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Artificial Intelligence (AI) is driving advancements across various fields by
simulating and enhancing human intelligence. In Natural Language Processing
(NLP), transformer models like the Kerformer, a linear transformer based
on a kernel approach, have garnered success. However, traditional attention
mechanisms in these models have quadratic calculation costs linked to input
sequence lengths, hampering e�ciency in tasks with extended orders. To tackle
this, Kerformer introduces a nonlinear reweighting mechanism, transforming
maximum attention into feature-based dot product attention. By exploiting the
non-negativity and non-linear weighting traits of softmax computation, separate
non-negativity operations for Query(Q) and Key(K) computations are performed.
The inclusion of the SE Block further enhances model performance. Kerformer
significantly reduces attention matrix time complexity from O(N2) to O(N),
with N representing sequence length. This transformation results in remarkable
e�ciency and scalability gains, especially for prolonged tasks. Experimental results
demonstrate Kerformer’s superiority in terms of time and memory consumption,
yielding higher average accuracy (83.39%) in NLP and vision tasks. In tasks with
long sequences, Kerformer achieves an average accuracy of 58.94% and exhibits
superior e�ciency and convergence speed in visual tasks. This model thus o�ers a
promising solution to the limitations posed by conventional attentionmechanisms
in handling lengthy tasks.

KEYWORDS

linear attention, kernel method, transformer, SE Block, self-attention

1. Introduction

The Transformer model and its variants have emerged as state-of-the-art approaches

in various Artificial Intelligence (AI) tasks, including natural language processing (Devlin

et al., 2018), computer vision (Carion et al., 2020; Dosovitskiy et al., 2020), and audio

processing (Baevski et al., 2020), demonstrating impressive performance across a wide range

of benchmarks. As evident from the Transformer model and its variants, researchers are

continually exploring new methods and extensions to tackle challenges in different AI

tasks, leading to remarkable achievements. For instance, in the field of speech emotion

recognition, some works (Kakuba et al., 2022a,b) have made improvements to attention

mechanisms, highlighting the widespread application and significance of Transformers and

their extensions in diverse domains.
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The core component of the Transformer is its attention

mechanism, which efficiently encodes contextual information

by modeling correlations between different positions in

the input sequence. However, the original self-attention

mechanism in the Transformer model, relying on dot product

similarity, has limitations in modeling complex and non-linear

relationships among tokens, and exhibits quadratic computational

complexity concerning sequence length. Consequently, traditional

Transformer models encounter challenges in handling long

sequence data, particularly in terms of computational complexity

and position information processing. Our approach aims to

address this by reducing the time complexity of the attention

matrix while maintaining accuracy in processing NLP tasks.

To overcome these challenges, researchers have proposed

various extensions, including low-rank approximations, sparse

patterns, and locality-sensitive hashing. Nevertheless, these

methods still rely on dot product similarity and may not adequately

capture diverse relationships among tokens. Recently, kernel

methods have been introduced to enhance Transformer efficiency,

allowing clever mathematical re-writing of the self-attention

mechanism to avoid explicit computation of the N× Nmatrix.

In this paper, we propose a novel self-attention mechanism

called Kerformer, which utilizes kernel functions to redefine the

attention mechanism and extract richer positional information

through reweighting. We conducted experiments on NLP and

CV tasks, showing that Kerformer outperforms the original self-

attentionmechanism and other extensions in terms of accuracy and

computational efficiency. Additionally, we performed an ablation

study to analyze the impact of different kernel functions and

reweighting positions on Kerformer’s performance.

In comparison to state-of-the-art methods in self-attention and

transformer architectures, our proposed Kerformer introduces a

novel and efficient approach to self-attention computation. While

previous works, such as Linformer (Wang et al., 2020), Reformer

(Kitaev et al., 2020), DCT-Former (Scribano et al., 2023), LISA

(Wu et al., 2021), and Bernoulli sampling attention mechanism

(Zeng et al., 2021), have made significant strides in reducing

computational costs and improving efficiency, they still rely on dot

product similarity andmay have limitations on sequence length and

global dependencies.

In contrast, Kerformer leverages kernel methods to redefine

the attention mechanism, enabling the capture of more complex

and non-linear relationships among input tokens. By applying a

kernel function and SE Block module to the concatenation of

query and key vectors, Kerformer computes attention weights using

the resulting kernel matrix, thereby modeling various types of

relationships with enhanced expressiveness.

Moreover, our Kerformer introduces reweighting mechanisms

that extract richer positional information, addressing challenges in

long sequence processing and enhancing computational efficiency.

This combination of kernel-based self-attention and reweighting

sets Kerformer apart from existing approaches, making it a

promising extension to the transformer architecture.

In the upcoming sections, we analyze existing self-attention

methods and their limitations. We introduce the Kerformer model,

discussing its novel kernel-based self-attention and reweighting

mechanisms. We present experimental results and compare

Kerformer with state-of-the-art methods on NLP and CV tasks.

Finally, we discuss implications and conclusions in self-attention

modeling.

In summary, our study introduces a novel self-attention

mechanism, Kerformer, which utilizes compute kernels and

reweighting techniques to capture intricate and diverse token

interactions, while effectively addressing the computational

complexity associated with long sequence tasks. By reducing the

attention matrix complexity without compromising accuracy,

Kerformer demonstrates its efficacy in various NLP and CV

applications. Our research findings contribute to the advancement

of more expressive and efficient self-attention mechanisms.

2. Related work

Self-attention has become a fundamental building block of

modern neural architectures in natural language processing and

computer vision. The original transformer architecture introduced

by Vaswani et al. (2017) utilized self-attention as a key component

to compute the representation of each input token. Since then,

numerous variants of the transformer architecture have been

proposed to overcome various limitations, such as the lack of

position information and the quadratic complexity with respect to

the sequence length.

Efforts have been made to improve the efficiency of self-

attention, with several methods proposed to reduce computation

costs. These include the Linformer (Wang et al., 2020), which

approximates the self-attention matrix with a low-rank matrix,

and the Reformer (Kitaev et al., 2020), which introduces locality-

sensitive hashing to accelerate self-attention computation. DCT-

Former (Scribano et al., 2023) achieves efficient self attention

computation by introducing discrete cosine transform as a

frequency domain based conversion method. By calculating

attention weights in the frequency domain, DCT-Former can

significantly reduce computational complexity while maintaining

high performance, improving the efficiency and scalability

of the model. LISA (Wu et al., 2021) utilizes a codeword

histogram technique to achieve linear-time complexity for self-

attention computation. By representing tokens as codewords and

constructing histograms based on their frequencies, the model

efficiently captures token interactions and calculates attention

weights. This approach reduces the computational overhead

associated with traditional self-attention mechanisms, making

it suitable for large-scale recommendation tasks. A Bernoulli

sampling attention mechanism (Zeng et al., 2021) based on

locally sensitive hashing (LSH) approximates the calculation of

self attention weights through random sampling, thereby reducing

computational complexity to a linear level. The Bernoulli sampling

method can significantly reduce the time and space overhead of

self attention computation while maintaining good performance.

However, the above methods often have limitations on the length

of the sequence and limit the global dependencies of the sequence.

In addition, there are attempts to extend self-attention beyond

its original formulation. For example, the Sparse Transformer

(Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020)

introduces sparsity patterns to reduce computational costs. The

Performer (Choromanski et al., 2020) uses an approximation of

the softmax function to compute self-attention more efficiently.
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Moreover, Katharopoulos et al. (2020) reformulated the attention

mechanism in the autoregressive Transformer model to use

sequential computation, thereby reducing computation time and

storage requirements. Nyströmformer (Xiong et al., 2021) proposed

a method based on Nyström approximation, which approximates

the calculation of self attention weight by decomposing the

self attention Matrix decomposition into the product of low

rank matrix. Nevertheless, these approaches may also exhibit

certain limitations, including elevated memory usage, potential

degradation of model accuracy, or approximation errors.

Recently, kernel-based methods have emerged as a promising

extension of self-attention. Kernel methods replaces the dot-

product similarity used in self-attention with a kernel function,

allowing it to capture more complex interactions between

input tokens and enabling the use of more powerful kernel

functions to model various types of relationships. This method

allows iterative implementation, which significantly accelerates

Transformer and reveals their relationship with recurrent neural

networks. The Kernel methods mechanism has been successfully

applied to various tasks, such as text classification and image

classification. Skyformer (Chen et al., 2021) proposes a novel

approach that employs a Gaussian kernel and the Nyström method

to approximate self-attention, thereby reducing computational

complexity while maintaining accuracy. This work shows

promising results on several natural language processing tasks,

including text classification and machine translation. Kernel

self-attention (Rymarczyk et al., 2021) proposes a novel approach

for weakly-supervised image classification by combining kernel

self-attention with deep multiple instance learning. The method

uses a kernel function to capture complex interactions between

image regions and enable more powerful modeling of relationships.

Several modifications to attention have been proposed by

researchers, including the use of softmax to operate Q and K

matrices separately (Bhandare et al., 2019), and the decomposition

of attention into kernel functions, with Q and K matrices operated

on using the elu and relu functions, respectively (Katharopoulos

et al., 2020; Qin et al., 2022). These modifications reduce the

complexity of attention from O(N2) to O(N), which is beneficial

for large-scale models.

In comparison to the state-of-the-art methods in self-attention

and transformer architectures, our proposed Kerformer introduces

a novel and efficient approach to self-attention computation.

While previous works, such as Linformer, Reformer, DCT-Former,

LISA, and Bernoulli sampling attention mechanism, have made

significant strides in reducing computational costs and improving

efficiency, they still rely on dot product similarity and may

have limitations on sequence length and global dependencies.

In contrast, Kerformer leverages kernel methods to redefine the

attention mechanism, enabling the capture of more complex and

non-linear relationships among input tokens. By applying a kernel

function and SE Block module to the concatenation of query

and key vectors, Kerformer computes attention weights using

the resulting kernel matrix, thereby modeling various types of

relationships with enhanced expressiveness.

Moreover, our Kerformer introduces reweighting mechanisms

that extract richer positional information, addressing challenges in

long sequence processing and enhancing computational efficiency.

This combination of kernel-based self-attention and reweighting

sets Kerformer apart from existing approaches, making it a

promising extension to the transformer architecture.

In conclusion, self-attention has undergone significant

developments since its introduction in the original transformer

architecture, with research focusing on improving its efficiency,

scalability, and expressiveness. Kernelmethods is a recent extension

that shows promise in modeling complex relationships between

input tokens, and several modifications have been proposed to

enhance its performance. The Kerformer proposed in this study

addresses the existing research gap by introducing kernel functions

and reweighting mechanisms, effectively tackling challenges in

long sequence processing and enhancing computational efficiency.

The main idea of Kerformer is to change the order of operations of

matrices according to the union law of matrices, so as to linearize

the attention. When linearizing the attention, we first activate the

Q and K matrices through the activation function to ensure the

non-negativity of the attention matrix, and then reweight the K

matrix through the SE-K module to achieve the redistribution of

attention, so as to improve the performance of the model.

3. Methodology

In this section, we propose a novel linear Transformer model

called Kerformer. We introduce a decomposable linear attention

mechanism that replaces traditional softmax attention, resulting

in improved time and memory complexity. Our method is also

applicable to casual attention. The Kerformer model also employs

different activation functions for Q and K, and combined with SE

Block to reweight the activated K, which contributes to its faster

computing speed and better performance.

3.1. Transformer

Given an input sequence x of length N and feature dimension

d, we represent it as x ∈ R
N×d. The Transformer model can be

formulated as Eq. 1.

T(x) = F((A(x)+ x) (1)

In the Transformer model, the F implementation typically

corresponds to a feedforward neural network that transforms the

characteristics of each input. The attention function is denoted by

A, and its time and memory complexity scales quadratically with

respect to the input sequence length N.

The core idea of the attention mechanism is that the network

should give different importance to different parts of the input

data. When processing the input data, the network needs to assign

different weights to different parts of the input in order to better

capture the important information in the input data. This process

of weight assignment is the attention mechanism.

In implementing the attention mechanism, two key

components are usually used: query(Q), key(K), and value(V).

A query is a vector in the network that represents the network’s

attention to the input data. Keys and values are vectors in the

input data used to represent different parts of the input data.

The attention mechanism achieves attention to the input data
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by computing the similarity between the query and the key and

assigning weights to the values based on the similarity.

Regarding the attention function A, it consists of three essential

components, including query(Q), key(K), and value(V). These

components are computed from the input sequence x and three

learnable matricesWQ,WK , andWV , respectively, as follows: Q =
xWQ,K = xWK ,V = xWV .

The final outputA = V ′ is obtained through a softmax function

applied toQKT line by line, which can be expressed as follows in Eq.

2.

A(x) = V ′ = softmax(
QKT

√
D

)V (2)

We can interpret Eq. 2 as a specific instance of the attention

mechanism, where the softmax function is applied to calculate

QKT . In order to introduce a more generalized expression of

attention, we can useVi to represent the i-th row of a matrixV(V ∈
R
N×d). The equation of the generalized attention mechanism is

shown below as Eq. 3. Similar derivations have been done in these

works (Qin et al., 2022).

V ′
i =

N∑

j=1

sim(Qi,Kj)
∑N

j=1 sim(Qi,Kj)
Vj (3)

It should be noted that the function sim in Eq. 3 can be any

correlation function that satisfies certain requirements, which will

be explained later. If we choose sim(Q,K) = e
QKT√

d , then Eq. 3 is

equivalent to Eq. 2.

3.2. Linear attention

To maintain the linear computation budget, one feasible

solution is to expand the sim function in the form of a kernel

function, as shown in Eq. 4.

sim(qi, kj) = φ(qi)
Tϕ(kj) (4)

In Eq. 3, φ and ϕ are kernel functions used for the nonlinear

mapping of queries and keys. We can rewrite Eq. 3 as a kernel

function, as shown in Eq. 5.

Vi =
∑N

j=1(φ(Qi)ϕ(Kj)
T)Vj

∑N
j=1(φ(Qi)ϕ(Kj)T)

(5)

Then, the attention operation under linear complexity can be

realized through the multiplication combination law of matrix, as

shown in Eq. 6.

Vi =
φ(Qi)

∑N
j=1 ϕ(Kj)

TVj

φ(Qi)
∑N

j=1 ϕ(Kj)T
(6)

Note that in Eq. 4, the functions φ and ϕ are applied row

by row to the matrices Q and K. By using the associative law of

multiplication,QKT ∈ R
N×N is calculated as ϕ(K)TV ∈ R

d×d. The

result is then left multiplied by φ(Q) ∈ R
N×d, which represents the

attention weights. This computationmode achieves a complexity of

O(Nd2) for the attention mechanism. However, for long sequences

where d ≪ N, the complexity can be considered as O(N), greatly

reducing the overhead. This is illustrated in Figure 1.

3.3. Kerformer

The softmax operation applied in the attention mechanism is

used to normalize the query and key matrices. However, there is no

clear explanation for why the softmax operation is effective, and

it is more of an empirical observation that leads to good model

performance. Our aim is to enhance the attention mechanism

by using the kernel form. Specifically, we want to generalize the

attention mechanism using the kernel function and provide a

theoretical foundation for the application of different operations

in the attention mechanism. This will help us better understand

the working principles of the attention mechanism and improve its

performance.

Cosformer (Qin et al., 2022) discussed that the choice of φ and

ϕ functions is crucial for the performance of attention mechanisms

in kernel form. They proposed two empirical constraints that may

play a significant role in achieving better performance:

(i) Non-negative constraint on the attention matrix to ensure

that the attention weights are always positive and the attention is

focused only on relevant features.

(ii) A nonlinear weighted scheme to focus attention on specific

regions of thematrix distribution, which can capturemore complex

and subtle patterns.

It is worth noting that similar kernel function methods have

been used to modify the attention mechanism in the works of

Angelos and Qin et al. These works always choose the same

activation function for both the φ and ϕ functions. We decided to

choose different φ and ϕ functions to enhance the model’s global

learning ability and generalization ability.

To ensure the two constraints mentioned above, we use sigmoid

activation function for φ(Q) and softmax activation function for

ϕ(K) instead of the original softmax(QKT) in our work. Thus, we

define our functions as shown in Eq. 7 and Eq. 8.

φ(x) = sigmoid(x) (7)

ϕ(x) = softmax(x) (8)

We substitute Eqs 7 and 8 into Eq. 6 to obtain Eq. 9, as follows:

Vi =
sigmoid(Qi)

∑N
j=1 softmax(Kj)

TVj

sigmoid(Qi)
∑N

j=1 softmax(Kj)T
(9)

The system block diagram of Kerformer is shown in Figure 2.

3.4. Interpretation of Kerformer

Previous works, such as Katharopoulos et al. (2020) and Qin

et al. (2022), have also rewritten self-attention in kernel form,

but they have used the same function to transform both the Q
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FIGURE 1

Illustration of the computations for Vanilla attention (left) and Linearized attention (right). For input, the input length is N and the feature dimension is
d. φ and ϕ represent the kernel function form for processing Q and K. Generally speaking, d≪N, Linearized attention can be approximately regarded
as the time and memory complexity of O(N).

FIGURE 2

System block diagram of our approach Kerformer and workflow representation.

and K matrices. The possible reason for this is that if different

transformations are applied to the Q and K matrices, the relative

positional relationship between them may be disrupted. This could

lead to inaccurate score calculations and negatively affect the

performance of the model.

However, Efficient attention (Shen et al., 2021) provided a new

explanation for their proposed linear attention, which is different

from self attention. They explained that linear attention does not

generate attentionmaps for each position, and each (Kj)
T is a global

attention map that does not correspond to any position. Based on

this explanation, we aim to introduce different functions for Q and

K without disturbing the attention mechanism as much as possible,

which may bring improvements to the model.

The explanation provided by Efficient attention (Shen et al.,

2021) regarding linear attention inspired our work to introduce

different functions for Q and K matrices. This would allow us

to explore new explanations and extensions to the attention

mechanism.

Our approach includes introducing different nonlinear

mappings for Q and K matrices. We use the sigmoid operation on

Q to limit its range between 0 and 1, mapping each element to a

probability distribution. Similarly, we apply the softmax operation

on K to also map each element to a probability distribution. This

introduces more nonlinearity to the model, making it better suited

to fit the data.

Furthermore, the model is forced to learn different information

due to the effects of these operations. The sigmoid operation allows

the model to focus more on keys that are similar to the query, while

the softmax operation enables the model to focus more on elements

with higher probabilities in the values. This combination allows the

model to learn better in different directions.

Lastly, the use of the smooth sigmoid and softmax operations

makes the model more robust to data disturbance or noise,

reducing the risk of overfitting. Overall, our approach introduces

new insights into the attention mechanism and improves the

model’s performance.

3.5. Reweighting of attention

The above explanation highlights the difference between linear

attention and self-attention, with linear attention not generating

attention maps for each position. Given this difference, we aim to

introduce the SE module to perform re-weighting of the K matrix

along the N dimension. The goal is to extract different features

by using different functions for Q and K without disturbing the

attention mechanism as much as possible, which could lead to

improvements in the performance of the model. By using the SE

module, we can dynamically recalibrate the featuremaps ofK based
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FIGURE 3

Use the activation functions Sigmoid and Softmax to activate the Q and K matrices respectively.

FIGURE 4

The structure of the SE-K module is shown, and the K
′
matrix after

activation by Softmax is reweighted.

on their importance, thus improving the model’s ability to extract

meaningful information from the input data.

In order to adapt to the reweighting of the K matrix, we slightly

modified the SE module and referred to it as the SE-K module.

As mentioned earlier, the K matrix itself already possesses non-

negative values, we remove the ReLU activation function from the

SE module. The SE-K module is a modified version of the SE

module that takes into account the non-negativity of the K matrix.

In this section, we will describe how we incorporate the SE-K

module into the K matrix of the attention mechanism. Specifically,

we apply the SE-K module to the N dimension of the K matrix,

where K has a dimension of N x d.

The SE module is a simple yet effective mechanism that is

widely used to enhance the representational power of neural

networks. It selectively recalibrates the feature map by using the

global information of the feature map. In our method, we use the

SE-K module to recalibrate the K matrix, thereby improving its

feature extraction ability.

To apply the SE-K module to the K matrix, we first perform a

global pooling operation on the K matrix along the N dimension,

resulting in a feature vector. This feature vector is then passed

through two fully connected layers, which are followed by a sigmoid

activation function. The output of the sigmoid function is a set of

N-dimensional attention weights, which are used to weight the K

matrix along the N dimension. Finally, the weighted K matrix is fed

into the attention mechanism. The operation to activate the Q and

K matrices is shown in Figure 3, and the network structure of the

SE-K module involved is shown in Figure 4.

For NLP tasks, Kerformer places more weight on neighboring

tokens, thus enhancing locality. The weight distribution is shown

in the Figure 5. By using the SE-K module, we can effectively learn

the importance of different features in the K matrix, which can

significantly improve the performance of the attention mechanism.

Additionally, the SE-Kmodule has a relatively small computational

cost, which makes it easy to incorporate into existing neural

network architectures.

Overall, our method of applying the SE-K module to the K

matrix has shown promising results in various tasks, demonstrating

its effectiveness in improving the feature extraction ability of the

attention mechanism.

Our research method is based on the activation function and

the reweighting mechanism. The activation function is to perform

a non-negativity operation on the matrix to satisfy the requirement

of non-negativity of the attention matrix, while the reweighting

operation is to redistribute the attention weights to achieve the

effect that the local influence on the nearby attention is greater.

These two operations can better satisfy the attention relationship

between different parts to obtain the final attentionmatrix. For data

collection we use all the data sets that are now publicly available and

conduct our experiments on these publicly available datasets.

4. Simulation experiments

In this section, we present an evaluation of our proposed

method, Kerformer, through simulation experiments. The

simulation experiment focuses on a mathematical evaluation of
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FIGURE 5

(1): Attention matrix of vanilla transformer. (2): Attention matrix of Kerformer. (3): Attention matrix of Kerformer without re-weighting. (4):
Visualization of the re-weighting matrix.

Kerformer. We compare our model with four baselines, Vanilla

attention (Vaswani et al., 2017), Efficient attention (Shen et al.,

2021), Linear-Elu (Katharopoulos et al., 2020), and Performer

(Choromanski et al., 2020), to demonstrate the superiority of our

approach in terms of model running memory, running time. All

experiments were conducted using Matlab R2020a.

4.1. Comparison of time costs in simulation
experiments

This experiment fixes the number of input matrices as 1 and the

attention head dimension as 64, and compares the running time of

eachmethod by changing the sequence length sizeN of input x. The

specific results can be seen in Table 1, with time units in seconds.

From the experimental results in Table 1, we can see that

four other methods have a greater advantage over the Vanilla

attention method in terms of the time cost of attention matrix

computation, especially Vanilla attention has experienced memory

overflowwhen the input sequence lengthN is large. In addition, our

proposed method usually outperforms other methods with shorter

computation time when the length of the input sequenceN is below

the million level. In practice, the model input length N is always

below the million level. That is, our proposed method outperforms

other methods in use.

From the experimental results in Table 2, it can be seen that four

other methods have time cost advantages over Vanilla attention to

different ranges of Q, K, and V values. Cosformer has more time

cost advantage in computing Attention when the value range is

[−10,10], while our method has a shorter running time compared

to the other three methods for the range of values of Q, K, and V

below [−10,10], which fully illustrates the advantage of our method

in terms of time cost.

4.2. Comparison of memory costs in
simulation experiments

The experimental results in Table 3 show that the other four

methods have a smaller memory consumption compared to the

Vanilla attention method in the computation of the attention

matrix. According to our empirical observation, the value range of

Q, K, and V matrices input into the attention mechanism is mostly

between [−4,4]. Our method has a memory cost advantage in the

range of [−2,2] and [−4,4], which indicates that our method can

achieve a lowmemory cost in the normal range of values, which can

be attributed to the fact that our method uses different activation

functions forQ and K, which can improve the computational speed

and generalization ability of the model.

5. NLP task

We empirically validate the effectiveness of our proposed

Kerformer method in multiple aspects. Firstly, we examine its

generalization capability on downstream tasks by comparing it

with other existing transformer variants. Then, we conduct a

comparison with other Long-range arena benchmark transformer

variants to assess its ability to model long-range dependencies and

to perform a thorough analysis of model efficiency.

5.1. Downstream fine-tuning tasks

First, we performed the Kerformer model and the remaining

five models [Performer (Choromanski et al., 2020), Reformer

(Kitaev et al., 2020), and Liner Trans (Katharopoulos et al., 2020),

Longformer (Beltagy et al., 2020), RFA (Peng et al., 2021), and

Dct-former (Scribano et al., 2023)] were compared in terms of

accuracy. This was achieved by conducting comparative fine-tuning

experiments on five datasets, including GLUE (QQP, SST-2, MNLI)

(Wang et al., 2018), IMDB (Maas et al., 2011), and Amazon (Ni

et al., 2019). In the experiments, pre-trained models are used

and fine-tuned in the downstream text classification task, and

the results are shown in Table 4. From Table 4, we can see that

Kerformer fetches the best accuracy in addition to the baseline

(Liu et al., 2019) on the QQP, SST-2 and IMDB downstream

text classification tasks. Although Dct-former and Longformer

achieved better classification accuracy than Kerformer on MNLI

and AMAZON tasks, respectively. It has higher computational

complexity compared to our method. This is related to Kerformer’s

activation of Q and K matrices with activation functions and

reweighting of K matrices respectively, where the activation

functions can extract features in the matrices and reweighting can

effectively reallocate attention to achieve the effect of expanding
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TABLE 1 Comparison of the time required to run the five methods for di�erent methods in di�erent dimensions of the input x,Q, K, and V in the case of

taking values in the range [−2,2].

Dimensional changes Vanilla attention E�cient attention Linear-Elu Performer Kerformer (ours)

1*1,000*64 4.001 s 1.000 s 1.000 s 0.882 s 0.200 s

1*10,000*64 302.072 s 31.015 s 6.0121 s 6.112 s 5.852 s

1*100,000*64 OOM 87.024 s 51.014 s 55.514 s 44.011 s

1*1,000,000*64 OOM 967.22 s 506.134 s 505.514 s 521.144 s

TABLE 2 Comparison of the time required to run the five methods with di�erent ranges of values forQ, K, and V for di�erent methods with the

dimension size of the input x of 1*10,000*64.

Range of values Vanilla attention E�cient attention Linear-Elu Performer Kerformer (ours)

[−1,1] 335.075 s 34.007 s 7.001 s 6.854 s 6.001 s

[−2,2] 302.072 s 31.015 s 6.012 s 6.112 s 5.852 s

[−4,4] 1,003.233 s 35.008 s 5.025 s 6.012 s 5.006 s

[−6,6] 1,062.249 s 34.008 s 5.145 s 5.541 s 5.022 s

[−8,8] 1,032.248 s 35.993 s 6.004 s 6.125 s 5.952 s

[−10,10] 1,103.246 s 55.013 s 8.001 s 7.854 s 8.004 s

TABLE 3 Comparison of the memory requirements of the five methods running with di�erent ranges of values forQ, K, and V for the input x with

dimension size of 1*10,000*64.

Range of values Vanilla attention E�cient attention Linear-Elu Performer Kerformer (ours)

[−1,1] 8,521 M 521 M 623 M 689 M 534 M

[−2,2] 11,001 M 585 M 678 M 702 M 578 M

[−4,4] 12,454 M 623 M 725 M 754 M 602 M

[−6,6] 14,845 M 685 M 775 M 801 M 692 M

[−8,8] 15,624 M 725 M 835 M 833 M 754 M

[−10,10] 16,104 M 785 M 877 M 892 M 802 M

local attention. The experimental result fully demonstrates the

effectiveness of our proposed Kerformer model.

5.2. Long sequence experiment results

To assess the generalization performance of our proposed

method Kerformer, we conducted training from scratch on the

Long-range Arena benchmark 2020b. This benchmark is tailored

for evaluating the performance of efficient transformers on long

input sequences, making it an appropriate test platform for

comparative analysis of different efficient transformer variants.

We evaluated our approach on various tasks, including long

sequence ListOps (Nangia and Bowman, 2018), byte-level text

classification (Maas et al., 2011), document retrieval using ACL

selection networks (Radev et al., 2013), and Pathfinder (Linsley

et al., 2018). While comparing with our Kerformer model with

Local Attention (Tay et al., 2020), Reformer (Kitaev et al., 2020),

Performer (Choromanski et al., 2020), Longformer (Choromanski

et al., 2020), Transformer (Vaswani et al., 2017), BigBird (Zaheer

et al., 2020), and Dct-former (Scribano et al., 2023) models,

the comparison results of the seven different models are shown

in Table 5. As shown in Table 5, Kerformer obtained the best

performance in ListOps, Document Retrieval, while Kerformer also

achieved competitive results in the other two tasks, and finally

Kerformer achieved the next best score in overall task average

accuracy. This is a good indication of Kerformer’s strength in the

long-range arena.

5.3. Ablation experiments

To verify the effectiveness of our chosen activation function

in combination with the SE-K module, we conducted ablation

experiments on GLUE (QQP, SST-2) (Wang et al., 2018) and

IMDB (Maas et al., 2011) in downstream fine-tuning tasks, ListOps

(Nangia and Bowman, 2018) in Long sequence tasks, byte-level

text classification (Maas et al., 2011) and document retrieval using

ACL selection networks (Radev et al., 2013) were conducted for the

ablation experiments, and the results of the experiments are shown

in the following Table 6.

As shown in Table 6, Q + Softmax(K)+SE-K indicates that no

activation operation is performed on the Q matrix, Sigmoid(Q)

+ K + SE-K indicates that no activation operation is performed
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TABLE 4 Results of fine-tuning downstream tasks based on pretrained bidirectional models.

QQP ↑ SST-2 ↑ MNLI ↑ IMDB ↑ AMAZON ↑ Avg ↑

Vanilla transformer 88.52 92.25 80.02 92.55 75.65 85.80

Performer 69.95 50.82 35.28 60.41 64.25 56.14

Reformer 63.12 50.66 35.35 49.88 64.32 52.67

Liner Trans 74.75 84.72 66.35 91.21 72.62 78.07

Longformer 85.55 88.56 77.27 91.07 73.52 83.13

RFA 75.32 76.44 57.71 78.86 68.08 71.28

Dct-former 85.56 86.89 77.48 89.68 72.12 80.19

Kerformer 85.68 90.21 76.32 91.50 73.24 83.39

Best results are shown in bold. Our proposed Kerformer shows superior performance compared to competing efficient transformers and is approaching vanilla transformers.

TABLE 5 Long-range arena benchmark test results.

Model ListOps ↑ Text ↑ Retrieval ↑ Pathfinder ↑ Avg ↑

Local attention 15.67 52.87 53.40 66.59 47.13

Reformer 37.32 56.12 53.42 68.47 53.83

Performer 17.96 65.45 53.79 77.08 53.57

Longformer 35.65 62.79 56.83 69.69 56.24

Transformer 36.42 64.37 57.52 71.42 57.43

BigBird 36.11 64.08 59.31 74.79 58.57

Dct-former 36.55 65.15 59.55 75.56 59.20

Kerformer 36.95 64.32 59.98 74.52 58.94

The best results are shown in bold and the second best results are underlined. Kerformer obtained the best average score in four different tasks.

TABLE 6 Ablation experiments are performed for the SE Block in the downstream fine-tuning task and the long sequence task of the reweighting

module.

Model structure QQP SST-2 IMDB ListOps Text Retrieval

Q + Softmax(K) + SE-K 81.25 85.63 85.24 33.25 58.53 55.89

Sigmoid(Q) + K + SE-K 82.36 87.25 88.25 35.21 60.25 57.26

Sigmoid(Q) + Softmax(K) 81.26 85.09 85.18 32.23 57.87 56.31

Kerformer 85.68 90.21 91.50 36.95 63.32 59.98

on the K matrix, and Sigmoid(Q) + Softmax(K) indicates that

no reweighting operation is performed. Based on the results of

the ablation experiments, it can be seen that the activation of

the Q and K matrices and the reweighting operation on the K

matrix can effectively improve the performance of the model in the

downstream fine-tuning task and the long-sequence task relative

to other methods, and the effectiveness of our method is also

demonstrated.

5.4. E�ciency comparison

In addition to comparing model performance, we also

compared the computational speed of the different models. We

compared the computational speed of Kerformer with othermodels

[standard Transformer (Vaswani et al., 2017), Local Attention

(Tay et al., 2020), Reformer (Kitaev et al., 2020), BigBird (Zaheer

et al., 2020), Linear Trans (Katharopoulos et al., 2020), Performer

(Choromanski et al., 2020), Longformer (Beltagy et al., 2020),

and Dct-former (Scribano et al., 2023)], and the variable for

comparison was the length of the input sequence, and the results

of the experiments are shown in Table 7. We used byte-level text

classification benchmarks to measure the computational speed

of different models during training and inference for different

sequence lengths (1k–4k).

Our method Kerformer achieves good training and inference

speeds on sequence lengths 2K, 3K, and 4K, which illustrates

the advantage of our method for speed computation on long

sequence let tasks. This is because first the Q and K matrices

are activated, then the K matrices are reweighted separately, and

finally the order of computation of the self-attentive matrices

can be exchanged using the union law of matrices so that the

goal of linear complexity can be achieved. In conclusion, our

model Kerformer achieves better overall efficiency compared to

other linear variables, while maintaining excellent modeling and

generalization capabilities.
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TABLE 7 Speed comparison in training and inference for long-range arena benchmarks with di�erent sequence lengths (1–4k).

Inferrence speed (steps per second)↑ Train speed (steps per second)↑

Model 1K 2K 3K 4K 1K 2K 3K 4K

Transformer 25.42 7.85 \ \ 6.91 2.19 \ \

Local attention 57.69 33.21 23.32 17.80 13.42 6.61 4.35 3.10

Reformer 44.23 21.60 12.75 8.35 11.60 5.01 2.96 1.97

BigBird 20.92 11.53 8.14 6.12 6.50 3.21 2.09 1.55

Linear Trans 67.81 38.22 26.30 19.92 11.88 5.56 3.54 2.49

Performer 74.20 42.35 29.53 22.43 14.23 6.50 4.13 2.93

Longformer 23.02 6.33 \ \ 4.42 1.31 \ \

Dct-former 56.21 34.21 22.85 20.51 11.58 5.95 3.92 2.32

Kerformer 57.42 33.15 21.45 17.13 11.34 5.58 3.57 2.55

If a method runs out of memory, we mark it with a backslash. The higher it is, the better it is.

6. Visual classification task

By incorporating distinct functions into the Q and K matrices,

Kerformer is specifically designed to facilitate feature extraction

at different levels, which is highly advantageous for visual

classification tasks. The primary objective of our study is to

showcase the superior performance of Kerformer in such tasks.

To achieve this, we conducted comprehensive image classification

experiments to rigorously evaluate the effectiveness and efficiency

of Kerformer.

In order to assess the performance of Kerformer in image

classification tasks, we applied it to the widely-used ViT-B/16

(Dosovitskiy et al., 2020) model and compared its accuracy

with that of several baseline models, including Vanilla attention

(Vaswani et al., 2017), Efficient attention (Shen et al., 2021),

Linear-Elu (Katharopoulos et al., 2020), and Cosformer (Qin et al.,

2022). To this end, we evaluated the models on four datasets:

MNIST, CIFAR-10, CIFAR-100, and the flower dataset provided by

TensorFlow.

The MNIST dataset consists of handwritten digital images,

consisting of 60,000 training images and 10,000 test images, each

representing a gray number from 0 to 9. Cifar-10 is a widely-used

computer vision dataset for object recognition, comprising 60,000

RGB color images with dimensions of 32 × 32 pixels, distributed

across 10 different classes. CIFAR-100 dataset contains 100 classes,

grouped into 20 superclasses. Each image in CIFAR-100 is labeled

with a “fine" class (specific class) and a “coarse" class (superclass).

The flower dataset includes images of daisies and encompasses five

flower types: “daisy," “dandelion," “rose," “sunflower," and “tulip."

Overall, our results suggest that Kerformer has strong feature

extraction ability and outperforms the baseline models in terms of

accuracy.

6.1. Test accuracy

In this section, we performed accuracy tests on the image

classification tasks using the aforementioned four datasets. For all

datasets except the flower dataset, the experiments were conducted

FIGURE 6

Experimental results of image classification accuracy measured by
models using five methods (Vanilla attention, E�cient attention,
Linear-Elu, Cosformer, and Kerformer) on di�erent datasets.

with the following settings: the images were resized to 224 × 224

pixels, Adam optimizer was employed, the learning rate was set to

0.0001, the loss function used was Cross Entropy, the batch size

was set to 32, and the training was carried out for 180 epochs.

The final test accuracy was computed by averaging the results of

10 test runs. Due to the limited size of the flower dataset, the

experimental configuration differed in terms of a smaller batch size

of 4, a reduced training epoch of 80, and the final test accuracy was

determined by averaging the results of 10 test runs.

Based on the experimental results shown in Figure 6, it is

evident that the Cosformer method can achieve the highest model

accuracy for image classification on the CIFAR-100 dataset, whereas

our proposed method can achieve the highest test accuracy for

image classification on the MNIST, CIFAR-10, and flower datasets.

In particular, our method can improve 3% points compared to

Vanilla attention method on CIFAR-10 dataset, which is a better

test for the model performance improvement of the original

model. Our results suggest that our proposed improvement can
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FIGURE 7

Comparison of convergence speed of ViT models using Vanilla
attention, E�cient attention, Linear Elu, Cosformer and Kerformer
when trained on the CIFAR-10 dataset.

significantly enhance the performance of the model. In particular,

this enhancement enables the model to more effectively utilize

feature information from various locations, thereby improving its

ability to extract essential features and ultimately increasing the

classification accuracy of the model. This is due to the use of

operations such as pooling in the SE-K module, which can perform

better in image tasks because it is not limited by the global nature.

6.2. Convergence speed

In addition to evaluating the model performance and running

cost, we also conducted experiments to measure the convergence

speed of the ViT model during training and validation on the

CIFAR-10 dataset using three methods: Vanilla attention (Vaswani

et al., 2017), Efficient attention (Shen et al., 2021), Linear Elu

(Katharopoulos et al., 2020), Cosformer (Qin et al., 2022), and

our proposed Kerformer. The results of these experiments are

presented in Figures 7, 8.

The experimental results demonstrate that our proposed

method can achieve a faster convergence rate compared to the other

four methods, Vanilla attention, Efficient attention, Linear Elu and

Cosformer, in the training and validation of the ViT model on the

CIFAR-10 dataset. This result fully demonstrates the effectiveness

of our proposed method in reducing the training cost of the model.

Compared to traditional attention mechanisms, our proposed

improvement achieves better results with less computational cost,

indicating that our method can train better models in less

time. Therefore, our proposed method has better efficiency and

higher performance, making it an effective attention mechanism

improvement scheme.

Kerformer provides a good idea of linear complexity by

linearizing attention by the operation of activating the Q and

K matrices and reweighting the activated K matrices can

effectively maintain linear complexity with guaranteed effective

FIGURE 8

Comparison of convergence speed of ViT models with Vanilla
attention, E�cient attention, Linear Elu, Cosformer and Kerformer
when validated on CIFAR-10 dataset.

attention. In the experimental results Kerformer did not perform

best on all tasks, which may be due to the specific nature

of the task or the fact that some tasks require a special

model structure resulting in poor performance of Kerformer

on that task. Also the characteristics of the dataset, the

experimental setup, and the choice of hyperparameters may

have affected the experimental results of Kerformer on this

task.

7. Conclusion

We propose a new Kerformer method to linearize the attention

mechanism by the kernel function method to first process the Q

and K matrices non-negatively, then reweight the non-negatively

processed K matrices by SE Block to amplify the localization

relation of the attention matrix, and finally change the order

of operations of the attention matrix by the combination law

of matrix operation to convert Transformer’s computation of

the complex attention mechanism into a linear computation

based on the sequence length N. We conducted experiments

on text classification, Long-range arena, the computational speed

of the model on long sequences, and on image classification,

respectively, and the experimental results show that Kerformer

performs well on these different tasks. This well demonstrates

that the Kerformer model can exhibit good model performance

and computational efficiency both on NLP tasks and on

image tasks, which can make Kerformer widely applicable

to different fields where attention mechanisms exist. Overall,

our approach can achieve high model performance with low

running cost, which allows the deployment of models with

attention mechanisms to some devices with low computational

power.

In the future, we hope that our proposed method

can be widely applied to the computational process of
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attention mechanism to reduce the running cost of the

model, and we will continue to optimize our method

so that it can be widely applied to different downstream

tasks.
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