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In recent years, remote-sensing image super-resolution (RSISR) methods based

on convolutional neural networks (CNNs) have achieved significant progress.

However, the limited receptive field of the convolutional kernel in CNNs hinders

the network’s ability to e�ectively capture long-range features in images,

thus limiting further improvements in model performance. Additionally, the

deployment of existing RSISR models to terminal devices is challenging due

to their high computational complexity and large number of parameters. To

address these issues, we propose a Context-Aware Lightweight Super-Resolution

Network (CALSRN) for remote-sensing images. The proposed network primarily

consists of Context-Aware Transformer Blocks (CATBs), which incorporate a

Local Context Extraction Branch (LCEB) and a Global Context Extraction Branch

(GCEB) to explore both local and global image features. Furthermore, a Dynamic

Weight Generation Branch (DWGB) is designed to generate aggregation weights

for global and local features, enabling dynamic adjustment of the aggregation

process. Specifically, the GCEB employs a Swin Transformer-based structure to

obtain global information, while the LCEB utilizes a CNN-based cross-attention

mechanism to extract local information. Ultimately, global and local features are

aggregated using the weights acquired from the DWGB, capturing the global and

local dependencies of the image and enhancing the quality of super-resolution

reconstruction. The experimental results demonstrate that the proposed method

is capable of reconstructing high-quality images with fewer parameters and less

computational complexity compared with existing methods.
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1. Introduction

The aim of single image super-resolution (SISR) is to reconstruct a high-resolution image

from its associated low-resolution version. As a low-level visual task within the realm of

computer vision, SISR algorithms serve to recover lost texture details in low-resolution

images, thereby providing enhanced clarity for higher-level visual tasks, such as person

re-identification (Li et al., 2022b, 2023a; Li S. et al., 2022; Zhang et al., 2022), medical

imaging (Georgescu et al., 2023), image dehazing/defogging (Zheng et al., 2020; Zhu et al.,

2021c), low-resolution image fusion (Li et al., 2016, 2021; Xiao et al., 2022), and remote

sensing (Chen L. et al., 2021; Jia et al., 2023). In the field of remote sensing, high-resolution

remote-sensing images can be used to obtain more detailed information about the detected

area. The most direct method to obtain high-resolution remote-sensing images is to improve

the precision of CMOS or charge-coupled device sensors. However, this approach entails

substantial costs (Xu et al., 2021). On the contrary, SISR technology can economically and

conveniently improve the resolution of remote-sensing images.
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In recent years, the advancement of deep learning has led

to the proposal of numerous convolutional neural network

(CNN)-based SISR methods, which have demonstrated remarkable

performance. Dong et al. (2014) were the pioneers in applying

CNNs to super-resolution (SR) tasks, introducing the Super-

Resolution Convolutional Neural Network (SRCNN). SRCNN

employs bicubic interpolation to enlarge the input low-resolution

image to the target size and utilizes a three-layer convolutional

network for nonlinear mapping to obtain a high-resolution

image. This approach outperforms traditional super-resolution

reconstruction methods. However, SRCNN suffers from high

computational complexity and slow inference speed. To overcome

these limitations, Dong et al. (2016) proposed the Fast Super-

Resolution Convolutional Neural Network (FSRCNN), building

upon SRCNN to directly extract features from low-resolution

images, thus accelerating computation. Kim et al. introduced

a Deeply-Recursive Convolutional Network (DRCN; Kim et al.,

2016b) and a Very Deep Convolutional Network for Image

Super-Resolution (VDSR; Kim et al., 2016a), both of which

employ deeper convolutional layers and have achieved impressive

results in SR tasks. This supports the notion that deeper CNNs

can enhance model performance. Lim et al. (2017) proposed

Enhanced Deep Residual Networks for Single Image Super-

Resolution (EDSR), incorporating a deeper network and residual

structure, further emphasizing that deeper networks yield superior

super-resolution performance. Although high-resolution images

can be obtained using the above SISR approaches, computational

costs and memory consumption need to be considered when

deploying the models on mobile devices, especially in the field

of remote sensing (Qi et al., 2022; Liu Y. et al., 2023; Liu Z.

et al., 2023; Wang et al., 2023). Wang et al. (2022) proposed

a lightweight feature enhancement network (FeNet) for remote-

sensing image super-resolution, which aims to achieve high-quality

image reconstruction by effectively extracting and enhancing image

features. FeNet can maintain high reconstruction quality while

reducing computational complexity and memory consumption.

Nonetheless, due to the limited receptive field of the convolution

kernel, CNN-based super-resolution models can only acquire local

image information during convolution operations, which restricts

their performance. Consequently, super-resolution networks need

to extract both global and local information from images to achieve

further improvements in performance.

Transformer (Vaswani et al., 2017) differs significantly from

CNNs and is capable of capturing global information in images

through its self-attention mechanism. Consequently, Liang et al.

(2021) designed an image restoration network called SwinIR,

which combines CNNs and Transformers. This network effectively

models long-range dependencies in images, facilitating the

restoration of global image information. However, SwinIR only

relies on CNNs to extract shallow features, neglecting to fully

exploit the CNN’s potential to capture local information in

intermediate layers. This results in the model’s limited ability

to acquire local information. Tu et al. (2022) proposed a

generative adversarial network (GAN) called SWCGAN, which

aims to address the limitations of convolutional layers in

modeling long-range dependencies and uses a combination of

Swin Transformer and convolutional layers to generate high-

resolution remote-sensing images. To further investigate the

FIGURE 1

Comparison of SISR models (×4) in terms of accuracy, network

parameters, and Multi-Adds from the RS-T1 dataset. The area of

each circle denotes the number of Multi-Adds. The proposed model

achieves comparable performance with fewer parameters and lower

Multi-Adds. The star symbol represents the model proposed by us.

aggregation of local and global information, Chen et al. (2022)

and Gao et al. (2022b) proposed the image super-resolution

networks HAT and LBNet, respectively. HAT employs a hybrid

attention mechanism, combining channel attention and self-

attention to activate more pixels, thereby enhancing the quality of

super-resolution reconstruction images. Nevertheless, the hybrid

attention mechanism leads to a substantial increase in the model’s

number of parameters and computational complexity. LBNet fuses

symmetric CNNs with recursive Transformers to offer a high-

performance, efficient solution for SISR tasks. However, LBNet

directly cascades the CNN and recursive Transformer, overlooking

the dynamic interaction between global and local information

during the feature extraction process. Thus, further research

is warranted to effectively harness the local feature extraction

capabilities of CNNs and the global feature extraction capacities of

Transformers to improve the performance of SISR models.

To address the above issues, we propose a context-aware

lightweight super-resolution network (CALSRN) for remote-

sensing images. This novel network is capable of extracting

both local and global features from images and dynamically

adjusting their fusion weights, thereby better representing image

information and enhancing reconstruction quality. Furthermore,

the proposed model has only about 320 K parameters, making it

lighter than existing state-of-the-art lightweight super-resolution

reconstruction networks while maintaining superior performance,

as shown in Figure 1. This lower number of parameters results

in lower computational complexity of the model. Overall, the

proposed network achieves a good balance between performance

and model complexity. In summary, our main contributions are as

follows.

(1) We propose a lightweight remote-sensing image SR network

consisting of ∼320 K parameters. In comparison to other

state-of-the-art lightweight SR networks, the proposed
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network demonstrates the ability to reconstruct higher-quality

images with a reduced number of parameters and lower

computational complexity, thereby facilitating easier

deployment on terminal devices.

(2) We introduce a context-aware Transformer block (CATB)

that is designed to not only capture local details but also

concentrate on extracting global features. Simultaneously,

dynamic adjustment branches are incorporated to adaptively

learn the fusion weights between local and global features,

resulting in a more effective feature representation and an

enhanced quality of SR reconstruction images.

(3) The experimental results demonstrate that the super-

resolution reconstruction images generated by the proposed

method exhibit substantial structural and textural details.

Compared with other lightweight SISR networks, the proposed

method achieves the optimum in terms of visual quality and

performance evaluation.

2. Related works

2.1. CNN-based SISR

In recent years, deep learning has been widely used in SISR

in view of its excellent performance in image processing (Zhu

et al., 2021a; Li et al., 2022a, 2023b; Tang et al., 2023) and

recognition (Li et al., 2020; Zhu et al., 2021b; Yan et al., 2022).

Dong et al. (2014) first applied CNN to image super-resolution

and proposed SRCNN, which outperforms the conventional SISR

methods. To solve the problem of slow inference speed of

SRCNN, Dong et al. (2016) improved SRCNN and proposed

FSRCNN. To overcome the limitation of the limited receptive

field of the convolutional kernel, Lei et al. (2017) proposed

the local global combined network (LGCNet), which extracts

local and global features in low-resolution images by local and

global networks, respectively, and combines these two features

together for super-resolution image reconstruction. Lai et al.

(2017) Laplacian pyramid super-resolution networks (LapSRN),

which combined Laplacian pyramid with deep learning to achieve

multi-level super-resolution reconstruction. Since simply stacking

convolutional layers may lead to gradient explosion, Kim et al.

(2016a) proposed VDSR, which alleviates the gradient explosion

problem by residual learning. From the perspective of reducing the

model parameters and computational complexity, DRRN (Tai et al.,

2017a), MemNet (Tai et al., 2017b), and LESRCNN (Tian et al.,

2020) use a recursive approach to increase the sharing of model

parameters. These methods have achieved good performance for

remote-sensing image super-resolution. However, their inference

speed is limited by the fact that recurrent networks require deeper

CNNs for information compensation. Hui et al. (2018) proposed

information distillation network (IDN), which extracts detail and

structural information through a knowledge distillation strategy to

obtain better performance while reducing the model parameters.

Lan et al. (2021) proposed a lightweight SISR model named

MADNet, which effectively combines multi-scale residuals and

attention mechanisms to enhance image feature representation. To

effectively extract and fuse features from different levels, Lan et al.

(2021) proposed a feature distillation and interaction weighting

strategy to improve the super-resolution image quality. However,

the number of parameters of the above models is still large. In

order to address the limitations of memory consumption and

computational burden in remote-sensing image super-resolution

applications, Wang et al. (2022) proposed a lightweight feature

enhancement network (FeNet) for accurate remote-sensing image

super-resolution reconstruction. FeNet uses lightweight lattice

blocks (LLB) and feature enhancement blocks (FEB) to extract

and fuse features with different texture richness. FeNet has

a smaller number of model parameters and faster inference

speed, but its ability to capture global information is limited

due to the constraints of convolutional kernel receptive field.

In general, lightweight CNN-based SISR networks have difficulty

in capturing global information of images, while CNN-based

models with a larger number of parameters are challenging to

deploy directly on terminal devices. Consequently, we design a

lightweight SISR network capable of capturing both local and global

image features.

2.2. Transformer-based SISR

In recent years, Transformer (Vaswani et al., 2017) has been

applied to low-level computer vision tasks with good results

due to its global feature capture capability. Chen H. et al.

(2021) proposed a pre-trained image processing Transformer for

image recovery. Liang et al. (2021) proposed SwinIR network

by migrating the Swin Transformer (Liu et al., 2021) directly

to the image recovery task with good results. However, the

dual layer structures in the Swin Transformer block all use

multi-head self-attention, which makes the SwinIR too complex.

Lu et al. (2021) proposed an effective Transformer for SISR,

which reduces GPU memory consumption through lightweight

Transformers and feature separation strategies. Chen et al. (2022)

proposed a SISR Transformer named HAT. HAT employs a

hybrid attention combining channel attention and self-attention,

while introducing an overlapping cross-attention module to better

aggregate information across windows, achieving good super-

resolution performance. However, the number of parameters in

HAT is too large. Chen et al. (2022) proposed a lightweight

super-resolution network LBNet, which combines CNN and

Transformer. In LBNet, the symmetric CNN structure facilitates

local feature extraction, and the recursive Transformer learns

the long-term dependency relationship of images. However,

LBNet only cascades CNN and Transformer, and the local and

global features they extract are not well fused. In general, the

aforementioned models do not adequately consider the effective

aggregation of features extracted by CNN and Transformer, making

it challenging to achieve an optimal balance between model size

and performance. To strike a compromise between accuracy,

complexity, and model size, the network’s feature representation

must be enhanced within a limited number of parameters.

Consequently, we design the CATB, which can adaptively learn the

fusionweights between local and global features, thereby improving

the network’s feature representation.
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3. Methods

3.1. Overview

The proposed context-aware lightweight super-resolution

network (CALSRN) consists of three main parts: a shallow feature

extraction module, a deep feature extraction module, and a

reconstruction layer, as shown in Figure 2. The shallow feature

extraction module adopts a 3 × 3 convolution layer and a PReLU

activation function to extract shallow feature, which contain more

fine-grained information. Deep features are extracted through N

cascaded CATBs, and features from different levels of CATBs

are concatenated to obtain SR reconstruction images through

reconstruction layer. CATB is a feature extraction block designed

FIGURE 2

Overall architecture of the proposed CALSRN. (A) Context-aware transformer block. (B) Local context extraction branch. (C) Global context

extraction branch.

TABLE 1 Quantitative comparison of 2× super-resolution results obtained by di�erent methods on RS-T1 and RS-T2 datasets.

Method Params (K) Multi-adds (G) PSNR/SSIM

RS-T1 RS-T2

SRCNN 57 52.7 35.18/0.9243 32.87/0.9209

VDSR 666 612.6 35.85/0.9312 33.86/0.9312

LGCNet 193 178.1 35.65/0.9298 33.47/0.9281

LapSRN 251 29.9 35.69/0.9304 33.57/0.9286

CARN-M 412 91.2 35.77/0.9314 33.84/0.9315

IDN 553 124.6 36.13/0.9339 34.07/0.9329

LESRCNN 626 281.5 36.04/0.9328 34.00/0.9320

FeNet 351 77.9 36.23/0.9341 34.22/0.9337

LBNet 731 153.2 36.28/0.9345 34.30/0.9339

Proposed 319 20.4 36.34/0.9356 34.37/0.9349

Multi-Adds is computed according to a 1, 280× 720 image.

The bold values represent the best performance.
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based on CNN and Transformer, which is composed of local

context extraction branch (LCEB), global context extraction branch

(GCEB), and dynamic weight generation branch (DWGB).

3.2. Network structure

Given a degraded low-resolution image ILR ∈ R
H×W×Cin , its

shallow features F0 ∈ R
H×W×C are extracted by the shallow feature

extraction module, which can be formulated as:

F0 = PReLU(conv3×3(ILR)), (1)

where Cin and C denote the number of channels for low-resolution

images and its shallow features, respectively. conv3×3 represents

3× 3 convolution. PReLU is PReLU activation function.

F0 is input to the deep feature extractionmodule to extract deep

features. The deep feature extraction module consists of N CATBs.

Assuming Fn ∈ R
H×W×C is the output of the n-th CATB, it can be

expressed as:

Fn = f nCATB(f
n−1
CATB · (f

1
CATB(F0))), (2)

where f nCATB denotes the n-th CATB. The outputs of all CATBs

are concatenated, and channel downscaling is performed using

1 × 1 convolution, and features of each level are fused by 3 × 3

convolution to obtain deep features. Then, the residual structure is

used to sum the deep features and shallow features to obtain the

feature Fadd ∈ R
H×W×C:

Fadd = conv3×3(conv1×1([F1, F2, ·, FN]))+ F0, (3)

where [·, ·] denotes concatenation operation. Fadd is fed into the

reconstruction layer for super-resolution reconstruction.

The reconstruction layer consists of 3 × 3 convolution and

Pixel Shuffle upsampling operation. The reconstructed result of

Fadd by the reconstruction layer are summed with the up-sampling

TABLE 2 Quantitative comparison of 3× super-resolution results obtained by di�erent methods on RS-T1 and RS-T2 datasets.

Method Params (K) Multi-Adds (G) PSNR/SSIM

RS-T1 RS-T2

SRCNN 57 52.7 30.95/0.8228 28.59/0.8180

VDSR 666 612.6 31.55/0.9352 29.40/0.8391

LGCNet 193 79.0 31.30/0.8314 29.03/0.8312

LapSRN 290 115.2 31.47/0.8338 29.22/0.8352

CARN-M 412 46.1 31.72/0.8426 29.62/0.8452

IDN 553 56.3 31.73/0.8430 29.59/0.8450

LESRCNN 810 238.9 31.68/0.8398 29.65/0.8444

FeNet 357 35.2 31.89/0.8432 29.80/0.8481

LBNet 736 51.5 31.96/0.8485 29.91/0.8516

Proposed 326 20.8 32.05/0.8505 30.01/0.8526

Multi-Adds is computed according to a 1, 280× 720 image.

The bold values represent the best performance.

TABLE 3 Quantitative comparison of 4× super-resolution results obtained by di�erent methods on RS-T1 and RS-T2 datasets.

Method Params (K) Multi-Adds (G) PSNR/SSIM

RS-T1 RS-T2

SRCNN 57 52.7 28.87/0.7382 26.46/0.7296

VDSR 666 612.6 29.33/0.7546 27.03/0.7525

LGCNet 193 44.5 29.13/0.7481 26.76/0.7426

LapSRN 543 139.6 29.51/0.7614 27.24/0.7600

CARN-M 412 32.5 29.57/0.7624 27.37/0.7647

IDN 553 32.3 29.56/0.7623 27.31/0.7627

LESRCNN 774 241.6 29.62/0.7625 27.41/0.7646

FeNet 366 20.4 29.70/0.7688 27.45/0.7672

LBNet 742 38.9 29.78/0.7689 27.52/0.7732

Proposed 336 21.4 29.85/0.7717 27.67/0.7759

Multi-Adds is computed according to a 1, 280× 720 image.

The bold values represent the best performance.
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result of the low-resolution image to obtain the super-resolution

reconstruction image ISR.

ISR = HPi(con3×3(Fadd))+HBi(ILR), (4)

where HPi and HBi denote Pixel Shuffle upsampling operation and

bilinear upsampling operation, respectively.

The reconstruction loss is used to constrain the proposed

network. Assuming that the total number of training samples is B,

the reconstruction loss can be expressed as:

Lre =
1

B

B∑

i=1

‖IiSR − I
i
HR‖1, (5)

where IiSR and I
i
HR are the i-th reconstructed super-resolution image

and its corresponding labeled high-resolution image, respectively.

3.3. Context-aware transformer block

CATB consists of GCEB, LCEB, and DWGB. GCEB is designed

based on the Swin Transformer (Liu et al., 2021) to extract global

information. LCEB uses a CNN-based cross-attention mechanism

for extracting local information. DWGB adaptively generates

fusion weights for weighted fusion of global and local features.

The structure of GCEB is shown in Figure 2C. GCEB can be

divided into two layers, which employ S-MSA (Liu et al., 2021) and

overlapping cross-attention (Lu et al., 2021) mechanisms to achieve

information interaction between windows, respectively. Among

them, the first layer uses the S-MSA mechanism, and the window

size determines the range of self-attention. A larger window size is

beneficial for obtaining more relevant information, but expanding

the window size will increase the number of parameters and

model complexity. To reduce the computational complexity of

FIGURE 3

Visual comparisons with di�erent methods for 2× super-resolution on RS-T1 and RS-T2 datasets.

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1220166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Peng et al. 10.3389/fnbot.2023.1220166

the model, we introduce an overlapping cross-attention (OCA)

mechanism in the second layer of GCEB. OCA enhances the

expression of window self-attention by establishing cross-window

connections, which is less computationally demanding than S-

MSA. S-MSA is primarily used to capture spatial relationships

within the input features. By applying multi-head self-attention

on sliding windows, the network can focus on relevant spatial

contexts and enhance its perception of local spatial details. On the

other hand, OCA effectively aggregates cross-window information

while reducing computational complexity, thereby enhancing the

interaction between neighboring window features.

Let Fn−1 ∈ R
H×W×C denote the input of the CATB. F1n−1 can

be obtained after Fn−1 is processed by the first layer of GCEB.

F
1
n−1 = MLP(LN(S−MSA(LN(Fn−1)+ Fn−1)))

+ (S−MSA(LN(Fn−1))+ Fn−1),
(6)

where S − MSA indicates sliding window multi-headed self-

attentive operation. LN and MLP denote layer normalization and

multi-layer perceptron, respectively. The output features of the

second layer of GCEB are expressed as:

FGCE = MLP(LN(OCA(LN(F1n−1)+ F
1
n−1)))

+ (OCA(LN(F1n−1))+ F
1
n−1),

(7)

where FGCE is the global feature extracted by GCEB.OCA indicates

overlapping cross-attention operation.

As shown in Figure 2B, in LCEB, the input feature Fn−1

passes through the LN layer, 1 × 1 convolution for further feature

extraction. The extracted features are divided into two parts along

the channel: X ∈ R
H×W× C

2 and Y ∈ R
H×W× C

2 , which can be

represented as:

{X,Y} = split(conv1×1(LN(Fn−1))), (8)

FIGURE 4

Visual comparisons with di�erent methods for 3× super-resolution on RS-T1 and RS-T2 datasets.
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where split is the feature separation operation along the channel.

X and Y go through 1 × 1 convolution to reshape their channel

dimensions to C, respectively, and then they are passed through

the PReLU activation function to obtain X̃ and Ỹ . Convolution

operations are performed on X̃ and Ỹ using convolution kernels

of different sizes to obtain features X1 and Y1 with different

receptive fields. In order to integrate the features X1 and Y1,

we introduce a cross-attention mechanism. The features obtained

by cross-attention fusion are the local features extracted by the

network, which can be expressed as:

FLCE = conv1×1[σ (conv1×1(X1))⊙ Y1, σ (conv1×1(Y1))⊙ X1],

(9)

where σ denotes Sigmoid activation function. ⊙ denotes element-

by-element multiplication.

In order to adaptively adjust the fusion weights of global and

local features, we introduce a dynamic weight generation branch

(DWGB), as shown in Figure 2A. DWGB can adaptively learn the

weighted fusion coefficients of global features and local features.

The input of DWGB is Fn−1 and the output is a two-dimensional

vector [α,β].

{α,β} = σ (FC(γ (GAP(Fn−1)))), (10)

where α and β are the fusion weights of local features and global

features. γ denotes ReLU activation function. FC is fully connected

layer. GAP denotes global average pooling.

Finally, the output of CTAB is obtained by weighted fusion of

local features and global features.

Fn = α × FLCE + β × FGCE, (11)

where Fn denotes the output of CATB.

FIGURE 5

Visual comparisons with di�erent methods for 4× super-resolution on RS-T1 and RS-T2 datasets.
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FIGURE 6

Visual comparisons with di�erent methods for 3× super-resolution on super-resolution benchmark datasets.

FIGURE 7

Visual comparisons with di�erent methods for 4× super-resolution on super-resolution benchmark datasets.
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4. Experimental results and analysis

4.1. Experimental setup

The DIV2K dataset (Timofte et al., 2017) was used to train the

proposed network. This dataset consists of 800 training images,

100 validation images, and 100 test images, each with 2 K

resolution. To comprehensively evaluate the model performance,

we used two remote-sensing image datasets RS-T1 and RS-T2

(Wang et al., 2022), as well as five super-resolution benchmark

test sets: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2012),

BSD100 (Huang et al., 2015), Urban100 (Martin et al., 2001),

and Manga109 (Matsui et al., 2017) to test the models. PSNR

and SSIM (Wang et al., 2004) were used as evaluation metrics to

TABLE 4 Quantitative comparison of 3× super-resolution results obtained by di�erent methods on super-resolution benchmark datasets.

Method Params (K) Multi-Adds (G) PSNR/SSIM

Set5 Set14 BSD100 Urban100 Manga109

SRCNN 57 52.7 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN 54 5.0 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

LapSRN 502 115.2 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350

VDSR 666 612.6 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340

LGCNet 193 79.0 33.32/0.9172 29.67/0.8289 28.63/0.7923 26.77/0.8180 –

DRRN 298 6796,9 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379

CARN-M 412 46.1 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385 32.78/0.9384

IDN 553 56.3 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381

MemNet 678 2662.4 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369

LESRCNN 810 238.9 33.93/0.9231 30.12/0.8380 28.91/0.8005 27.70/0.8415 32.76/0.9389

MADNet 930 88.4 34.14/0.9251 30.20/0.8395 28.98/0.8023 27.78/0.8439 –

LBNet 736 68.4 34.47/0.9277 30.38/0.8417 29.13/0.8061 28.42/0.8559 33.80/0.9430

FDIWN 645 51.5 34.52/0.9281 30.42/0.8438 29.14/0.8065 28.35/0.8567 –

Proposed 326 20.8 34.50/0.9283 30.52/0.8455 29.17/0.8085 28.49/0.8586 33.99/0.9470

−Indicates that the result is unknown. Multi-Adds is computed according to a 1, 280× 720 image.

The bold values represent the best performance.

TABLE 5 Quantitative comparison of 4× super-resolution results obtained by di�erent methods on super-resolution benchmark datasets.

Method Params (K) Multi-Adds (G) PSNR/SSIM

Set5 Set14 BSD100 Urban100 Manga109

SRCNN 57 52.7 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN 54 4.6 30.72/0.8660 26.98/0.7150 26.98/0.7150 24.62/0.7280 27.90/0.8610

LapSRN 543 139.6 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900

VDSR 666 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870

LGCNet 193 44.5 30.87/0.8746 27.82/0.7630 27.08/0.7186 24.82/0.7399 -

DRRN 298 6796.9 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946

CARN-M 412 32.5 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.63/0.7688 29.80/0.8989

IDN 553 32.3 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942

MemNet 678 2662.4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942

LESRCNN 774 241.6 31.88/0.8903 28.44/0.7772 27.45/0.7313 25.77/0.7732 29.94/0.9002

MADNet 1002 54.1 32.01/0.8925 28.45/0.7781 27.47/0.7327 25.77/0.7751 –

LBNet 742 38.9 32.29/0.8960 28.68/0.7832 27.62/0.7382 26.27/0.7906 30.76/0.9111

FDIWN 664 28.4 32.23/08955 28.66/07829 27.62/07380 26.28/07919 –

Proposed 336 21.4 32.27/0.8965 28.70/0.7845 27.66/0.7409 26.53/0.7986 30.98/0.9145

−Indicates that the result is unknown. Multi-Adds is computed according to a 1, 280× 720 image.

The bold values represent the best performance.
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TABLE 6 Ablation study of each module on the RS-T1 dataset with a magnification factor of 2.

LCEB GCEB DWGB Params (K) Multi-Adds (G) PSNR/SSIM

X X X 319 20.4 36.29/0.9343

X X × 304 15.9 36.11/0.9332

X × × 156 15.1 36.02/0.9328

× X × 256 15.3 36.06/0.9329

FIGURE 8

Visual results of 2× ablation experiments on remote sensing test set RS-T1.

measure the quality of the reconstruction images. PSNR and SSIM

are calculated on the Y channel after converting the reconstructed

image from RGB space to YCbCR space. In addition, we used the

number of parameters (Params) and the number of multiplication

and addition operations (Muti-Adds) to evaluate the size and

complexity of the model.

In the experiments, low-resolution images were generated from

high-resolution images by bicubic downsampling with scale factors

of 2×, 3×, and 4×. Moreover, we performed data expansion using

random rotations of 90, 180, 270o and horizontal flips. The Adam

optimizer was used to optimize the proposed network, where β1 =

0.9, β1 = 0.999, ǫ = 10−8. The size of mini-batch was set to 16.

The initial learning rate was set to 5 × 10−4 and the learning rate

was halved every 200 epochs. The total training epoch was 1, 000.

The 2× super-resolutionmodel was trained from scratch and it was

used as a pre-training model for the 3× and 4× super-resolution

models. The number of CATBs in the proposed network was 4, and

50 feature channels were used in the middle layer to ensure the

lightweight of the model. All experiments were performed under

Pytorch 1.12.1 framework using two NVIDIA GTX3090 GPUs

(24 G).

4.2. Experiments on remote-sensing image
datasets

To validate the effectiveness of the proposed model in this

paper, we compare the proposed method with state-of-the-arts

methods [SRCNN (Dong et al., 2014), VDSR (Kim et al., 2016a),

LGCNet (Lei et al., 2017), LapSRN (Lai et al., 2017), CARN-

M (Ahn et al., 2018), IDN (Hui et al., 2018), LESRCNN (Tian
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et al., 2020), FeNet (Wang et al., 2022), LBNet (Gao et al., 2022b)]

on the remote-sensing image datasets RS-T1 and RS-T2 (Wang

et al., 2022). Both RS-T1 and RS-T2 consist of 120 images covering

21 complex ground truth remote-sensing scenarios. For a fair

comparison, all comparison methods are tested on the RS-T1

and RS-T2 datasets using models trained on the DIV2K dataset.

Tables 1–3 demonstrate the results of the quantitative evaluation

of the compared methods on the RS-T1 and RS-T2 datasets.

According to Tables 1–3 that the PSNR/SSIM values of the 2×, 3×,

4× super-resolution reconstruction results of the proposed method

on RS-T1 and RS-T2 datasets are optimal. Moreover, the Multi-

Adds value of the proposed method is the best, and the number

of parameters is about 30 K less than that of FeNet, which is the

current optimal lightweight super-resolution reconstruction model

for remote-sensing images. It confirms that the proposed method

can achieve good performance with a small number of parameters.

In addition, the 2×, 3×, and 4× super-resolution

reconstruction results of remote-sensing images are illustrated

in Figures 3–5, respectively. As shown in Figure 3, when the

magnification factor is 2, the visual effect of the proposed method

on “overpass63,” “Sparseresidential10,” and “freeway41” is better

than that of the comparison methods in terms of clarity, and the

PSNR and SSIM values are also optimal. As shown in Figure 4,

the 3× reconstructed images of the proposed method achieve

the optimal quality in terms of both structure and detailed

texture, especially for the “Denseresidential46” image, where the

comparison methods fail to recover the corner information. As

shown in Figure 5, IDN, FeNet, LBNet, and our proposed method

all achieve good visual results, while the reconstructed images of

the remaining comparison methods are relatively blurry. Overall,

as a lightweight super-resolution model, the proposed model

achieves better quantitative and qualitative results than existing

models.

4.3. Experiments on super-resolution
benchmark test sets

To further verify the generalization of the proposed model in

this paper, we conduct comparison experiments on the benchmark

test sets. The datasets Set5, Set14, BSD100, Urban100, and

Manga109 are benchmark test sets for image super-resolution

reconstruction, covering images of different scenes such as urban

buildings, animals, plants, and animations. In order to verify the

effectiveness of the proposed method, we compare the proposed

method with state-of-the-arts methods [SRCNN (Dong et al.,

2014), FSRCNN (Dong et al., 2016), LapSRN (Lai et al., 2017),

VDSR (Kim et al., 2016a), LGCNet (Lei et al., 2017), DRRN (Tai

et al., 2017a), CARN-M (Ahn et al., 2018), IDN (Hui et al.,

2018), MemNet (Tai et al., 2017b), LESRCNN (Tian et al., 2020),

MADNet (Lan et al., 2021), FDIWN (Gao et al., 2022a), LBNet (Gao

et al., 2022b)] on the five test sets mentioned above. It is worth

noting that the models for the comparison methods are the already

trained models provided by the original authors. The objective

evaluation results of the 3× and 4× magnification factor super-

resolution reconstruction experiments are shown in Tables 4, 5.

The best values are highlighted in bold. As shown in Tables 4, 5,

the PSNR/SSIM values of the proposed method outperforms the

others at the most metrics. Moreover, compared with the LBNet

and FDIWN methods, which have comparable performance to

the proposed method, they have more than twice the number of

parameters andmuch largerMulti-Adds than those of the proposed

method. Overall, the proposed model achieves a good balance

among the number of parameters, complexity and performance.

To evaluate the visual quality of the super-resolution

reconstruction images, the 3× and 4× super-resolution images are

shown in Figures 6, 7, respectively. As shown in Figure 6, when

the images are enlarged by 3 times, artifacts are introduced in

the reconstruction results of the comparison methods. As shown

in Figure 7, the 4× super-resolution results of the “img073” and

“img092” images in the Urban test set are closest to the Ground-

Truth images, and achieve the best visual experience in terms of

overall image clarity and detail texture. Other comparison methods

exhibit visible artifacts, such as severe misalignment in the locally

zoomed-in “img092” images restored by SRCNN, VDSR, LapSRN,

CARN-M, IDN, LESRCNN, and FDIWM. Overall, compared

with existing methods, the visual quality of the reconstructed

images by the proposed method is optimal in terms of clarity and

detailed texture.

4.4. Ablation study

To verify the effectiveness of the global context extraction

branch (GCEB), local context extraction branch (LCEB) and

dynamic weight generation branch (DWGB) proposed in this

work, we conduct ablation experiments on the RS-T1 dataset

with a magnification factor of 2. The results of the ablation

experiments are shown in Table 6. In the ablation experiment,

this paper removes DWGB, GCEB, and LCEB one by one from

the complete model, and then compare the performance of the

modified model with the complete model. As shown in Table 6,

the model performance all decreases when DWGB, GCEB, and

LCEB are removed from the complete model. This indicates that

DWGB, GCEB, and LCEB all have a positive effect on improving

the model performance.

We use the “denseresidential13” and “baseballdiamond98”

images from the RS-T1 test set to verify the ablation experiment

visually. From the local zoom-in visual results in Figure 8, it can

be seen that the image quality decreases when DWGB, GCEB

and LCEB are removed from the complete model one by one.

The combination of LCEB+GCEB+DWGB achieves the best visual

performance, and when DWGB is removed from the complete

model, the model’s performance decreases, resulting in blurry

images for “denseresidential13” and “baseballdiamond98.” This

demonstrates the crucial role of the dynamic weight generation

branch (DWGB) in adjusting global and local information within

the overall network. When the model only has LCEB or GCEB,

the reconstructed images is blurry. The visual results in Figure 8

confirm the effectiveness of the proposed modules. LCEB captures

local details, GCEB extracts global information, and DWGB

dynamically assigns weights and fuse the local and global features.

In addition, we analyze the effect of the number of CATBs

on the performance of the proposed model. The experiment is
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TABLE 7 Performance of the proposed model on RS-T1 with di�erent

number of CATBs.

CATBs Params (K) Multi-Adds (G) PSNR/SSIM

3 245.7 16.8 36.18/0.9322

4 319.8 20.4 36.30/0.9343

5 406.2 26.8 36.38/0.9347

6 478.3 30.7 36.42/0.9350

conducted on the RS-T1 dataset with a magnification factor of

2. The results of the experiment are shown in Table 7. As shown

in Table 7, the PSNR/SSIM values of the reconstructed images

improve as the number of CATB blocks increases, but the number

of parameters and the complexity of the model also increase. When

the number of CATB blocks is 3, the model has the smallest number

of parameters and computational complexity, but the PSNR and

SSIM of the reconstructed images are also the lowest. When the

number of CATB blocks is increased to 6, the best performance is

achieved, but the number of model parameters and computational

complexity are too large. Therefore, to balance the number of

parameters and the performance of the model, we set the number

of CATB blocks to 4.

5. Conclusion

We propose a lightweight SISR network called CLASRN for the

super-resolution reconstruction of low-resolution remote-sensing

images. CLASRN combines the advantages of Transformer and

CNN to better recover local details while emphasizing long-

range information in images. Furthermore, the proposed network

dynamically adjusts fusion weights between local and global

features to enhance the network’s feature extraction capability.

Compared with other methods, the proposed method reconstructs

high-quality images with a smaller number of parameters and

lower computational complexity. Through the analysis of visual

results, we have found that the proposed method has advantages

over other comparison methods in restoring local details and

global information of the image. Finally, experimental results

on two remote-sensing datasets and five SR benchmark datasets

demonstrate that our network can better achieve a balance between

performance and model complexity.

To address the challenge of large model parameters that can

hinder model deployment, we have developed a lightweight super-

resolution reconstruction network that reduces computational

complexity and model size while ensuring high-quality image

reconstruction. In the future, we intend to investigate practical

deployment techniques for lightweight super-resolution models,

making them more compatible with lower-performance hardware

devices, such as embedded and mobile devices. Additionally, there

is still room for improvement in our model, particularly in real

application scenarios. To improve the restoration quality of low-

resolution images in real-world scenarios, we plan to explore the

integration of blind super-resolutionmethods with supervised end-

to-end training, aiming to design a model that can reconstruct

super-resolution images in real-world situations.
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