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YOLOv7-CSAW for maritime
target detection

Qiang Zhu, Ke Ma, Zhong Wang* and Peibei Shi

School of Computer Science and Technology, Hefei Normal University, Hefei, China

Introduction: The issue of low detection rates and high false negative rates

in maritime search and rescue operations has been a critical problem in

current target detection algorithms. This is mainly due to the complex maritime

environment and the small size of most targets. These challenges a�ect the

algorithms’ robustness and generalization.

Methods: We proposed YOLOv7-CSAW, an improved maritime search and

rescue target detection algorithm based on YOLOv7. We used the K-means++

algorithm for the optimal size determination of prior anchor boxes, ensuring

an accurate match with actual objects. The C2f module was incorporated for

a lightweight model capable of obtaining richer gradient flow information. The

model’s perception of small target features was increased with the non-parameter

simple attentionmodule (SimAM). We further upgraded the feature fusion network

to an adaptive feature fusion network (ASFF) to address the lack of high-level

semantic features in small targets. Lastly, we implemented the wise intersection

over union (WIoU) loss function to tackle large positioning errors and missed

detections.

Results: Our algorithm was extensively tested on a maritime search and

rescue dataset with YOLOv7 as the baseline model. We observed a significant

improvement in the detection performance compared to traditional deep learning

algorithms, with a mean average precision (mAP) improvement of 10.73% over the

baseline model.

Discussion: YOLOv7-CSAW significantly enhances the accuracy and robustness

of small target detection in complex scenes. This algorithm e�ectively addresses

the common issues experienced in maritime search and rescue operations,

specifically improving the detection rates and reducing false negatives, proving

to be a superior alternative to current target detection algorithms.
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1. Introduction

According to statistics from the Chinese Ministry of Transport, in 2021, the China

Maritime Search and Rescue Center organized a total of 1,824 search and rescue operations,

involving ∼12,258 people in distress, of which about 11,761 were rescued, and 1,214 vessels

were saved.1 Rapid identification and location of maritime targets plays a crucial role in

ensuring the safety of personnel and preventing property loss. Maritime target detection

is widely used in search and rescue operations, such as shipwrecks, maritime disasters,

and missing persons (Cho et al., 2021). Multiple sensors are used to collect ocean data,

including optical and infrared cameras, drones (Wu et al., 2019), radars (Harzheim et al.,

2021), tracking and navigation systems, etc. Additionally, satellite image analysis and aerial

remote sensing technologies can be integrated to improve the accuracy of maritime search

and rescue target detection.

1 China Maritime Search and Rescue Center. Available online: https://zizhan.mot.gov.cn/sj2019/

soujiuzx.
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With the rapid development of artificial intelligence and

5G communication technology, researchers have started using

AI and machine learning techniques to carry out maritime

rescue missions. Currently, common maritime search and

rescue target detection algorithms include Faster Region-

based Convolutional Neural Networks (Faster RCNN), You

Only Look Once (YOLO), and Single Shot MultiBox Detector

(SDD) (Yabin et al., 2020; Sambolek and Ivasic-Kos, 2021),

which mainly use convolutional neural network algorithms

to extract features from images and recognize potential

search and rescue targets. End-to-end learning frameworks

can also be used to achieve faster and more accurate target

detection. These algorithms learn and train on a large amount

of maritime image data to achieve efficient and accurate

target detection.

YOLO is designed for real-time object detection, making it

much faster than other object detection algorithms like Faster

R-CNN and R-CNN Pascal VOC. The YOLO algorithm has

been demonstrated to generalize well across various object

categories and datasets. This ability to perform well on different

types of objects is advantageous in rescue operations, where

the targets of interest may include people, boats, and other

objects in the marine environment. However, challenges still

persist in sea rescue target detection due to factors such as the

impact of marine environments on images, which can include

elements like strong lighting, large amounts of water, waves, and

refraction phenomena. Additionally, it is necessary to consider

the appearance and features of targets, such as color, shape, and

size, especially the problem of many small targets. In practical

applications, there are still issues of missed detections and false

alarms. To address these problems, this study improved the

YOLOv7 algorithm (Wang et al., 2023), which has high speed

and accuracy, for sea rescue target detection, with the following

main contributions:

1. Utilizing the K-means++ algorithm to determine the optimal

prior anchor box sizes, ensuring precise matching between

anchor boxes and actual objects;

2. Enhancing the C3 module to C2f module, maintaining a

lightweight design while obtaining more abundant gradient

flow information;

3. Incorporating the parameter-free SimAM, bolstering the

model’s ability to perceive small target features;

4. Upgrading the feature fusion network to the ASFF,

compensating for the missing high-level semantic features of

small targets;

5. Employing the WIoU loss function to effectively address

the issues of large positioning errors and missed detections,

thereby enhancing the model’s generalization ability.

The remaining content is arranged as follows: Section 2

introduces the related work of sea rescue target detection,

Section 3 focuses on the improved YOLOv7 algorithm

framework and implementation details, Section 4 verifies

the performance of the proposed method through

experimental testing, and finally provide a summary

and outlook.

2. Related Works

Currently, numerous research achievements have been made

in the field of maritime rescue. Yang et al. (2020) utilized

unmanned aerial vehicles and unmanned surface vehicles to form a

cognitive computing network for collaborative rescue and utilized

reinforcement learning to plan and search for paths. Jin et al. (2021)

modeled maritime rescue tasks using geographic information

systems, then used K-means algorithm to obtain the location of

search and rescue points, and finally input the obtained task point

data into an optimization algorithm module. Ferrari and Chen

(2020) treated the problem of planning a temporary fleet to perform

search tasks in the open sea as a resource allocation problem and

proposed a change to the objective function of the binary integer

programming model to respond to different aspects of air search

and rescue operations. Liu et al. (2021) constructed a newmaritime

target dataset (MRSP-13) and proposed a cross-layer, multi-task

CNN model for maritime target detection, which is capable

of concurrently addressing ship target detection, classification,

and segmentation tasks. Gasienica-Jozkowy et al. (2021) publicly

released amaritime rescue dataset and proposed an object detection

method based on deep convolutional neural networks, which

achieved an average precision of 82% on the dataset. Ai et al. (2021)

established a maritime SAR environment model using field data

of the marine environment and electronic charts, and proposed a

reinforcement learning-based autonomous coverage path planning

model for SAR missions, planning the shortest search path and

prioritizing high probability areas. Zhou et al. (2020) proposed

a comprehensive framework for evaluating maritime search and

rescue capabilities, first estimating rescue response time through

geographic information systems, then calculating search and rescue

service demand based on relevant data, and finally determining

evaluation standards to quantitatively evaluate maritime search and

rescue capabilities. Xian et al. (2022) proposed an opportunistic

routing protocol for low latency and energy-efficient wireless sensor

networks for maritime search and rescue. Lu et al. (2020) propose

a detection algorithm (SRGM) for infrared small dim targets in

different maritime backgrounds. The algorithm uses an efficient

maritime background filter to extract the image background

accurately and eliminate it by comparing it to the original image.

Target detection in maritime search and rescue often involves

small targets that occupy a small proportion of the entire image,

making it difficult to extract their position and feature information.

Therefore, maritime search and rescue target detection is also a

small target detection problem. Deep learning-based small target

detection algorithms mainly include improvements to backbone

networks, adjustments to pyramid structures, and anchor box

designs. Regarding backbone networks, the introduction of ResNet

broke the limit on the number of neural network layers, promoting

the development of deeper models, and several improved models

such as ResNeXt (Xie et al., 2017), ResNeSt (Zhang H. et al.,

2022), DarkNet (Bochkovskiy et al., 2020), and NFNet (Brock et al.,

2021) emerged. Qiao et al. (2021) replaced the ResNet50 backbone

network with ResNeXt-101 and achieved a 1.5% improvement

in small target detection on the MSCOCO dataset. YOLOv4

introduced CSPNet (Wang et al., 2020) and designed CSPDarkNet-

53 as the backbone network, reducing the number of backbone
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network parameters by 20%. MobileNet series (Howard et al.,

2019) and ShuffleNet series (Zhang et al., 2018), representing

lightweight backbone networks, optimize information exchange

and parameter reduction. Liu et al. (2020) addressed the problem

of small targets being easily lost in deep convolutional networks

by designing an image pyramid network to enhance small target

detection. To achieve repeated fusion of multi-scale information,

Jiang et al. (2022) proposed a giraffe-like network called GiraffeDet,

which includes two feature connection methods and achieves a

2.8% performance improvement in small target detection on the

MSCOCO dataset. The current methods still struggle to achieve

accurate detection for small targets consistently.

In addition to the backbone network, attention mechanisms

can help neural networks focus on task-relevant details amidst

a large amount of information. The SE attention mechanism

proposed by Hu et al. (2018) focuses on more critical feature

information by exploring the interdependence relationship

between feature channels. Woo et al. (2018) designed the CBAM

attention mechanism, which consists of a channel attention

module and a spatial attention module, to enhance the network’s

feature extraction and strengthening ability. Wang et al. (2020)

designed an efficient channel attention module called ECA, which

enables direct local cross-channel interaction and significantly

reduces the complexity associated with dimensionality reduction

in channel learning. Yang et al. (2021) proposed the parameter-free

attention module SimAM, which constructs an energy function

to mine neuron importance based on neuroscience theory and

derived an analytical solution to accelerate computation. Pan et al.

(2022) proposed the ACmix attention module, which combines the

advantages of Self-Attention and Convolution, and has a smaller

computational overhead compared to models corresponding to

Convolution or Self-Attention. Although attention mechanisms

like SE, CBAM, ECA, SimAM, and ACmix have been developed to

help neural networks focus on task-relevant information, further

improvements are needed to optimize the feature extraction

process without significantly increasing computational overhead.

While some studies have proposed frameworks for evaluating

maritime search and rescue capabilities, more research is needed to

develop robust and generalizable evaluation metrics that can assess

the effectiveness of various algorithms and techniques in diverse

maritime search and rescue scenarios. The YOLOv7 algorithm that

our study utilized offers several advantages for maritime target

detection, making it a suitable choice for addressing the challenges

in this domain. YOLOv7 is designed to perform object detection

at a high speed, making it capable of real-time detection in

maritime scenarios. This is particularly beneficial for time-sensitive

search and rescue operations. YOLOv7 incorporates various

improvements over previous YOLO versions, such as enhanced

backbone networks and better feature extraction mechanisms.

These improvements contribute to higher accuracy in detecting

maritime targets, including small targets that are difficult to detect.

YOLOv7 utilizes a multi-scale detection approach, allowing it to

effectively detect objects of different sizes in the same image. This

is crucial for maritime target detection, as objects can appear at

various scales due to factors like distance and perspective. YOLOv7

is designed for high performance with lower computational needs

compared to other advanced object detection algorithms. This

makes it ideal for use in resource-limited environments like

unmanned aerial vehicles (UAVs) or unmanned surface vehicles

(USVs) in maritime search and rescue operations. YOLOv7 can

be easily fine-tuned and adapted to different maritime target

detection scenarios using domain-specific training data. This

adaptability enables the algorithm to consistently perform well

across varying situations and environments in maritime search and

rescue missions.

3. Methodology

3.1. Overview of YOLOv7

As a one-stage object detection algorithm, YOLOv7

outperforms most known object detectors within a range of

5FPS-160FPS in terms of both detection speed and accuracy.

The YOLOv7 network model is composed of four parts:

Input, Backbone, Neck, and Head. In the Input section, the

image undergoes a series of pre-processing stages such as data

augmentation before being fed into the Backbone network for

feature extraction. Next, the extracted features are amalgamated by

the Neck module to generate features of different sizes. These fused

features are finally fed into the detection Head, which outputs the

prediction results.

The backbone of YOLOv7 comprises several modules,

including the CBS convolution layer, E-ELAN module, MPConv

module, and SPPCSPC module. The E-ELAN module is a highly

efficient layer aggregation network that enhances the learning

ability of the network without disrupting the original gradient

path. It also guides the calculation of different feature groups

to learn more diverse features. The MPConv convolution layer

adds a MaxPool layer to the CBS layer, forming upper and

lower branches. These branches are then fused using the Concat

operation to enhance the network’s feature extraction ability. The

SPPCSPC module introduces parallel MaxPool operations in a

series of convolutions to prevent image distortion caused by image

processing operations and to address the problem of extracting

repeated features in convolutional neural networks.

The Neck module employs the traditional PAFPN structure

and introduces a bottom-up path to facilitate the transfer of low-

level information to higher levels, thus enabling efficient fusion

of features at different levels. In the Head module, the image

channel number of the PAFPN output features is adjusted using the

REPConv structure, and predictions are made via convolution.

3.2. Improvement measures

3.2.1. Anchor boxes
YOLOv7 utilizes K-means clustering to create anchor boxes,

referencing the boundaries of the training set. Additionally, the

FPN network establishes three distinct anchor boxes on three

differing sizes of feature maps. However, the K-means algorithm

has its inherent limitations, as it is prone to the influence of initial

setting values and outliers, which can lead to unstable clustering

results. Therefore, in this study, we have opted for the K-means++

clustering algorithm. By repeatedly clustering the annotated object

boundaries in our dataset, we can produce prior boxes in a variety
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FIGURE 1

C2f module.

FIGURE 2

ASFF module.

FIGURE 3

SimAM attention module.

of numbers and sizes. This process enhances the degree of match

between the prior boxes and the actual object boxes, which in turn

improves the accuracy of detection.

3.2.2. C2f module
The C2f module,2 as depicted in Figure 1, has been

architecturally designed, drawing inspiration from the C3 module

and ELAN principles. This structure enables the enhanced network

to glean more abundant gradient flow information, all the while

maintaining a lightweight design. At the heart of this model, the

2 https://github.com/ultralytics/ultralytics

Conv-BN-SiLUmodule carries out operations such as convolution,

normalization, and activation on the input feature maps. The

activation function is performed by SiLU. On the other hand, the

Bottleneck module acts as a residual module, where the quantity

of stacked layers is governed by the parameter “n”. This parameter

changes according to the scale of different models.

The key responsibility of the Bottleneck module is to initially

diminish the number of channels before proceeding to augment

them. The usage of residual connections is managed by the shortcut

parameter, with feature fusion being accomplished via the “add”

operation. This approach ensures the number of features post-

fusion remains consistent. By default, the C2f module does not

utilize shortcut connections. While these connections are utilized

in the Backbone, they are not incorporated in the Head.

3.2.3. ASFF
ASFF (Liu et al., 2019) is a novel and effective feature

fusion algorithm that enables the network to adaptively learn the

weights of each position on each feature layer, so that important

information dominates the feature fusion process. As shown in

Figure 2, for each feature layer to be fused, other feature layers

are first transformed to the same resolution, and then the optimal

weights for fusion are learned through training. The principle

involves several steps:

(1) Feature Layer Alignment: Initially, ASFF equalizes the

resolution of all feature layers that require fusion. This is

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1210470
https://github.com/ultralytics/ultralytics
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhu et al. 10.3389/fnbot.2023.1210470

accomplished either through interpolation or convolution

operations, aiming to ensure that information from different

feature layers can be compared andmerged on the same spatial

scale. This step is critical in small target detection, as small

targets may exhibit different characteristics on feature maps

of various scales. By aligning all feature layers to the same

resolution, ASFF effectively captures and merges small target

information across different scales.

(2) Adaptive Weight Learning: After aligning the feature layers,

ASFF learns the optimal fusion weights through training.

This process is differentiable, meaning it can be adjusted via

optimization algorithms like backpropagation and gradient

descent. This feature proves very useful in small target

detection, as the information of small targets may be more

pronounced on certain feature layers. By adaptively learning

the fusion weights, ASFF can accentuate these feature layers

containing more small target information, allowing these

details to dominate the feature fusion process.

(3) Feature Fusion: Finally, based on the learned weights,

ASFF fuses the features of each layer. Features with higher

weights will dominate the fused feature representation. This

implies that in small target detection, feature layers that

are more capable of capturing small target information

will be assigned greater weights, thus dominating the final

feature representation.

In summary, ASFF can effectively enhance the detection of

small maritime targets by adaptively adjusting the weights of each

feature layer. This makes ASFF adaptable to various detection tasks,

including the detection of small maritime targets, irrespective of the

backbone network employed.

3.2.4. SimAM
SimAM is a parameter-free attention module that is based on

neuroscience theory to identify important neurons. It constructs

an energy function, as shown in the Figure 3, to better implement

attention. To achieve attention, the SimAM module needs to

evaluate the importance of each neuron. In neuroscience, neurons

with rich information typically exhibit discharge patterns that

are different from those of surrounding neurons (Webb et al.,

2005; Hariharan et al., 2012). Furthermore, activated neurons often

inhibit surrounding neurons, that is, spatial inhibition. In other

words, neurons with spatial inhibition effects should be given

higher importance. The simplest way to find important neurons is

to measure the linear separability between neurons. Therefore, the

following energy function is defined:

et
(

ωt , bt , y, xi
)

= (yt − t̂)
2
+

1

M − 1

∑M−1

i=1
(yo − x̂i)

2 (1)

where t̂ = ωtt + bt and x̂i = ωtxi + bt are linear transforms of

t and xi, t and xi are the target neuron and other neurons in a

single channel of the input feature.ωt and bt are weight and bias the

transform. The Eqn (1) attains the minimal value when the t̂ equals

to yt , and all other x̂i are yo, where yt and yo are two different values.

Minimizing the above formula is equivalent to training the

linear separability between neuron t and other neurons within

the same channel. For simplicity, binary labels are used and a

regularization term is added. The final energy function is defined

as follows:

et
(

ωt , bt , y, xi
)

=
1

M − 1

∑M−1

i=1
(−1− (ωtxi + bt))

2

+ (1− (ωtt + bt))
2
+ λω2

t (2)

In theory, there are M = H × W energy functions for each

channel. The above formula has the following closed-form solution:

ωt = −
2(t − µt)

(t − µt)
2
+ 2σ 2

t + 2λ

bt = −
1

2
(t + µt)ωt

where µt = 1
M−1

∑M−1
i=1 xi and σ 2

t = 1
M−1

∑M−1
i=1 (xi − µt)

2

are mean and variance calculated over all neurons except t in

that channel.

Since all neurons in each channel follow the same distribution,

the mean and variance of the input feature can be computed first in

the H andW dimensions to avoid redundant calculations:

e∗t =
4(σ̂ 2 + λ)

(t − µ̂)2 + 2σ̂ 2 + 2λ
(3)

where µ̂ = 1
M

∑M
i=1 xi and σ̂ 2 = 1

M

∑M
i=1 (xi − µ̂)2

Equation (3) reveals an observation: the lower the energy

of a neuron t, the greater its dissimilarity with surrounding

neurons, and therefore, the more significant its contribution to

visual processing. Thus, the importance of each neuron can be

evaluated by e∗t . Our approach involves operating on each neuron

individually and integrating this linear separability into an end-to-

end framework.

According to the definition of the attention mechanism,

we need to enhance the features. The whole process can be

expressed as:

X̃ = sigmoid(
1

E
)
⊙

X (4)

where E groups all across channel and spatial dimensions. sigmoid

is added to restrict too large value in E. It will not influence

the relative importance of each neuron because sigmoid is a

monofonic function.

In fact, aside from the calculation of channel averages

and variances, all computations within the SimAM module are

element-wise operations, which can be readily implemented using

current machine learning libraries with just a few lines of

code to accomplish the functionality of Equation (4). Thus, the

SimAM module, rooted in fundamental neuroscience theories,

distinguishes itself from other attention mechanisms. Moreover,

the module can be efficiently integrated into existing network

architectures without significantly increasing their complexity or

computational requirements.
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3.2.5. WIoU
In traditional IoU computation, the IoU score for a predicted

bounding box and a ground truth bounding box is calculated as

the ratio of their intersecting area to their total area. However, this

conventional method can sometimes lead to suboptimal results.

For instance, smaller objects, given their fewer pixel counts,

carry less weight in the IoU calculation, potentially causing the

model to overlook these smaller entities due to bias. Wise IoU

(Tong et al., 2023) addresses this issue by modifying the IoU

loss function during the model training process. It introduces a

dynamic adjustment factor that modifies the IoU value, taking into

account factors such as the size of the object, occlusion, and the

complexity of the background. This dynamic adjustment allows for

more precise object detection, particularly for challenging cases like

small objects or those in complex environments.

Assuming the anchor box is
⇀

B = [x y w h], and the ground

truth box is
⇀

B gt = [xgt ygt wgt hgt]. IoU is used to measure

the degree of overlap between the predicted frame and the real

frame in the target detection task, defined as LIoU = 1 − IoU.

WIoU has three versions: WIoU v1 constructs a boundary box loss

based on attention, while WIoU v2 and WIoU v3 attach a focusing

mechanism by constructing gradient gain and using algorithmic

methods on this basis.

3.2.5.1. WIoU v1

Inevitably, training datasets contain low-quality examples.

Geometric metrics such as distance and aspect ratio can intensify

the penalty on these low-quality samples, ultimately undermining

the model’s generalization performance. An effective loss function

shouldmitigate the penalty of geometric measures when the anchor

box and the target box align well. However, excessive intervention

during training can enhance the model’s generalization capability.

Building on this, distance attention is constructed based on the

distance metric, resulting in a two-layer attention mechanism.

This approach allows the model to more accurately attend to

important features, thereby improving its ability to generalize from

the training data to unseen examples.

LWIoU v1 = RWIoU LIoU = exp(
(x− xgt)

2
+ (y− ygt)

2

(W2
g +H2

g )
∗ )LIoU (5)

whereWg Hg are the size of the smallest enclosing box.

3.2.5.2. WIoU v2

Focal Loss introduces a monotonic focusing mechanism for

cross-entropy, which substantially reduces the contribution of

easy examples to the loss value. By doing so, it enables the

model to concentrate on difficult examples and achieve enhanced

classification performance. This is accomplished by constructing

the monotonic focusing coefficient L
∗
IoU of LWIoU v1. However,

during the model training process, the gradient gainL∗
IoU decreases

asLIoU decreases. This causes slower convergence in the later stages

of training. Tomitigate this issue, the introducedLIoU mean is used

as a normalization factor, which helps to balance the gradient gain

and expedite the training convergence.

LWIoU v2 = (
L
∗
IoU

LIoU

)
γ

LWIoU v1, γ > 0 (6)

Where LIoU is the running mean with momentum m. The

normalization factor is dynamically adjusted throughout the

training process to ensure that the overall gradient gain remains

high. This strategic adjustment effectively addresses the issue of

slow convergence during the later stages of training, fostering a

more efficient and robust learning environment.

3.2.5.3. WIoU v3

Firstly, an outlier is defined to characterize the quality of the

anchor box. A smaller outlier implies a higher quality anchor

box. Correspondingly, a smaller gradient gain is allocated to

such high-quality anchor boxes, thereby allowing the bounding

box regression to concentrate more on anchor boxes of average

quality. Allocating smaller gradient gains to anchor boxes with

larger outliers effectively mitigates the risk of low-quality examples

generating disproportionately large, detrimental gradients. Finally,

a non-monotonic focusing coefficient, denoted by β , is constructed

and applied to enhance the functionality of WIoU v1.

LWIoU v3 =
β

δαβ−δ
LWIoU v1,β =

L
∗
IoU

LIoU

∈ [0,+∞] (7)

3.3. Improved network structure
YOLOv7-CSAW

Figure 4 presents the network architecture of YOLOv7-CSAW,

starting with a description of the main modules. The improved

model uses two C2f modules to replace the original ELAN

modules in the backbone network. In the head portion, the

structure is revamped in the style of RepVGG. In this improved

head network, the original four ELAN modules are replaced

with C2f, and the SimAM attention mechanism is introduced

into MPConv. The original detection head, IDetect, is replaced

with ASFF, and the loss function is modified to Wise-IoU v3.

In addition, the MPConv module has two branches, both of

which serve the purpose of downsampling. The first branch

passes through a max-pooling layer, followed by a convolution

layer that alters the number of channels. The second branch

initially traverses a convolution layer to adjust the channel

count, and then proceeds to a convolutional block for further

downsampling. The ELANmodule is an efficient network structure

that controls both the shortest and longest gradient paths, allowing

the network to learn more feature representations and exhibit

greater robustness. The UPSample module uses nearest-neighbor

interpolation for upsampling. The SPP module expands the

receptive field, enabling the algorithm to accommodate images of

different resolutions by using max-pooling to capture a range of

receptive field sizes. The CSP module first divides the features

into two parts: one part undergoes traditional processing, and

the other part is processed by the SPP structure. Finally, these

two parts are merged, effectively halving the computational

load, which leads to faster processing speeds and improved

accuracy.

In the preprocessing phase, using default anchor boxes might

lead to bounding boxes that are too large and cannot accurately

capture small objects. By re-generating anchor boxes using the K-

means++ clustering algorithm, the size and ratio of the anchor
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FIGURE 4

(A) The network structure of YOLO-CSAW. (B) The network structure of YOLO-CSAW.
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FIGURE 5

Sample images of the dataset.

boxes can be optimized according to the actual size and distribution

of small objects in the training data. This helps to better adapt to

the detection of small objects. By accurately matching anchor boxes

with actual objects, the recall and precision of object detection can

be improved.

The application of the C2f module in the backbone of

the neural network can enhance the ability to perceive context

information, improve the expressive power of low-level features,

and strengthen multi-scale information. These improvements can

enhance the performance of the model’s object detection, especially

the detection of small objects, which is significantly improved.

Using the SimAM attention mechanism in the head and neck

parts of the object detection model can enhance the model’s

perception of small objects. SimAM can adaptively adjust the

weights of the feature map and focus more on the local area of the

target. This can improve the positioning accuracy of the target and

reduce localization errors.

The ASFF module can fuse features from different levels at the

Detect end. Combining semantic information from different levels

allows the model to more comprehensively capture the features of

the target, thereby improving the performance of object detection.

This helps the model better adapt to the characteristics of different

targets and changes in scenes, dynamically fuse features at the

Detect end, and improve the accuracy and robustness of object

detection. At the same time, WIoU considers the size and location

information of the target when calculating the loss at the detect

end, effectively solving problems such as large localization errors

and missed detections.

These five improvement measures each optimize different

aspects of small object detection, comprehensively enhancing the

model’s detection and localization capabilities for small objects.

TABLE 1 Dataset description.

Categories Train set Val set

Human 25,000 8,005

Board 3,083 842

Boat 506 197

Buoy 460 161

Sailboat 115 44

Kayak 904 556

Small object 25,547 8,214

Large object 4,588 1,642

4. Experimental results

4.1. Dataset and experimental environment

The maritime search and rescue dataset (Gasienica-Jozkowy

et al., 2021) used in the paper consists of various objects floating on

the water surface, captured by different unmanned aerial vehicles

with resolutions ranging from 1,280 × 720 to 3,840 × 2,160.

It includes 3,647 images and 39,991 target objects, as shown in

Figure 5. Over 99% of the object surface areas in the dataset are

smaller than 1% of the image area, and there are many crowded

images. More than 30% of the images contain 20 instances of

objects, and the most crowded image has 50 instances of objects.

Table 1 presents the number of object categories in the dataset,

which includes six different classes: Human, Board, Boat, Buoy,

Sailboat, and Kayak. Furthermore, the objects are classified into
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FIGURE 6

Graph of di�erent attention mechanisms.

TABLE 2 Detection accuracy of di�erent attention mechanisms.

Model mAP@0.5

Yolov7+C2f+SimAM 83.12

Yolov7+C2f+CBAM 77.26

Yolov7+C2f+SE 81.28

Yolov7+C2f+Shuffle 79.76

Yolov7+C2f+GAM 82.76

Yolov7+C2f+ACmix 80.30

Yolov7+C2f+CA 80.72

large and small categories, with the ratio of large to small targets

being ∼1:6, and each target category has separate training and

validation sets.

The experimental environment in this paper was Ubuntu

20.04 operating system, NVIDIA A100-SXM4-80GB GPU, 1024GB

memory, Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz processor,

with CUDA 11.4 and Pytorch 1.12.0 software environment.

4.2. Model evaluation

In this paper, precision, recall, average precision (AP),

mean average precision (mAP), parameters, and floating-point

operations (FLOPs) are used as evaluation met-rics for model

accuracy. AP represents the area under the precision-recall curve,

while mAP represents the mean AP for each category at an IoU

threshold of 0.5. The specific formulas are as follows:

P =
TP

TP + FP

R =
TP

TP + FN

AP =

∑

P

Num(objects)

mAP =

∑

AP

Num(class)

Where TP represents the number of correctly predicted

instances of the positive class, FN represents the number of

instances of the positive class that were predicted as negative, and

FP represents the number of instances of the negative class that

were predicted as positive.
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FIGURE 7

Graph of di�erent loss functions.

TABLE 3 Detection accuracy of di�erent loss functions.

Model mAP@0.5

Yolov7+CIoU 75.66

Yolov7+SIoU 72.76

Yolov7+EIoU 73.21

Yolov7+Focal_EIoU 78.39

Yolov7+WIoU 84.70

4.3. Experimental results

All models have an input image size of 1,280 × 1,280, are

trained for 300 epochs with the SGD optimizer, a learning rate of

1e-2, momentum of 0.937, and weight decay of 5e-4.

4.3.1. Experimental comparison of di�erent
attention mechanisms

To verify the effectiveness of different attention mechanisms,

we used YOLOv7+C2f as the baseline model and compared it

with various attention mechanisms, including SimAM, CBAM, SE,

Acmix (Pan et al., 2022), CA (Hou et al., 2021), GAM (Liu et al.,

2021), and Shuffle (Zhang and Yang, 2021). The input image size for

all models was 1280×1280, and the iteration number was 300. The

optimizer used was SGD with a learning rate of 1e-2, momentum

of 0.937, and weight decay of 5e-4. From the results shown in

Figure 6 and Table 2, SimAM attention mechanism was the most

effective, followed by GAM attention mechanism, which improved

the accuracy by 5.86% compared to CBAM attention mechanism.

4.3.2. Experimental comparison of di�erent loss
functions

To verify the effectiveness of different loss functions, we

conducted experiments comparing the CIoU (Zheng et al., 2020),

SIoU (Gevorgyan, 2022), EIoU, Focal_EioU (Zhang Y.-F. et al.,

2022), and WIoU loss functions. As shown in the Figure 7 and

Table 3, it can be seen that the WIoU loss function performs

significantly better than the other loss functions, improving the

accuracy by 12% com-pared to the SIoU loss function that comes

with YOLOv7. The average precision of other loss functions is less

than 80%, which also indicates that WIoU can to some extent solve

the problem of locating small targets.

The WIoU loss function plays a pivotal role in improving

the performance of the YOLOv7-CSAW model, particularly

in terms of accurate localization of small targets in complex

marine environments. By addressing large localization errors

and minimizing missed detections, the WIoU loss function

contributes significantly to the overall effectiveness of the model.

To demonstrate the performance improvements achieved through

the integration of the WIoU loss function, we compared our
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TABLE 4 Ablation experiments.

Model Parameter FLOPs(G) Human Board Boat Bouy Sailboat Kayak mAP@0.5

YOLOv7 35.5M 104.8 0.846 0.982 0.578 0.615 0.570 0.936 75.66

Yolov7+C2f 38.1M 43.7 0.846 0.982 0.637 0.614 0.818 0.863 79.5

Yolov7+C2f+SimAM 38M 43.8 0.890 0.985 0.638 0.643 0.882 0.899 83.12

YOLOv7-CSAW 58.7M 52.2 0.896 0.983 0.754 0.614 0.938 0.941 86.39

TABLE 5 Comparative experiments with mainstream algorithms.

Detector Backend AP@0.5

YOLOv3 (Redmon and Farhadi,

2018)

Darknet53 68.58

YOLOv4 (Bochkovskiy et al.,

2020),

CSPDarknet53-PANet-SPP 71.13

SSD300 (Liu et al., 2016) MobileNet v2 41.40

Faster-RCNN (Yabin et al., 2020) ResNet101+ FPN 78.97

RetinaNet (Lin et al., 2017) ResNet50 79.82

Ensemble 3 (Gasienica-Jozkowy

et al., 2021)

F-RCNN (ResNet101)

RetinaNet (ResNet50)

82.16

YOLOv7 (Wang et al., 2023) CBS+E-ELAN+MP 75.66

YOLOv7-CSAW CBS+E-ELAN+MP 86.39

TABLE 6 Two-category comparative experiment.

Detector AP@50

Small
object

Large object All

YOLOv7 (Wang et al., 2023) 0.854 0.914 0.886

YOLOv7-CSAW 0.896 0.918 0.907

YOLOv7-CSAWmodel with the original YOLOv7model and other

alternative loss functions. The results indicated that the YOLOv7-

CSAW model achieved an enhanced mean Average Precision

(mAP) of 9.04%, showcasing the effectiveness of the WIoU loss

function in reducing localization errors and missed detections.

These results highlight the importance of incorporating the WIoU

loss function into the YOLOv7-CSAW model, as it significantly

improves maritime target detection performance when compared

to the original YOLOv7 model and other alternative loss functions.

4.3.3. Ablation experiments
To validate the effectiveness of the proposed improved network,

we conducted four ablation experiments, and the results are shown

in Table 4. FLOPs indicate the computational complexity of the

model, while Params indicate the number of model parameters.

The first experiment used YOLOv7 as the baseline; the second

experiment added the C2f structure to YOLOv7, improving the

detection accuracy by 3.84%; the third experiment added the

SimAM attention mechanism based on the second experiment,

which further improved the detection accuracy by 3.62%. The

fourth experiment combined the adaptive feature fusion and

Wise-IoU loss function based on the third experiment, and

achieved a 10.73% improvement in detection accuracy compared

to the original YOLOv7 algorithm. Table 4 also shows the detection

accuracy of Human, Wind, Boat, Bouy, Sailboat, and Kayak. As

can be seen from the table, while the original YOLOv7 algorithm

achieved an accuracy of more than 0.9 for large targets (Board,

Kayak), but the detection accuracy for small targets (Boat, Bouy,

Sailboat) was low. YOLOv7-CSAWnot only improves the detection

accuracy of large targets but also enhances the detection accuracy

of small targets. Specifically, the detection accuracy improved

by 17.6% for boats and 36.8% for sailboats, resulting in a

substantial enhancement.

4.3.4. Comparative experiments with mainstream
algorithms

To demonstrate the effectiveness of our proposed method, we

conducted experiments on the sea dataset using six classic object

detection algorithms, namely YOLOv3 (Redmon and Farhadi,

2018), YOLOv4 (Bochkovskiy et al., 2020), SSD (Liu et al., 2016),

Faster-RCNN, RetinaNet (Lin et al., 2017), and Ensemble 3 from

reference (Gasienica-Jozkowy et al., 2021). Results are shown in

Table 5. Faster-RCNN is a classic two-stage detection method that

generates candidate boxes through region proposal networks and

then performs object classification and bounding box regression.

Other algorithms are one-stage detection methods. From Table 5,

it can be seen that the mAP of our proposed method reaches

86.39, which is 7.42% higher than the detection accuracy of the

two-stage detection algorithm Faster-RCNN, 6.57% higher than the

best one-stage detection algorithm RetinaNet, and 4.23% higher

than the ensemble network Ensemble 3. Obtaining these results

is reasonable since we added the C2f module in the backbone

network to obtain more abundant gradient flow information, used

the adaptive feature fusion module in the feature fusion stage to

balance the high-level semantic information and spatial position

information in the shallow feature map, and provided sufficient

semantic information for detecting small targets. Additionally,

we added the SimAM attention mechanism in the Head part

to enhance the extraction ability of shallow, intermediate, and

high-level features.

In addition, we also conducted comparative tests for two major

categories, small and large objects, as shown in Table 6. From the

table, it can be seen that the overall performance of YOLOv7-

CSAW is better than that of the original YOLOv7 model, especially

with a 4.2% increase in accuracy in the small object category,

which indicates that the proposed algorithm has certain detection

capabilities for small objects.
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FIGURE 8

Grad-CAM diagram of YOLOv7 and YOLOv7-CSAW.

FIGURE 9

Detection results with the YOLOv7-CSAW algorithm.

4.3.5. Algorithm analysis
To compare the feature extraction abilities of the proposed

method in small object detection, we used the Grad-CAM

(Gradient-weighted Class Activation Mapping) method to display

the heatmaps of detected objects. The Grad-CAM algorithm can

use class gradients to help analyze the network’s attention regions
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for a particular class, and visualizing the network’s attention regions

can provide important insights into whether the network has

learned the correct features or information for image classification.

Figure 8 shows the Grad-CAM images for YOLOv7 and

YOLOv7-CSAW. The brighter areas in the figure indicate the

regions that the network paid more attention to. To provide a

comprehensive analysis of the comparison, we selected images of

different categories and different sizes of detected objects, all of

which were correctly identified by both networks. The Human and

Board belong to small objects, while Kayak and Sailboat belong to

large objects. In the YOLOv7-CSAWmethod, the detection results

for human, board, kayak, and sailboat targets show improvements

of 0.18, 0.04, 0.01, and 0.11, respectively, compared to the baseline

model. The results of small object detection show that the YOLOv7-

CSAW model can extract more features for small objects, as

reflected by the heat map covering more parts of the small objects

and being brighter and more concentrated. The YOLOv7-CSAW

model is less affected by interference in areas without objects and

can increase its attention to adjacent or similar objects through

attention mechanisms and feature fusion. Large object detection is

relatively easy and has a high accuracy rate. Comparing the results

of large object detection, we found that the YOLOv7-CSAWmodel

pays more extensive attention to possible regions and can give

greater and more focused attention to other similar objects during

the detection of Kayak and Sailboat. Therefore, YOLOv7-CSAW

has better feature extraction and anti-interference abilities for small

objects and a more extensive attention range during the detection

process.

Figure 9 illustrates the impressive detection capabilities of

the YOLOv7-CSAW al-gorithm across a range of diverse

environmental conditions. The following descriptions highlight its

capabilities in different settings:

• Calm sea conditions: In situations with minimal wave activity

and clear visibility, YOLOv7-CSAW accurately identifies and

locates small marine targets, such as boats, swimmers, and

floating debris.

• Rough sea conditions: Even in the presence of significant

wave action and turbulent waters, the algorithm effectively

distinguishes between objects of interest and the surrounding

water, maintaining high accuracy in target detection.

• Low-light conditions: YOLOv7-CSAW is capable of detecting

objects under low light or at dusk, thanks to its robust feature

extraction and attention mechanisms, which help to identify

targets even in challenging lighting situations.

• High-contrast environments: The YOLOv7-CSAW algorithm

manages to effectively detect targets in settings with significant

contrast, such as bright sunlight or sharp shadows, by

leveraging its adaptive feature fusion network to emphasize

relevant features while suppressing background noise.

Overall, the YOLOv7-CSAW algorithm showcases its strong

performance and adaptability in various environmental conditions,

making it a valuable tool for marine target detection in diverse

scenarios. However, there are circumstances in which our

algorithm fails to perform successful detection, primarily when

dealing with small objects, distant objects, or in situations with

poor lighting conditions. The main reason for these detection

failures is the use of a training dataset obtained from a drone’s

vertical field of view. When employing surveillance cameras set

at various angles, like those monitoring lakeshores or providing

security for seaside hotels, the model may occasionally miss a

few detections. Furthermore, in oceanic environments, there exist

features such as rocks and reefs that can mimic the shapes of

Boats, Buoys, or Sailboats. This resemblance can potentially cause

false detections.

5. Conclusion

In order to address the issue of missed and false detections

of small targets in complex marine environments, this paper

proposes an improved model, YOLOv7-CSAW, based on the

original YOLOv7. The YOLOv7-CSAW model enhances the

backbone network with a C2f module, which allows for richer

gradient flow information while maintaining a lightweight

structure. Additionally, the inclusion of the parameter-free

attention mechanism, SimAM, bolsters the model’s ability to

perceive small target features. The improved feature fusion

network, termed ASFF, compensates for the lack of high-

level semantic features in small targets. Furthermore, the

WIoU loss function effectively resolves issues related to large

localization errors and missed detections, ultimately improving the

model’s generalization ability. Through a series of tests such as

attention mechanism evaluation, loss function analysis, ablation

experiments, and comparative experiments with mainstream

algorithms using a marine dataset, the results demonstrate

that the proposed YOLOv7-CSAW model exhibits superior

detection performance on small targets, along with enhanced

generalization ability and robustness compared to the original

YOLOv7. In future research, we plan to explore model compression

and lightweight design, with the aim of deploying the model

on mobile and embedded devices while balancing accuracy

and speed.
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