistics is demonstrated by experimental results. Not only can NEVTS

be applied to the recognition of new energy vehicles and tra�c flow statistics,

but it can also be further employed for tra�c timing pattern extraction and tra�c

situation monitoring and management.

KEYWORDS

Intelligent Tra�c Systems, new energy vehicle, tra�c flow statistics, detect vehicles,

license plate

1. Introduction

New energy vehicles significantly reduce tailpipe emissions by using electricity or other

renewable resources to replace the fossil fuels in traditional vehicles, thereby contributing

to the achievement of carbon reduction targets. Therefore, accurate monitoring and

recognition of new energy vehicles are particularly important and a hot research topic of ITS

(Zhao, 2023). In this paper, our objective is to address the issue of recognizing new energy

vehicles and to conduct traffic flow statistics, using computer vision-based object detection

techniques.

Traditional traffic flow statistics methods, such as magnetic coils and microwaves,

have limitations in accuracy and applicability. Magnetic coil detection methods can easily

lead to false positives when vehicles are closely spaced, and cannot identify vehicle types.

In addition, magnetic coil equipment is susceptible to external environmental factors

(Hata et al., 2019) such as road construction and weather changes, further reducing

detection accuracy. Microwave detection experiences a certain degree of precision loss

in congested traffic or when large vehicles are present, leading to inaccurate data.

Moreover, installing microwave detection equipment is difficult and expensive (Ho and

Chung, 2016), requiring destructive road modifications and increasing equipment and

maintenance costs. Computer vision-based statistical methods can greatly improve efficiency

and reduce costs. In recent years, there has been a significant proliferation of deep

learning algorithms and their applications across diverse domains. For instance, in the

field of object detection, where several algorithms are based on self-powered sensors
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(Huang et al., 2022; Yun et al., 2022b) and real-time detection (Yun

et al., 2022a). Additionally, some methods apply object detection

techniques to vehicle recognition and traffic flow statistics. In 2019,

a two-stage Faster Region-based Convolutional Neural Network

(Faster R-CNN) algorithm for vehicle recognition, represents

decent detection results (Zhao and Li, 2019). However, the real-

time requirements were not satisfied due to the sluggishness

of the algorithm’s detection speed. In 2020, a laser radar

system combined with color camera technology was proposed

to recognize vehicle objects (Yu et al., 2020). The cost is also

very high because the algorithm needs lidar systems. Traditional

methods can be used for traffic flow statistics, but there are

limitations in vehicle identification and statistics. For example,

magnetic coils and microwave detection methods cannot identify

vehicle types and are susceptible to external environmental

factors. In addition, these methods are expensive, requiring road

modifications and maintenance. Computer vision-based methods

for vehicle detection have addressed these limitations. However,

current methods can only recognize different vehicle types, without

further distinguishing and statistics on new energy vehicles and

fuel vehicles. To solve these problems, we propose the New

Energy Vehicles Recognition and Traffic Flow Statistics approach

(NEVTS). Firstly, the vehicles are detected, and then their license

plate colors are classified. Finally, the vehicles are identified as

new energy vehicles or fuel vehicles based on their license plate

colors, with green license plates representing new energy vehicles

and non-green ones representing traditional fuel vehicles.

The overall architecture of the NEVTS model is depicted

in Figure 1, which comprises three modules: vehicle detection

module, vehicle tracking module, and license plate colors detection

and classification module. The vehicle detection module is

responsible for vehicle identification. Once a vehicle is identified,

its position information is immediately transmitted to the vehicle

tracking module. The vehicle tracking module tracks the vehicle

based on the received information, then establishes a vehicle

connection between two frames of the video. The license plate

colors detection and classification module locates and detects the

license plate color when a collision occurs between the vehicle and

a virtual line segment, green for new energy vehicles. Then, traffic

flow is calculated based on the vehicle’s trajectory and position. This

method enablesmore accurate and efficient statistics for new energy

vehicles, real-time performance, and recognition efficiency.

Overall, our contributions are as follows:

• We improve vehicle detection and localization performance

by decoupling YOLOv5 prediction and classification tasks.

• We proposed an approach that, based on the recognition of

vehicle type, further detects and classifies the color of the

vehicle’s license plate to achieve the recognition of new energy

vehicles.

• Based on NEVTS, we perform statistics on the flow of

new energy vehicles in different scenarios, and experiments

demonstrate the real-time performance and accuracy of our

method.

The rest of this paper is organized as follows. Section

2 introduces the exploration of computer vision-based object

detection and related vehicle tracking in related work. Following

that, Section 3 outlines the proposed NEVTS approach in this

study. In Section 4, two datasets and the obtained experimental

results for new energy vehicle traffic flow statistics are presented.

A conclusion is drawn in Section 5.

2. Related work

To achieve real-time tracking of vehicles and traffic flow

counting, we have explored computer vision-based object detection

algorithms and related vehicle tracking algorithms.

2.1. Object detection analysis

The classification of existing computer vision-based object

detection algorithms primarily falls into two categories (Arya et al.,

2021): two-stage detection algorithms, such as R-CNN, SPP-Net,

Fast R-CNN, Faster R-CNN, and FPN, and one-stage detection

algorithms, including the YOLO series, SSD, and RetinaNet.

Selective search is used by R-CNN (Girshick et al., 2014)

to generate 2000 candidate boxes that are most likely to

contain objects and then extract features from these candidate

boxes. However, because R-CNN extracts deep features from

each candidate box separately, so it has a slow inference

speed. To mitigate this concern, the initial step involves

extracting comprehensive image features through feature sharing.

Subsequently, the spatial pyramid pooling (SPP) (He et al., 2015)

operation, commonly referred to as SPP-Net, is used. Fast R-

CNN (Girshick, 2015) combines the characteristics of R-CNN and

SPP-Net by initially extracting profound image features, followed

by the utilization of region of interest (RoI) pooling operation.

In 2015, the Faster R-CNN algorithm (Ren et al., 2015) was

proposed, which uses the region proposal network (RPN) for

the first time to replace the selective search algorithm. To cope

with changes in object scale, the FPN detection algorithm (Lin

et al., 2017a), proposed subsequently, enhances the capabilities

of Faster R-CNN by introducing multiple layers of features and

feature fusion mechanisms. Compared with two-stage algorithms,

which require generating region proposals, single-stage algorithms

directly regress the position and class of the target. As a result,

they offer faster speed and a simpler structure. In 2016, the

YOLOv1 algorithm (Redmon et al., 2016) was initially suggested by

inputting the object picture into the neural network to acquire the

object’s bounding box and classification results directly. In 2017, the

YOLOv2 algorithm (Redmon and Farhadi, 2017) was introduced

to tackle the problem of weak detection precision in YOLOv1.

This was done by including Batch Normalization (BN) (Ioffe and

Szegedy, 2015) post each convolutional layer, utilizing multi-scale

training methods for enhanced object detection, and refining a

high-resolution dataset with a pre-trained Convolutional Neural

Network (CNN). The YOLOv3 algorithm (Redmon and Farhadi,

2018) was brought in 2018. It incorporates the residual module

and 9 anchor boxes to facilitate detection while maintaining speed

and enhancing the detection precision. In 2020, the YOLOv4

algorithm (Bochkovskiy et al., 2020) is proposed. It uses a better

Mish (Misra, 2019) activation function and introduces the SPP

module to further improve detection. The YOLOv5 algorithm
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FIGURE 1

The overall framework of NEVTS. It contains three parts: (1) vehicle detection module, (2) vehicle tracking module, (3) license plate colors detection

and classification module.

was proposed almost simultaneously with the YOLOv4 algorithm,

which introduces mosaic data enhancement, adaptive anchor,

and focus structure to further improve detection accuracy. The

YOLOv5 has the feature of a smaller and simpler model. YOLOvX

(Ge et al., 2021) introduces a decoupled detection head, but the

inputs for the regression and localization tasks in the decoupled

head still come from a single head. YOLOv7 (Wang et al., 2023)

proposes a training method for an auxiliary head, which aims to

improve accuracy by increasing training costs. YOLOv8 uses an

anchor-free mechanism and improves the decoupled head, but the

inputs for the decoupled head still come from a single head. In

2016, the SSD algorithm (Liu et al., 2016) was proposed, which

leverages feature maps from various layers to detect objects of

diverse scales. Feature maps with higher resolutions in the front

detect smaller objects, while feature maps with lower resolutions

in the back detect larger objects. In 2017, Lin et al. (Lin et al.,

2017b) proposed RetinaNet, which introduces a focal loss function

to reconstruct the standard cross-entropy loss function, making the

detector more focused on classifying difficult samples during the

training process.

2.2. Object tracking analysis

According to the quantity of tracked objects, object tracking

methods are categorized into two types, single-object tracking, and

multi-object tracking (Deori and Thounaojam, 2014). Single-object

tracking refers to detecting a single object in successive frames and

then predicting its size and position in subsequent frames. Typical

single-object tracking algorithms include Mean Shift (Comaniciu

and Meer, 2002), Tracking-Learning-Detection (TLD) (Kalal et al.,

2011), Kernelized Correlation Filter (KCF) (Henriques et al., 2014),

etc. Multi-object tracking tracks the size and position of multiple

objects. Typical multi-object tracking algorithms include SORT

(Bewley et al., 2016) and DeepSORT (Wojke et al., 2017), etc.

To achieve temporal tracking of vehicles, a majority of vehicle

tracking methods are based on a fundamental principle of judging

whether two vehicles in adjacent frames are identical by utilizing

spatial distance (Koller et al., 1992; Deori and Thounaojam,

2014). These methods can be classified into the following four

categories:

• Model-based methods: The core of this method is the creation

of an accurate two-dimensional model of known vehicle

objects. Then, the acquired images are aligned with this model

(Koller et al., 1992). The approach is not suitable for real-

time processing due to its computational complexity, which

requires a large amount of computation.

• Region-based methods: This method tracks vehicles in the

time domain. The detection module identifies individual

pixel-connected blocks representing the vehicles (Deori and

Thounaojam, 2014). This approach performs better in sparse

vehicle scenarios.

• Dynamic contour-based method: First, the vehicle contour

is drawn. It is then updated in the following frames to

accomplish the goal of tracking (Deori and Thounaojam,

2014). Nonetheless, the effectiveness of the approach

deteriorates significantly in crowded road conditions. This

is because shadows between vehicles turn several adjacent

connection blocks into a single block. This results in missed

detections and false positives.

• Feature-based methods: Vehicle features are treated as

minimal tracking units, including points, lines, and curves

(Deori and Thounaojam, 2014). The advantage of this method

is that even if the vehicles block each other, a large part of their

features is still visible.

In this paper, the DeepSORT algorithm is used for vehicle

tracking. It belongs to Feature-based methods.

3. Method

A detailed presentation of the NEVTS is provided in this

section. As shown in Figure 2, three constituents make up the

approach: vehicle detection module, vehicle tracking module, and

license plate colors detection and classification module. First,

the vehicle detection module monitors the video image frame

to identify the presence of vehicles using an improved YOLOv5

algorithm. Then, the vehicle tracking module receives the vehicle

location information, confidence, and category information (car,

bus, truck) from the vehicle detection module to enable real-

time vehicle tracking through the DeepSORT algorithm. Finally,
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FIGURE 2

The process of NEVTS. EV_Count represents the number of new

energy vehicles. GAS_Count represents the number of fuel vehicles.

When the detected license plate is green, the EV_Count number is

increased by one, non-green GAS_Count number is increased by

one.

When the tracked vehicle intersects with the predefined virtual line

segment, the YOLOv5 algorithm is used to detect the license plate

position and color, and distinguish new energy vehicles and fuel

vehicles, followed by statistics of traffic flow.

We obtain videos from cameras under various weather

conditions and decode them. Subsequently, we segment the

detection regions in the videos. As shown in Figure 3, the detection

regions are predetermined. The camera angles are approximately

the same and the captured image scenes are very similar. In case

of changes in the angle of the video, we manually adjust the

corresponding detection regions (non-red regions). The detection

video images are applied with a mask, where the red region

mainly comprises areas far from the camera. To reduce processing

time and improve recognition accuracy, we only detect and track

vehicles in non-red areas.

3.1. Vehicle detection module

To provide vehicle location and confidence information to the

vehicle tracking module, we first detect the vehicles within the

image monitor areas. Then, we label the detected vehicles. Finally,

we obtain the location and confidence of the detected vehicles.

To achieve more accurate positioning of vehicles in crowded

conditions, we apply TSCODE (Zhuang et al., 2023) to decouple

the prediction and classification tasks of YOLOv5. The algorithm is

enhanced to improve vehicle detection performance.

As shown in Figure 4, when detecting vehicles, features are

extracted on the input images using a feature extraction network.

If there are C classes, dividing the image into grid cells of size

S×S results in (5 + C) attribute values for each grid cell (Zhang

et al., 2022). The first four values represent the coordinates of

the detection box, the fifth value represents the objectness score,

and the remaining values represent the confidence scores of the C

classes. We set the confidence threshold to 0.75, so only boxes with

confidence scores > 0.75 and their corresponding class names are

displayed. However, there may be the issue of multiple detection

boxes for the same object. To address this issue, we use Non-

Maximum Suppression (NMS) (Neubeck and Van Gool, 2006).

First, the box with the highest confidence score is selected. Next,

remove any overlapping boxes with an Intersection-Over-Union

(IOU) threshold >0.25. This process ensures that each object has

only one detection box.

Figure 5 shows that the YOLOv5model comprises of four main

constituents, namely input, neck, backbone, and detect. We have

improved the Detect component. TSCODE is applied to decouple

Detect.

3.1.1. Decouple Detect
In the domain of object detection, the primary sub-tasks are

classification and localization, which show different preferences for

feature context (Zhuang et al., 2023). The classification task has

a coarser granularity and prioritizes semantic information, while

localization has a finer granularity and seeks to capture boundary

or texture features. The YOLOv5 algorithm uses a separation

header to learn different feature contexts for each task, but the

input features of these heads still come from the same layer,

which leads to an imperfect balance between classification and

localization. The TSCODE generates feature codes that are spatially

rough but semantically strong for the classification branch. For the

localization branch, high-resolution feature mapping with more

edge information is provided to better regress object boundaries.

Originally, YOLOv5 has only three output layers: P3, P4, and P5. To

truly decouple the detection process, two new output layers, P2 and

P6, are introduced. Every three adjacent layers form a new head.

For example, P3, P4, and P5 form one Head.

Leverages the feature maps from two levels, i.e., Pl and Pl+1,

to generate a semantically rich feature map for classification. First,

downsample Pl by a factor of 2 and then concatenate it with Pl+1

to generate the final Gcls
l
.Finally, feed Gcls

l
into the classification

function. The Gcls
l

can be written as

Gcls
l = Concat

(

DConv (Pl) , Pl+1

)

(1)

where Concat(·) and DConv(·) represent concatenation and a

shared downsampling convolutional layer.

For computational efficiency, adopt a simplistic U-Net to fuse

Pl−1, Pl and Pl+1. Pl is first upsampled by a factor of 2 and then

aggravated with Pl−1. A stride of 2 is used for a 3× 3 convolutional
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FIGURE 3

Image detection regions configuration. (A) The original image. (B) The image after setting the detection area.

FIGURE 4

The YOLOv5 vehicle detection algorithm process. YOLOv5 performs feature extraction on input images using a feature extraction network and

predicts the position and category information of the vehicle in the image to achieve vehicle detection.

layer and downsamples it to the resolution of Pl. This design

effectively preserves the detail information in Pl−1. At last, Pl+1 is

upsampled and aggregated to generate the final Gloc
l
. To achieve

proper feature map aggregation, a 1 × 1 convolutional layer is

utilized in the middle of the process. Finally, feed Gloc
l

into the

regression function. The Gloc
l

can be written as

Gloc
l = Pl + µ

(

Pl+1

)

+ DConv
(

µ (Pl) + Pl−1

)

(2)

where µ(·) represents upsample.

3.2. Vehicle tracking module

To implement the tracking of vehicles, we use the DeepSORT

algorithm, which matches detected vehicles in two consecutive

frames of a video and assigns a unique ID number to each vehicle

to determine the vehicle’s motion trajectory. If the vehicle ID isn’t

present in the ID list and the previous frame, it is a new vehicle.

The new vehicle is initialized as a fuel vehicle and assigned a new

unique ID. If a vehicle ID present in the previous frame or ID list

is not detected in the current frame, it may have left the monitor

area. To improve accuracy, a dual threshold is generally applied to

determine whether the vehicle has truly left the monitor area. The

two thresholds are as follows: if the vehicle is not detected for 25

consecutive frames or 1 s, it is considered to have left the monitor

area.

The process of DeepSORT object tracking is illustrated in

Figure 6. To be specific, first, the original frames of the video are

obtained. Then, the YOLOv5 algorithm is used to detect objects

and obtain the object detection boxes. Next, all the object vehicles

corresponding to the object boxes are cropped out, their features
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FIGURE 5

The overall network architecture of YOLOv5 after decoupling. Two new output layers, P2 and P6, are introduced. Every three adjacent layers form a

new head.

are extracted, and to update and predict vehicle information, the

Kalman Filter (KF) (Hamuda et al., 2018; Welch, 2020) is adopted.

Afterward, similarity calculations are performed to determine the

matching degree between the vehicles in consecutive frames using

the Hungarian algorithm (Hamuda et al., 2018). Finally, data

association is carried out to assign an ID to each vehicle.

3.2.1. Hungarian algorithm
To associate a tracking object with detection boxes, we first

utilize KF to predict each tracking object’s movement. We then

calculate its similarity to all the detection boxes. Finally, the

Hungarian algorithm is applied to associate each tracking object

with the best-matched detection box and update its state. When

using the Hungarian algorithm for object association, Mahalanobis

distance is used for the similarity calculation method. Because

Mahalanobis distance is a distance measurement based on the

covariance matrix, it can accurately reflect the differences between

data by considering the correlation and covariance between data.

The Mahalanobis distance formula is

D(j, k) =
(

ak − bj

)T
S−1
j

(

ak − bj

)

(3)

whereD(j, k) is the Mahalanobis distance between ak and bj, ak and

bj represent measured and predicted distributions, respectively. Sj
is the matrix of the covariance between the two distributions, which

is a real symmetric positive definitematrix. S−1
j is the inversematrix

of Sj.

3.2.2. Kalman Filter algorithm
The KF is a state estimation algorithm that combines prior

knowledge with measurement updates and has two stages.

The first stage is mainly prediction. By utilizing the previous

covariance matrix and state, KF estimates the current object’s state

and covariance matrix. The predicted position is then determined

based on the estimated state. Specifically, according to the optimal

estimated value x̂t−1 at time t − 1, the optimal estimated value x̂−t
(predicted value) at time t is obtained, where F is the state transition

matrix, B is the control matrix, and ut−1 is the control input.

x̂−t = Fx̂t−1 + But−1 (4)

According to the covariance matrix Pt−1 of the optimal

estimation at time t − 1, the covariance matrix P−t of the optimal

estimation at time t is obtained, and Q is the covariance matrix of

the engineering noise.

P−t = FPt−1F
T + Q (5)

The second stage is mainly updating. KF incorporates the

detection results to update the object’s states and covariance matrix,
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FIGURE 6

The process of DeepSORT object tracking. Matching Cascade and IOU Match are both used to match and compute the detection boxes in the

current frame with the prediction boxes from the previous frame (tracks). Their matching results can be divided into three types: prediction box and

detection box match (matched tracks), detection box miss in the current frame (unmatched detection), and prediction box miss in the previous frame

(unmatched tracks).

which can refine the predicted position and enhance the tracking

performance. To be specific, the KF gain Kt at the current time is

obtained, whereH is the observation matrix and R is the covariance

matrix of the observation noise.

Kt = P−t H
T(HP−t H

T + R)−1 (6)

According to the estimated value x̂−t (predicted value) at time t

and the observed value Kt(zt−Hx̂−t ) at time t, the optimal estimate

x̂t is obtained, where zt is the measured value.

x̂t = x̂−t + Kt(zt −Hx̂−t ) (7)
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Continue to update the covariance matrix of the optimal

estimation.

Pt = (I − KtH)P−t (8)

Through the combined use of prediction and updating, KF

can reduce the noise and uncertainty inherent in the system and

enhance the robustness of the DeepSORT algorithm.

3.3. License plate colors detection and
classification module

We aim to detect and classify the license plate colors of vehicles

by location and vehicle ID information of the tracked vehicles.

Furthermore, based on this information, we crop the tracked

vehicle areas and employ the YOLOv5 algorithm for license plate

detection. Specifically, first, the areas of the vehicle being tracked

are detected, and identify areas that may contain license plates,

such as the front and rear of the vehicle. Then, it divides each

potential region of a license plate into multiple small cells and

predicts the probability of each cell containing a license plate and

the coordinates of the location of the license plate. Finally, we

recognize the color of the license plate.

During vehicle tracking, first, we assume all vehicles to be fuel-

based cars and set a virtual line segment in the detection area. Then,

we only start the detection and classification of the license plate

when a tracked vehicle collides with the virtual line segment. We

classify vehicles into two categories: green license plates, and non-

green license plates, with only green license plates, considered new

energy vehicles and non-green license plates considered fuel-based

vehicles. Finally, The traffic flow of new energy and fuel-based

vehicles is calculated.

3.4. Loss function

The YOLOv5 object detection used in the vehicle detection

module mainly involves three losses, including classes loss (Lcls),

objectness loss (Lobj), and location loss (Lloc) (Wu et al., 2021).

Classes loss uses Binary CrossEntropy (BCE) Loss (Wu et al., 2021,

2022) and the calculation of the positive samples’ classification

loss is exclusively taken into account. However, BCELoss is still

implemented for objectness loss to estimate the confidence loss of

all samples. On the other hand, Complete-IoU (CIoU) Loss (Zheng

et al., 2020) is leveraged to determine the location loss of only the

positive samples. The overall Loss as follows, where λ1,λ2,λ3 is the

balance coefficients.

LOSS = λ1Lcls + λ2Lobj + λ3Lloc (9)

BCELoss as follows

BCELoss = −wn[yn · log xn + (1− yn) · log(1− xn)] (10)

and CIoULoss is

CIoULoss = 1− IoU +
ρ2(b, bgt)

c2
+ αv (11)

4. Experiment

This section delves into the experiments conducted.

Firstly, we illustrate the formation of two public

datasets and provide clarity on the experimental details.

Subsequently, an account of the experimental protocol

is given. Ablation studies and parameter analysis are

performed, followed by a thorough analysis of the overall

experimental results to demonstrate the effectiveness of

our approach.

4.1. Dataset

4.1.1. MS COCO and Pascal VOC dataset
To construct a high-quality vehicle detector, utilizing all classes

present within datasets like the MS COCO (which has 80 classes)

and Pascal VOC (which has 20 classes) is not the best option.

Even though these datasets are often used in the training of object

detection models, it is not an optimal choice for constructing

an effective vehicle detection network. To address this issue, a

combined dataset of cars, buses, and trucks was employed from

both MS COCO and Pascal VOC datasets for the training process.

The combined vehicle detection dataset comprises 17,019 training

images and 1,452 testing images.

4.1.2. CCPD dataset
The CCPD dataset is a large and diverse open-source

dataset of carefully annotated Chinese urban license plates. It

comprises two main subsets, namely the CCPD2019 dataset and

the CCPD2020 (CCPD-Green) dataset. The CCPD2019 dataset

contains only regular license plates, whereas the CCPD2020

dataset contains only new energy vehicle license plates (green)

with 10,000 images. Each image in the CCPD dataset contains

only one license plate, and the license plate province is

predominantly “Anhui.” Despite lacking dedicated annotation files,

each image in the CCPD dataset contains a wealth of annotation

information, with the file name of each image corresponding to its

data annotation.

4.2. Experimental details

In the experiments, the entire network is trained on a

GPU (NVIDIA RTX 3090 24 GB) and a CPU (15 vCPU

Intel(R) Xeon(R) Platinum 8350C CPU @ 2.60 GHz). In our

method, the improved YOLOv5 network model is used to

detect the vehicle. Meanwhile, we initialized the learning rate

to 0.01, set the batch size to 64, set the epoch to 300, and

set the iou_thres to 0.65. In the DeepSORT algorithm for

vehicle tracking, The MAX_IOU_DISTANCE is set to 0.7, which

allowed us to disregard associations with costs that exceeded

the value.
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FIGURE 7

The experimental results with di�erent lighting conditions: during day-time, high noon, and night-time. (A) Original day-time scene image. (B)

Empirical evaluation of the day-time scene. (C) Original high noon scene image. (D) Empirical evaluation of high noon scene. (E) Original night-time

scene image. (F) Empirical evaluation of the night-time scene.

TABLE 1 Experimental results on a composite dataset consisting of a combination of cars, buses, and trucks that were selected from the MS COCO and

Pascal VOC datasets.

Method Class Labels P R mAP@0.5 mAP@.5:.95

YOLOv5

Car 3105 77.2 70.4 76.7 51.3

Bus 605 89.5 82.3 88.2 72.4

Truck 415 43.1 47.0 38.7 25.6

All 4125 70.0 66.6 67.8 49.3

YOLOv5 + decouple detect

Car 3105 79.5 71.1 78.6 53.3

Bus 605 88.2 81.8 88.5 73.5

Truck 415 44.1 47.7 41.9 28.1

All 4125 70.6 66.9 69.7↑1.9 51.6↑2.3

P represents Precision. R represents Recall.

↑ represents performance upgrade. In bold are the best outcomes for each object category. The improved algorithm proposed is YOLOv5+Decouple Detect.

4.3. Experimental protocol

To demonstrate the effectiveness of our approach in

recognizing new energy vehicles and traffic flow statistics,

three captured testing videos are used for the empirical

evaluation of the method. Video1, video2, and video3 are

three videos captured in day-time, high noon, and night-time

scenes respectively, and they are both filmed on sections

of the motorway. We compare the experimental results

in each scene with the manually annotated truth results.

Precision and Recall (Sajjadi et al., 2018) are used as evaluation

metrics.
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FIGURE 8

The precision-recall (PR) curves of the YOLOv5 algorithm with and without decoupled detection heads during training. (A) YOLOv5 algorithm

without decoupled detection heads. (B) YOLOv5 algorithm with decoupled detection heads.

FIGURE 9

The YOLOv5 algorithm with and without decoupled heads detects results on the same image. (A) YOLOv5 algorithm without decoupled detection

heads detects results. (B) YOLOv5 algorithm with decoupled detection heads detects results.

Precision represents the proportion of accurately detected

vehicles to the total number of detected vehicles. A higher Precision

indicates that the algorithm has fewer false detections and missed

detections. Its formula is

Precision =
TP

(TP + FP)
(12)

where TP represents the number of vehicles correctly detected by

the detector among all the actual vehicles present, and FP represents

the number of non-existent vehicles incorrectly detected by the

detector among all the non-existent vehicles.

Recall represents the proportion of correctly detected vehicles

to the total number of actually present. A higher Recall indicates

that the algorithm has fewer missed detections. Its formula is

Recall =
TP

(TP + FN)
(13)

where FN represents the number of vehicles that were not detected

by the detector among all the actual vehicles present.

F1 is the harmonic mean of Precision and Recall, its formula is

F1 =
2 ∗ Precision ∗ Recall

(Precision+ Recall)
(14)

The performance of the NEVTS approach is illustrated in

Figure 7. The proposed approach exhibits high accuracy, as

confirmed by experimental evaluations.

4.4. Ablation Studies

4.4.1. Study of ablation
We conducted ablation studies to evaluate the efficacy of

our design for detecting vehicles. Our study involved comparing

the performance of the YOLOv5 algorithm with and without
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FIGURE 10

The F1-confidence curves.

TABLE 2 Experimental statistics were obtained in day-time scene (video1)

and high soon (video2) and night-time scene (video3) and compared with

the actual results of manual labeling.

Vehicle
_type

Video1 Video2 Video3

NEVTS

traffic statistics

EV_vehicler 39 14 15

GAS_vehicle 296 60 134

Total 335 74 142

Actual

traffic

flow

EV_vehicle 36 13 18

GAS_vehicle 299 61 132

Total 335 74 142

Precision EV_vehicle 0.923 0.929 0.867

Recall EV_vehicle 1 1 0.722

decoupling detection heads. Through comparative experiments,

we validated the effectiveness of our method. The results of the

ablation experiments are demonstrated in Table 1, which indicates

an improvement in themeanAverage Precision (mAP) (Henderson

and Ferrari, 2017) metric. Furthermore, we visualize the Precision-

Recall (PR) curves of the YOLOv5 algorithm with and without

decoupled detection heads during training, as illustrated in

Figure 8. After decoupling, the performance of all aspects improves,

with mAP@0.5 for all classes increasing from 0.678 to 0.697.

4.4.2. Visual analysis
The YOLOv5 algorithm with and without decoupled detection

heads detect results in this section are shown in Figure 9. Notably,

the improved YOLOv5 algorithm exhibited superior performance

in object localization, particularly in scenarios involving object

occlusion. This enhancement has increased the accuracy of vehicle

traffic counting.

4.5. Parameters analysis

Confidence mainly controls the threshold for vehicle detection.

It indicates the extent to which the model detects vehicles

in the image. Confidence can be used for filtering detection

results and improvement of model accuracy. The F1-Confidence

curve is shown in Figure 10. The vehicle detection performance

is dependent on the Confidence value’s magnitude. The best

performance for car detection is achieved when Confidence is set

between 0.4 and 0.6. The optimal performance for bus detection

is attained when Confidence is set between 0.3 and 0.5. For truck

detection, the optimal performance is achieved when Confidence

is set between 0.3 and 0.4. The overall performance on all types

of vehicles is best when Confidence is set to 0.392. Different

confidence levels can be set depending on the scenario being used.

4.6. Experimental results and analysis

We have produced statistics on the experimental results,

which are shown in Table 2. Our approach, NEVTS, achieved

high performance in identifying new energy vehicles. The overall

accuracy of NEVTS was evaluated using Precision and Recall, and

compared with the actual results of manual labeling. Performance

performed well in both daytime and night-time scenes, especially

in daytime scenes, with a Precision of 0.923. The approach is based

on the traffic scene, Precision and Recall is not the only evaluation

standard, speed is another important parameter for the approach,

and the traffic statistics approach achieved a speed of 31.69 fps,

which meets the real-time requirements and maintains a certain

level of accuracy. The NEVTS approach is capable of distinguishing

vehicle types. Our proposed approach is that the accuracy of license

plate recognition may decrease under exposure to intense sunlight

or license plate blocking and late at night, as even humansmay have

difficulty discerning license plate colors under such conditions, but

the vehicle can still be detected.

5. Conclusion and future work

We propose an New Energy Vehicle Recognition and Traffic

Flow Statistics approach (NEVTS). The approach is easily and

efficiently constructed and can be migrated to other related

applications without losing its generality. Extensive experiments

are performed on real datasets. The results demonstrate that

the NEVTS approach satisfies both real-time and accuracy

requirements. One potential limitation of our proposed method

is that the accuracy of license plate recognition may decrease

significantly under exposure to intense sunlight or license plate

blocking and late at night, as even humans may have difficulty

discerning license plate colors under such conditions, but vehicles

can still be detected. Therefore, the detection problem in these

scenarios needs to be further solved.
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