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Introduction: In urban road scenes, due to the small size of tra�c signs and

the large amount of surrounding interference information, current methods are

di�cult to achieve good detection results in the field of unmanned driving.

Methods: To address the aforementioned challenges, this paper proposes an

improved E-YOLOv4-tiny based on the YOLOv4-tiny. Firstly, this article constructs

an e�cient layer aggregation lightweight block with deep separable convolutions

to enhance the feature extraction ability of the backbone. Secondly, this paper

presents a feature fusion refinement module aimed at fully integrating multi-scale

features. Moreover, this module incorporates our proposed e�cient coordinate

attention for refining interference information during feature transfer. Finally, this

article proposes an improved S-RFB to add contextual feature information to the

network, further enhancing the accuracy of tra�c sign detection.

Results and discussion: The method in this paper is tested on the CCTSDB

dataset and the Tsinghua-Tencent 100K dataset. The experimental results show

that the proposed method outperforms the original YOLOv4-tiny in tra�c sign

detection with 3.76% and 7.37% improvement in mAP, respectively, and 21%

reduction in the number of parameters. Compared with other advanced methods,

the method proposed in this paper achieves a better balance between accuracy,

real-time performance, and the number of model parameters, which has better

application value.

KEYWORDS

tra�c sign detection, unmanned driving, small object, feature fusion, convolutional

neural network, YOLOv4-tiny

1. Introduction

The semantic information conveyed by traffic signs is essential in providing accurate

details on road conditions ahead, which can be used by in-vehicle intelligent systems to help

driverless vehicles make informed decisions. Traffic sign detection technology plays a vital

role in reducing the incidence of traffic accidents and ensuring safe driving. As a result, it has

become a key component of current vehicle-assisted driving systems and holds significant

research significance within the urban transportation field (Badue et al., 2021).

Traffic sign detection techniques are divided into traditional methods and deep learning-

based methods (Sharma and Mir, 2020). Traditional methods mainly use manually designed

features to extract and identify targets by combining multiple features. However, the weak

generalization ability of traditional methods for recognition leads to their poor robustness

for detection in complex scenes. The algorithms based on deep learning include two-stage
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detection methods represented by R-CNN (Girshick et al., 2014),

Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al.,

2015). This type of method first sub-classifies the extracted

region candidate frames, and then performs position correction,

which results in good detection accuracy. However, the two-stage

detection method sacrifices detection speed to a certain extent

and requires significant storage space. The YOLO series (Redmon

et al., 2016; Redmon and Farhadi, 2017, 2018; Bochkovskiy et al.,

2020) and SSD (Liu et al., 2016) are representatives of single-

stage detection methods. Instead of omitting the step of generating

candidate regions, they directly regress the feature map to obtain

target category and boundary box coordinate information. While

this approach boasts faster detection speeds compared to the two-

stage detection algorithm, it still falls short in terms of accuracy.

The ability to quickly detect distant traffic signs is critical

for autonomous driving decision systems to provide sufficient

response time. However, traffic signs in images typically occupy

an absolute area of no more than 32 × 32 pixels, rendering

the detection task a classic example of small target detection

(Lin et al., 2014). Currently, many scholars have improved small

target detection algorithms based on deep learning. Yang and

Tong (2022) proposed a visual multi-scale attention module based

on the YOLOv3 algorithm, which integrated feature maps of

different scales with attention weights to eliminate the interference

information of traffic sign features. Pei et al. (2023) proposed

an LCB-YOLOv5 algorithm to detect small targets in remote

sensing images. This method improves the accuracy of small

target detection by introducing more receptive field and replacing

the EIOU loss function. Prasetyo et al. (2022) improved the

diversity of network feature extraction by incorporating a wing

convolution layer into the YOLOv4-tiny’s backbone network. They

also added extra detection heads to enhance the accuracy of the

detector for small targets. Wei et al. (2023) proposed an approach

to improve the detection ability of small targets by adding a

transformer attention mechanism and deformable convolution

to the backbone network. They also utilized deformable ROI

pooling to process multi-scale semantic information extracted from

the network, effectively addressing the problem of multi-scale

traffic sign detection. Huang et al. (2022) effectively improved the

detection accuracy of SSD algorithm for small targets by fusing the

target detection layer and adjacent features, and validated it on their

own indoor small target dataset. Wu and Liao (2022) proposed a

SSD traffic sign detection algorithm combining the receptive field

block (RFB) (Liu and Huang, 2018) and path aggregation network

(Liu et al., 2018) to improve the target location and classification

accuracy. However, this method was only suitable for detection

when there was less interference information around the target.

While the above-mentioned methods have succeeded in enhancing

the detection accuracy of traffic sign models, they have also led

to an increase in model size. Since traffic sign detection tasks are

usually deployed on devices with limited storage space, the pursuit

of lightweight models is of significant practical value.

The backbone serves as the primary feature extractor

in a convolutional neural network (CNN) model, and its

performance plays a critical role in determining the strength of the

model’s feature extraction capability. Currently, classic lightweight

backbone networks such as the MobileNet series (Howard et al.,

2017, 2019), ShuffleNet series (Ma et al., 2018; Zhang et al., 2018),

andGhostNet (Han et al., 2020) are widely used. However, although

these networks are known for their fast forward reasoning speeds,

their feature extraction ability for small targets is suboptimal. On

the other hand, more complex backbone networks like ResNet (He

et al., 2016), DenseNet (Huang et al., 2017), and DLA (Yu et al.,

2018) have achieved higher detection accuracy but at the expense

of increased parameter quantity and computational complexity. As

a result, these networks may not meet the real-time requirements

in terms of reasoning speed. The multi-scale feature fusion method

is also an important approach to address the model’s insufficient

ability to extract small target features. The feature pyramid network

(FPN) (Lin et al., 2017) fuses features of multiple scales through

top-down lateral connections to obtain fused features with stronger

expression capability, which are more beneficial for small target

detection. Additionally, other methods such as PANet, NAS-FPN

(Ghiasi et al., 2019), and BiFPN (Tan et al., 2020) explore more

diverse information fusion paths and adaptive weighting methods

to enhance the expression ability of different scale features, further

improving the accuracy of small target detection. Although all these

methods improve the performance of small target detection to

different degrees, they often fail to take into account the significant

amount of redundant information present during feature transfer,

which can impede the network’s ability to effectively fuse multi-

scale features.

In urban road scenes, the background of traffic signs often

contains many objects with similar characteristics, which will

introduce significant interference information during the feature

extraction process of the model. This interference feature

information may lead to detector misdetection. In recent years,

attention mechanisms have emerged as an effective method

for enhancing features in the field of deep learning image

processing (Guo et al., 2022). By drawing on the process

of extracting external information from human vision, the

attention mechanism can identify key feature regions of the

target from the image and suppress distracting information

to enhance representation. Several attention mechanisms,

such as SE (Hu et al., 2018), CBAM (Woo et al., 2018), and

coordinate attention (Hou et al., 2021), have been proposed

to enhance the ability of feature expression by suppressing

interference information and capturing key feature areas.

However, these methods have limitations. For instance, SE only

considers channel weight and ignores location information,

while CBAM focuses on local feature information without

capturing long-range dependencies. On the other hand, coordinate

attention combines both channel and location information and

captures long-range dependencies, but at the cost of increased

computation, which reduces the real-time performance of the

algorithm. Despite these limitations, attention mechanisms

have been shown to improve the detection of small targets in

complex backgrounds.

In summary, existing deep learning-based methods primarily

aim to improve the detection capability of models through

enhancing feature extraction, utilizing multi-scale feature

fusion, and incorporating attention mechanism. However, in

practical applications, traffic sign detection tasks have strict

requirements for accuracy, model size, and real-time performance.

Existing methods typically focus only on improving detection

accuracy, while neglecting model lightweightness and real-time
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performance, which makes them difficult to be applied in current

practical scenarios. In this paper, we propose an E-YOLOv4-tiny

algorithm for urban road traffic sign detection based on the

current excellent lightweight YOLOv4-tiny (Wang C. Y. et al.,

2021) algorithm, from the perspective of achieving a balance

among model accuracy, parameter quantity, and real-time

performance, and taking into account the influence of interference

information in the feature fusion process on multi-scale feature

representation. The proposed method can further improve the

detection accuracy while reducing the model parameter size,

and ensure real-time performance, thereby better application

in practical scenarios. The main contributions of this paper are

as follows.

(1) To address the poor feature extraction performance

of the YOLOv4-tiny’s backbone network, we construct a

lightweight E-DSC block to optimize it. Drawing inspiration

from ELAN’s gradient structure and employing depthwise

separable convolutions to reduce the network parameters while

maintaining performance, we aim to improve the module with

minimal parameter costs.

(2) In order to solve the problem of redundant information

interference during FPN feature fusion at different levels, a feature

fusion refinement module (FFRM) is proposed in this paper.

Our method suppresses redundant and interfering information in

the multi-scale feature fusion process by constructing a semantic

information refinement module and a texture information

refinement module that combine efficient coordinate attention

(ECA). Additionally, we utilize residual connections to ensure

that the output feature maps integrate high-level semantics and

detailed information.

(3) We improve the coordinate attention mechanism to further

focus and enhance small object features. We use both global max

pooling and global average pooling to compress feature maps along

the spatial dimension, allowing for a more accurate reflection

of channel responses to small objects. Additionally, we employ

group convolution and channel shuffling operations to improve the

computational efficiency of the model.

(4) To address the issue of limited receptive fields in the

YOLOv4-tiny, we propose an S-RFB module in this paper. We

simplify the structure of the original RFB module and reduce the

number of convolution operations in each branch. The aim is to

integrate contextual information into the network to enhance the

ability to detect small objects without introducing an excessive

number of parameters.

(5) The proposed method in this paper is trained and

evaluated on two benchmark datasets, CSUST chinese traffic

sign detection benchmark (CCTSDB) and Tsinghua-Tencent 100K

(TT100K). The experimental results demonstrate that our method

outperforms several state-of-the-art methods in terms of small

target detection performance for urban road traffic signs.

The remainder of this article is structured as follows. Section 2

provides a brief overview of the YOLOv4-tiny algorithm. Section 3

provides a detailed introduction to the E-YOLOv4-tiny algorithm

proposed in this paper. Section 4 presents the results of ablation

experiments conducted on our proposed algorithm, as well as a

performance comparison with other state-of-the-art algorithms on

CCTSDB and TT100K datasets. Finally, in Section 5, we summarize

our article and discuss our future research directions.

2. YOLOv4-tiny algorithm

YOLOv4-tiny is a simplified model based on YOLOv4 and

is currently a popular model in lightweight detection networks.

The detection process of YOLOv4-tiny is the same as YOLOv4.

Firstly, YOLOv4-tiny resizes the input image to a fixed size. Next,

the input image is divided into candidate boxes, and S×S small

cells are generated for each image. Within each cell, the model

predicts B boundary boxes and identifies D-type objects. The

prediction boundary box contains the category name, the center

coordinates (x,y) of the boundary box, the width and height (w,h)

of the boundary box, and confidence information. Finally, a non-

maximum suppression algorithm is applied to remove redundant

candidate boxes and obtain the final detection boxes for the model.

The YOLOv4-tiny backbone consists of basic components such

as CBL, cross stage partial (CSP) (Wang et al., 2020), etc. The CBL

structure consists of a 3 × 3 2D convolution, a BN layer, and a

LeakyReLu activation function. In this structure, the convolution

kernel step is set to 2 to down-sample the feature map. The CSP

structure is made up of the CBL block and the Concat operation.

Cross-layer splicing can be used to better connect information

about features. YOLOv4-tiny uses the FPN structure for feature

fusion and obtains two fusion feature maps with sizes of 38 ×

38 and 19 × 19, respectively. Finally, the fusion feature maps

are sent to the detection head for processing, and the confidence

and position information of the target are obtained. The network

structure of YOLOv4-tiny is shown in the Figure 1.

3. E-YOLOv4-tiny algorithm

The YOLOv4-tiny algorithm is not strong in feature extraction

for small targets and does not take into account the influence of

interference information in feature fusion on multi-scale feature

representation, which leads to its low accuracy in detecting traffic

signs in urban roads. Therefore, an improved E-YOLOv4-tiny

algorithm is proposed in this paper, utilizing feature maps with

down-sampling multiples of 4 and 8 as prediction headers to

effectively leverage underlying feature maps with more detailed

information. Furthermore, the backbone and feature fusion parts

are optimized to achieve improved detection performance. Figure 2

illustrates the structure of the E-YOLOv4-tiny.

3.1. Backbone based on E-DSC block

The low resolution of traffic signs in images collected from

urban roads often presents a challenge for detectors to extract

reliable features, which may result in missed targets. ELAN (Wang

et al., 2022) addresses the issue of “how to design an efficient

network” by analyzing the gradient path of the network. By

designing gradient paths in a reasonable manner, ELAN can

lengthen the shortest gradient path of the entire network with fewer

transition layers, leading to improved efficiency. Furthermore,

ELAN combines the weights of different feature layers, enabling

the network to learn more diverse features. Compared to CSP

structures, ELAN can improve the model’s learning capabilities

further through better combinations of gradient paths. However,
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FIGURE 1

YOLOv4-tiny framework diagram.

FIGURE 2

E-YOLOv4-tiny framework diagram.

convolution operations in multi-branch paths can significantly

increase the network’s parameters and consume more memory on

the device.

Depthwise separable convolution (DSC) (Howard et al., 2017)

can significantly reduce the number of network parameters and

computational cost with a small loss of accuracy compared with

ordinary convolution, and its structure is shown in Figure 2. DSC

partitions the input image into single layer channels and applies

depthwise convolution (Dwise) to process spatial information

along the long and wide directions. Each channel is associated

with a dedicated convolution kernel, and the quantity of channels

in the input layer corresponds to the number of feature maps

generated. Subsequently, pointwise convolution (Pwise) is applied

to supplement the missing cross-channel information in the feature

map, leading to the final feature map. Compared with regular

convolution, the combination of depthwise convolution and

pointwise convolution has the advantage of reducing the number

of parameters while ensuring the feature extraction capability.

Based on the aforementioned research, this paper proposes

a lightweight E-DSC structure by taking the gradient path in

the ELAN structure into account. The goal of this structure is

TABLE 1 The structural details of the improved backbone.

Steps Operation Resolution Output
channels

Number
of times

Input - 608 3 -

1 CBL 304 32 1

2 E-DSC 152 64 1

3 E-DSC 76 128 1

4 E-DSC 76 256 1

5 Maxpool 38 256 1

6 E-DSC 38 512 1

7 Maxpool 19 512 1

8 S-RFB 19 512 1

to enhance the network’s learning ability without introducing

too many parameters, which is achieved through optimizing

the stacking of computing modules and fusing deep separable

convolutions. The E-DSC structure is illustrated in Figure 2.
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This article replaces the CSP with E-DSC in the backbone to

enhance the feature extraction ability of the YOLOv4-tiny. The

structural details of the improved backbone are shown in Table 1.

3.2. Feature fusion refinement module

YOLOv4-tiny uses FPN to fuse feature maps of different scales

to predict objects of different sizes, which can improve the overall

detection accuracy of the network. In practice, the fusion of feature

maps with different scales through up-sampling operations often

fails to accurately represent the fused multiscale features due to

semantic information differences and interference information.

This paper proposes an FFRM to refine and enhance the fused

features. The FFRM structure is shown in Figure 3.

In this paper, we leverage the inverted residual structure

in Mobilenetv2 (Sandler et al., 2018) and the ECA mechanism

proposed herein to construct the semantic information refinement

module and the texture information refinement module. These

modules are designed to extract semantic and texture information

from feature maps of varying scales without introducing too

many parameter quantities. This enables the network to learn

the significance of feature maps in different channels and spatial

dimensions, allowing it to highlight important features while

suppressing interference information expression.

The FFRM takes in a low-level feature map M1 and a high-

level feature map M2 as inputs. Firstly, the semantic information

refinement module extracts semantic features from M2. Secondly,

M1 is upsampled by using bilinear interpolation and concatenated

with M2 to obtain the fusion feature map M3. Then, the texture

information refinementmodule filters out interference information

in M3. Finally, an addition operation is used to integrate both

high-level semantic information and low-level texture information,

resulting in the output feature mapM’. The output feature mapM’

can be represented as:

M′ = RT(M1 ⊗ (RC(M2)) ↑2×)⊕ RC(M2) ↑2× (1)

where RC represents the semantic information refine module.

RT represents a texture information refine module. ⊗ represents

concatenate operation. ⊕ represents the element-wise summation

operation. ↑2× represents bilinear interpolation up-sampling.

3.2.1. E�cient coordinate attention mechanism
Traffic signs on urban roads are small in size and are

often surrounded by a large amount of background interference

information. While the coordinate attention mechanism uses 1D

global average pooling to aggregate information from input feature

maps, this pooling method only emphasizes the preservation

of overall information, which can be challenging to accurately

reflect in complex backgrounds for small target information.

To address this problem, this paper presents an improved ECA

mechanism that utilizes both global average pooling and global

maximum pooling to extract the extreme responses of the target

channel, allowing for better focus on small target features during

down-sampling. This approach enables the network to better

capture and highlight the most salient features of the input

signal, even in the presence of complex backgrounds and other

sources of interference. In addition, embedding the coordinate

attention module in the network structure increases the number

of parameters, which can reduce detection speed. To address this,

this paper introduces the use of group convolution (Krizhevsky

et al., 2017) and channel shuffle mechanisms (Zhang et al., 2018)

into the structure. These techniques help to further reduce the

number of module parameters and computational complexity

while maintaining high accuracy. The structure of ECA is shown

in Figure 4.

To begin with, each channel of the input feature map

X ∈ RC×H×W are encoded along the horizontal and vertical

coordinate directions using the global average pooling and the

global maximum pooling with core sizes of (H,1) and (1,W),

respectively. Then, the resulting features in the horizontal and

vertical directions are aggregated into four direction-aware feature

maps. Thus, the outputs of the c-th channel at height h can be

formulated as:

ahc (h) = Avg(
1

W

∑∑
0≤i≤W

xc(h, i)) (2)

mh
c (h) = Max(

1

W

∑
0≤i≤W

xc(h, i)) (3)

where xc(h,i) represents the c-th channel component with

coordinates (h,i) in the input feature map X. Avg represents

the global average pooling. Max represents the global maximum

pooling. ahc (h) and mh
c (h) represent the c-th channel output at

height h after passing through the global average pooling and the

global maximum pooling, respectively.

Similarly, the outputs of the c-th channel at width w can be

formulated as:

awc (w) = Avg(
1

H

∑
0≤j≤H

xc(j,w)) (4)

mw
c (w) = Max(

1

H

∑
0≤j≤H

xc(j,w)) (5)

where xc(j,w) represents the c-th channel component with

coordinates (j,w) in the input feature map X. awc (w) and mw
c (w)

represent the c-th channel output at width w after passing

through the global average pooling and the global maximum

pooling, respectively.

Then, the output components ahc (h) and mh
c (h), a

w
c (w) and

mw
c (w) are merged through an element addition operation,

as follows:

zhc (h) = ahc (h)+mh
c (h) (6)

zwc (w) = awc (w)+mw
c (w) (7)
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FIGURE 3

The structure diagram of FFRM.

FIGURE 4

Diagram of e�cient coordinate attention.

Then, the two output feature tensors are concatenated in the

spatial dimension to generate the feature map Z ∈ RC×1×(W+H).

The feature map Z are divided into G groups along the channel

direction, i.e., Z = [Z1, ...,ZG], ZK ∈ RC×1×(W+H)/G. The shared

1 × 1 convolutional transformation function F is used to reduce

the dimension of each group of feature graphs. The process can be

formulated as:

f = δ(F(ZK)) (8)

where δ represents the H-swish activation function. f ∈

RC×1×(W+H)/G×r is the intermediate mapping feature map of

group g, where r is the proportion of the control module

size reduction.

Due to the use of group convolution in a continuous manner,

boundary effects may occur. That is to say, a small part of the

input feature map channel is used for a certain output feature

map channel, resulting in no information exchange between

TABLE 2 Performance comparison of models with/without channel

shu	e on the CCTSDB dataset.

Models mAP@0.5/%

Baseline 92.44

FFRM (no shuffle) 93.58

FFRM (shuffle) 94.28

different groups and affecting the network’s ability to extract global

information. Therefore, after obtaining the intermediate feature

map, we use the channel shuffle operation to rearrange the order

of channels of different group feature maps to achieve intergroup

information flow in multiple group convolution layers. In addition,

we conducted experiments on the CCTSDB dataset to compare the

performance of models with/without channel shuffle, as shown in

Table 2.

The results in Table 2 demonstrate that using the channel

shuffle operation in the FFRM module leads to a 0.7% higher
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mAP metric compared to not using it. This experimental result

effectively demonstrates the necessity of using the channel shuffle

operation in group convolution, allowing the network to learn

more diverse features.

Then, the intermediate mapping feature map is split into two

separate feature tensors, fh ∈ RC×H×1/r and fw ∈ RC×1×W/r ,

along the spatial dimension. Next, the channel numbers of the

two tensors are kept consistent with the channel numbers of

the input feature map using two convolutional transformations

Fh and Fw, respectively. The process can be expressed by the

following formula:

ph = σ (Fh(f
h)) (9)

pw = σ (Fw(f
w)) (10)

where σ is the sigmoid activation function.

Finally, the two output tensors are used as attention features,

expanded through the broadcast mechanism, and multiplied

by the input feature map X to give attention weight to

obtain the final output feature map Y. The process can be

formulated as:

yc(i, j) = xc(i, j)× phc (i)× pwc (j) (11)

3.3. S-RFB module

The YOLOv4-tiny network extracts features by using only

fixed-size convolutional kernels, resulting in a single receptive field

in each layer of the network and making it difficult to capture

multiscale information. To address the difficulty of capturing

multiscale information using only fixed-size convolutional kernels

in YOLOv4-tiny, this study presents an improved version of

the receptive field block called S-RFB. The integration of void

convolutions with varying expansion rates in S-RFB enriches the

extracted features by incorporating rich contextual information

and diverse receptive fields into the network. This leads to an

improvement in the detection of small traffic sign targets, as

the network becomes better equipped to capture and distinguish

fine details.

The structure of the S-RFB module is shown in Figure 5.

Firstly, the input feature map with size (C,H,W) is extracted

using dilated convolution. The convolution rate is set to 1, 3, and

5, respectively, to obtain three different sizes of receptive fields.

To extract more detailed features from the small input feature

map of this module, a smaller 3 × 3 convolution is selected in

this paper. Meanwhile, the number of convolution kernels is set

to C/4 to prevent excessive parameters from being introduced.

Secondly, a 1 × 1 convolution with a number of C/4 is used

to concatenate the input feature map, resulting in an equivalent

mapping with the output. Finally, the generated feature maps

are fused by the Concat operation to aggregate network context

information, further enhancing the network’s capability to detect

small targets.

4. Experimental results and analysis

4.1. Dataset preparation

This paper initially performs ablation experiments on the

CCTSDB dataset (Zhang et al., 2017) to validate the efficacy of

each module improvement in enhancing the model’s performance.

Additionally, the article compares the proposed method with

other advanced target detection techniques that currently exist.

In addition, this method is also trained and tested on TT100K

dataset (Zhu et al., 2016) with richer traffic sign categories and

smaller target areas to further verify the generalization ability of

this method.

The CCTSDB dataset consists of 13,826 images with nearly

60,000 traffic signs, divided into three categories: mandatory,

prohibitory, and warning. Compared to other public traffic

sign datasets, this dataset contains mainly urban road scenes

with more interference around the targets. This paper

divides the dataset into training sets and test sets according

to 9:1.

The TT100K dataset consists of images with a resolution of

2,048 × 2048, containing 221 categories of traffic signs with a

total of approximately 26,349 targets. Around 40.5% of the total

traffic signs have an area of <32 × 32 pixels, making it crucial

for the algorithm to have a high ability to detect small targets.

In order to maintain a balanced distribution of target categories,

this paper only selects 45 types of traffic signs with more than

100 images for training. A total of 7,968 images are used as the

dataset, with 5,289 images used for training and 2,679 images used

for testing.

4.2. Experimental details

The experimental platform in this article is equipped with an

Intel Xeon Sliver 4110 processor with 32GB of memory. There

are two NVIDIA Tesla P4 GPUs with 8GB of video memory. The

system used in the experiment is Ubuntu 16.04, and the deep

learning framework used is Pytorch 1.2.0.

To verify the effectiveness of the algorithm, this paper adopts

the same training parameter settings for all network models to

ensure experimental fairness. The input image size is set to 608

× 608. The initial learning rate is 0.001. The batch size is 16.

The epoch size is set to 500. Select Adam as the optimizer. The

cosine annealing algorithm is used in training to attenuate the

learning rate.

4.3. Evaluation indicators

In the experiment, accuracy (P), recall (R), mean average

precision (mAP), frames per s (FPS), and Params are selected to

evaluate the performance of the algorithms. The accuracy and recall

are used to measure the classification ability and detection ability of

the algorithm for targets, and the mAP is used to comprehensively

evaluate the detection performance of the algorithm. The formulas

for calculating accuracy, recall, and mean average precision are

as follows:
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FIGURE 5

Architecture of S-RFB module.

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

mAP =
1

C

C∑
i=1

∫ 1

0
PC(RC) dRC (14)

where TP indicates that the detection is a positive sample and the

result is correct. FP indicates that the detection is a positive sample

and the result is incorrect. FN indicates that the detection is a

negative sample and the result is incorrect.C represents the number

of target categories.

FPS represents the number of frames per second that the

network detects images, which is used to evaluate the real-time

performance of model. Params refers to the total number of model

parameters, and its calculation formula is as follows:

params = Kh × Kw × Cin × Cout (15)

where Kh and Kw represent the length and width of the convolution

kernel, respectively. Cin and Cout represent the number of

convolutional kernel input and output channels, respectively.

4.4. Experimental results and analysis

4.4.1. Comparison and analysis of experimental
results based on CCTSDB dataset

To assess the effectiveness of the proposed method, we conduct

a comparative analysis with five state-of-the-art object detection

TABLE 3 Performance comparison results of di�erent models on CCTSDB

dataset.

Models R/% P/% mAP@
0.5/%

Params/
MB

FPS/(frame/
s)

Faster-

RCNN

78.84 82.06 84.74 137.09 6

Centernet 65.89 96.94 91.14 32.66 32

SSD 68.15 90.27 76.92 26.28 35

Improved

YOLOv4

- - 96.88 - 40

YOLOv5-

s

89.05 92.32 95.11 27.6 42

YOLOv4-

tiny

83.81 93.14 92.44 23.1 100

E-DSC 87.05 96.34 94.31 17.6 87

FFRM 88.34 95.08 94.28 25.3 85

S-RFB 84.85 94.49 93.86 23.4 91

E-

YOLOv4-

tiny

90.14 98.32 96.2 18.2 62

algorithms on the CCTSDB dataset. Specifically, we evaluate the

performance of Faster R-CNN, Centernet (Zhou et al., 2019), SSD,

YOLOv5-s (Glenn, 2020), YOLOv4-tiny, and an improved version

of YOLOv4 based on attention mechanism (Zhang et al., 2022).

Additionally, we add the performance results of YOLOv4-tiny

combined with these three different modules to make the part

that affects the experimental results more apparent. Specifically, E-

DSC, FFRM, and S-RFB represent the models improved using the

corresponding methods for YOLOv4-tiny. The evaluation results

are tabulated in Table 3.
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FIGURE 6

Detection results of CCTSDB dataset.

The results reported in Table 3 indicate that the backbone

network, as the primary feature extractor of the model, has the

greatest impact on the model’s performance improvement, with an

increase of 1.87% in mAP metric. The algorithm proposed in this

paper outperforms advanced two-stage and one-stage algorithms

in terms of both accuracy and parameter efficiency. Compared

to Faster R-CNN, SSD, Centernet, and YOLOv5-s, the proposed

method achieves mAP advantage of 11.46, 19.28, 5.06, and 1.09%,

respectively. Moreover, the proposed method improves the mAP

index by 3.76% while reducing the number of model’s parameters

by 21% compared to the original method. The improved YOLOv4

algorithm based on attention mechanism achieves an average

detection accuracy of 96.88%, meeting real-time requirements.

Additionally, the proposedmethod in this papermaintains superior

detection speed while achieving a similar detection accuracy as

the improved YOLOv4 algorithm, effectively demonstrating a good

balance between model accuracy and speed.

Figure 6 illustrates the detection performance of our proposed

E-YOLOv4-tiny model and the YOLOv4-tiny model on the

CCTSDB dataset. The first set of graphs indicates that the E-

YOLOv4-tiny model achieves higher confidence levels than the

baseline model and can detect three “mandatory” signs that the

latter cannot detect. The second set of images demonstrates that

our model can still achieve good detection accuracy even in the

presence of numerous interfering objects around small targets. In

contrast, the YOLOv4-tiny model in the third group of images

misses two objects, while our model can detect all objects. These

results provide strong evidence that our proposed E-YOLOv4-tiny

model outperforms the original YOLOv4-tiny model in detecting

small objects.

4.4.2. Comparison and analysis of experimental
results based on TT100K dataset

To further validate the generalization ability of our proposed

method for detecting traffic signs, we conduct experiments on

the TT100K dataset. We compare the performance of our

method against several state-of-the-art target detection algorithms,

including Fast R-CNN, Centernet, SSD, YOLOv5-s, YOLOv4-tiny,

and improved YOLOv4-tiny (Wang L. et al., 2021). At the same

time, we add the performance results of YOLOv4-tiny combined

with these three different modules. The results of the experiments

are presented in Table 4.

Based on the results presented in Table 4, we observe that

the performance of our model on the TT100K dataset is notably

lower compared to its performance on the CCTSDB dataset. This

difference can be attributed to the smaller absolute area of the

targets in the TT100K dataset. In addition, among the compared

object detection algorithms, our model achieves the highest mAP

value and the lowest Params. Specifically, our proposed method

achieves a mAP index of 54.37%, which is 7.37% higher than the

original algorithm and 2.3% higher than the improved YOLOv4-

tiny. These results demonstrate the effectiveness of our proposed

method in this paper.

In Figure 7, we compare the detection performance of our

proposed model with that of the YOLOv4-tiny model on the

TT100K dataset. The first set of images demonstrates that our

model outperforms YOLOv4-tiny in detecting small traffic signs

located at a distance, which indicates that the backbone structure

of our model effectively captures the features associated with small

targets and reduces the rate of miss detection. In the second set of

images, the results indicate that our model can accurately detect

three urban road traffic sign targets despite the presence of more

interference information around them. Furthermore, our proposed

method yields higher confidence scores compared to the original

model, providing evidence of its superiority.

4.5. Ablation experiments

To assess the effectiveness of our proposed improved method,

we conducted ablation experiments on the CCTSDB dataset. We
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begin by using the YOLOv4-tiny model as a baseline and then add

the aforementioned improvedmethods to enhance its performance.

The modified models are trained and tested on the CCTSDB

dataset, and the results are compared and presented in Table 5.

Comparing the performance indicators of the baseline model

and our proposed improved methods in Table 5, we observe that

E-DSC, FFRM, and S-RFB are all effective in enhancing the

model’s mAP performance, with increases of 1.87, 1.84, and 1.42%,

respectively. The E-YOLOv4-tiny model, which integrates all three

TABLE 4 Performance comparison results of di�erent models on TT100K

dataset.

Models mAP@0.5/% Params/
MB

FPS/(frame/
s)

Faster R-CNN 46.23 137.09 6

Centernet 44.09 32.66 32

SSD 40.17 26.28 35

Improved YOLOv4-tiny 52.07 24.7 -

YOLOv5-s 53.28 27.6 42

YOLOv4-tiny 47 23.1 100

E-DSC 50.09 17.6 87

FFRM 49.65 25.3 85

S-RFB 49.27 23.4 91

E-YOLOv4-tiny 54.37 18.2 62

improved methods, achieves the highest mAP performance, with

a 3.76% improvement over the baseline. Remarkably, the E-

YOLOv4-tiny model also reduces the number of model parameters

by 21%, indicating that it is more efficient and cost-effective for

practical applications.

We visualize and compare the detection process of each of

the above models by heat map for visual comparison, as shown

in Figure 8. In the heat map, blue color indicates the minimum

activation value for that target region, and red color indicates the

maximum activation value for that target region.

The original detection image with four traffic signs, including

three “prohibitory” signs and one “mandatory” sign, is shown in

Figure 8A. The heat map of the YOLOv4-tinymodel is illustrated in

Figure 8B, where the activation responses of the “prohibitory” and

“mandatory” signs are confused, leading to a higher risk of false

detection. Figure 8C shows the heat map of the model based on

the E-DSC backbone. The result indicates that the model’s ability to

TABLE 5 Results of ablation experiments based on CCTSDB dataset.

Models mAP@0.5/% Params/MB FPS/(frame/s)

Baseline 92.44 23.1 100

E-DSC 94.31 17.6 87

FFRM 94.28 25.3 85

S-RFB 93.86 23.4 91

E-YOLOv4-tiny 96.20 18.2 62

FIGURE 7

Detection results of TT100K dataset.
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FIGURE 8

Visualization of heat maps.

extract target features has improved, but there is still confusion in

the activation response of similar types of targets. Figure 8D shows

the heat map of themodel using FFRM in the feature fusion section.

It can be seen that the FFRM can enable the network to focus

on the main features of the target and effectively distinguish the

features of each target. Figure 8E shows the heat map of the model

with the addition of the S-RFB context enhancement module,

effectively enhancing the model’s ability to detect targets. Figure 8F

showcases the heat map of the E-YOLOv4-tiny model. The model

exhibits distinct activation responses for each target, allowing it to

effectively focus on the target feature area and enhance the target

area feature activation response.

5. Conclusion

In this paper, an E-YOLOv4-tiny traffic sign detection

algorithm is proposed to address the difficulties faced by

autonomous vehicles in recognizing small target traffic signs

in complex urban road environments. Specifically, we address

these challenges through three main contributions. Firstly, we

propose a lightweight E-DSC block to optimize the backbone

and enhance the network’s ability to extract small target features.

Secondly, we propose an FFRM that fully fuse multi-scale features

while efficiently filtering interference information through the

ECA. Finally, we introduce an S-RFB module with multi-branch

structure and dilated convolutional layer, which can introduce

context information into the network and increase the diversity of

network’s receptive field. The experimental results on the CCTDDB

dataset and TT100K dataset demonstrate that our proposed

method significantly improves model accuracy and parameter

efficiency compared to the YOLOv4-tiny algorithm. Moreover, our

method achieves real-time performance, making it highly practical

for improving urban road traffic sign detection. Therefore, the

advantages of our method lie in achieving a balance between

model accuracy, parameter efficiency, and real-time performance,

making it more suitable for practical deployment on edge devices

for real-time traffic sign detection. Additionally, our proposed

method enhances the detection ability of the model for extremely

small objects in complex backgrounds present in urban roads. The

current drawback of our approach is that, although it achieves real-

time performance and outperforms other advanced algorithms, the

detection speed still suffers some loss compared to the original

algorithm. Furthermore, our method does not consider traffic sign

detection in extreme weather conditions. Therefore, our next step

will be to research traffic sign detection in extreme scenarios, such

as rain, snow, and extreme lighting conditions, in urban roads and

minimize the loss of real-time performance as much as possible.
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