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Establishing the relationship between a limited number of samples and segmented

objects in diverse scenarios is the primary challenge in few-shot segmentation.

However, many previous works overlooked the crucial support-query set

interaction and the deeper information that needs to be explored. This oversight

can lead to model failure when confronted with complex scenarios, such as

ambiguous boundaries. To solve this problem, a duplex network that utilizes

the suppression and focus concept is proposed to e�ectively suppress the

background and focus on the foreground. Our network includes dynamic

convolution to enhance the support-query interaction and a prototype match

structure to fully extract information from support and query. The proposedmodel

is called dynamic prototype mixture convolutional networks (DPMC). To minimize

the impact of redundant information, we have incorporated a hybrid attentional

module called double-layer attention augmented convolutional module

(DAAConv) into DPMC. This module enables the network to concentrate more on

foreground information. Our experiments on PASCAL-5i and COCO-20i datasets

suggested that DPMC and DAAConv outperform traditional prototype-based

methods by up to 5–8% on average.

KEYWORDS

few-shot segmentation, semantic segmentation, mixturemodels, duplexmode, attention

module

1. Introduction

Deep convolutional neural networks have made significant strides in semantic

segmentation. However, most high-performing models require a large number of pixel-level

annotated training images. This annotation process is not only expensive but is also

cumbersome, thereby posing challenges in obtaining enough samples in some scenarios.

Consequently, achieving generalization across different scenarios becomes challenging. In

light of this, few-shot learning, which aligns more closely with cognitive learning, is likely

to become the primary focus of deep learning in the future. Few-shot segmentation involves

the use of a learned feature representation from training images to segment a query image.

However, this task remains a challenge when the object category falls outside the sample

range and a significant variation in appearance and pose exists between the objects in the

support and query images.
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Shaban et al. (2017) contributed an initial approach to semantic

segmentation with few samples and introduced the concept of

“prototype.” Prototype-based methods are currently considered

advanced in few-shot learning. This approach emphasizes the

weight vector, which is computed through global average pooling

guided by the ground truth mask in the embedded feature map.

This vector effectively condenses discriminative information across

feature channels, making it easier to compare features between

support and query images for semantic segmentation.

However, many challenges are still encountered in the research

of few-shot segmentation. The use of a single prototype for few-

shot learning can result in semantic ambiguity and deteriorate

feature distribution. Relying solely on a single prototype and simple

operations for prediction can result in loss of inherent object

details in the query image. Additionally, when large variation

in appearance or scale of the object in few-shot learning is

observed, making predictions based solely on support information

can become difficult. Furthermore, the segmentation failure of

ambiguous boundaries is also an existing problem in the few-shot

segmentation task at this stage.

Recent advancements in techniques, such as feature boosting,

prototype alignment, and iterative mask refinement, have

addressed the aforementioned challenges effectively. CANet

(Zhang et al., 2019) employs an iterative optimization module

to merge query and support features in an optimized manner.

Prototype mixture models (PMMs) (Yang et al., 2020) combine

prototype mixture and duplex manner to fully exploit channel

semantic and spatial semantic information. SCL (Zhang et al.,

2021) utilizes a self-guided mechanism to generate an auxiliary

feature prototype. ASGNet (Li et al., 2021) is designed to adaptively

partition the support features into multiple feature prototypes and

subsequently select the most relevant prototype for matching with

the query image. CRCNet (Liu et al., 2022) presents a solution

to address semantic ambiguity and feature distribution issues

by introducing cross reference. This approach involves multiple

interactions between support sets and query sets to improve

their overall performance. However, these approaches become

extremely fragile in terms of segmentation capability when facing

more complex situations, such as ambiguous boundaries in few-

shot segmentation tasks. When solving problems in ambiguous

boundaries, starting with just the foreground can be challenging.

The effective utilization of the duplex network and thorough

mining of information allows the model to establish stronger

relationships between the support and query sets with minimal

samples, ultimately leading to improved segmentation accuracy.

Our research draws inspiration from the foreground–

background and duplex modes utilized in PMMs. By utilizing

the duplex mode, we can effectively utilize channel semantic and

spatial semantic information to its fullest potential, as shown

in Figure 1. This approach can enhance the accuracy of the

image segmentation process in complex scenarios where the

foreground and background have similar characteristics. However,

we observed that the duplex mode in PMM only utilizes features

that are extracted from the backbone network, indicating that

the full potential of this mode remains untapped. Additionally,

in-depth research on this mode is lacking in current studies. To

gain a deeper understanding of the duplex manner, we plan to

develop a new attention model and enhance the existing duplex

mode through further investigation and exploration.

In this paper, we propose a novel approach called dynamic

prototype mixture convolutional network (DPMC) inspired by

the baseline method. Our method improves the duplex strategy

used in the baseline by incorporating a prototype match

structure to fully exploit the information in the support and

query images. Additionally, we use channel information and

spatial semantic information to segment the query image. To

achieve sufficient support–query interaction, we introduce dynamic

convolution in DPMC. Specifically, we apply kernel generation

to produce different convolution kernels, which are applied with

convolutions of different receptive fields to extract more image

information. To enhance the segmentation performance of DPMC,

we designed a double-layer attention augmented convolutional

module (DAAConv). This module efficiently acquires contextual

information, focuses on important regions, and removes redundant

information. The attentionmodule designed in this work effectively

improves DPMC’s ability to focus on the foreground, which

results in enhanced segmentation performance. In conclusion, our

experiments on the Pascal and COCO datasets have shown that the

combination of DAAConv and DPMC significantly improves the

baseline. Additionally, we conducted ablation experiments, which

demonstrate that DAAConv enhances the duplex mode and DPMC

outperforms the baseline.

The main contributions of our work are summarized

as follows:

1. DPMC, which utilizes a duplex approach of suppressing the

background and emphasizing the foreground, is presented

in this study. Specifically, our proposed method is effective

for addressing complex segmentation tasks with indistinct

boundaries.

2. To improve the performance of duplex mode, DAAConv has

been designed. This module can efficiently obtain contextual

information and focus on important regions, ultimately

enhancing the overall efficiency of the duplex mode.

3. The use of DAAConv and DPMC together fully maximizes the

potential of the duplex concept. This approach achieves excellent

performance in the classical dataset of few-shot learning, thereby

significantly outperforming existing techniques.

The remainder of this paper is structured as follows: Section

2 reviews related works in semantic segmentation, attention and

self-attention, and few-shot segmentation. Section 3 describes

the DAAConv and DPMC models we constructed in detail.

Section 4 demonstrates the superiority of our model through

adequate experiments and proves the validity of our constructed

model through multiple sets of ablation experiments. Section 5

summarizes our work and provides an outlook for the future.

2. Related work

In this section, we will discuss three aspects of work

that are highly relevant to our work, including semantic

segmentation, attention and self-attention mechanisms, and few-

shot segmentation tasks.
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FIGURE 1

Visualization of duplex networks and previous networks.

2.1. Semantic segmentation

Semantic segmentation aims to divide an image into regions

of different semantic categories. Classical methods, such as UNet

(Ronneberger et al., 2015), correspond to fully convolutional

networks with a U-shaped structure and symmetric encoding

and decoding paths, as proposed by Ronneberger et al. It is not

only known for its excellent segmentation accuracy but also for

its decent speed. Other methods, such as PSPNet (Zhao et al.,

2017) and DeepLab (Chen et al., 2017a,b), are also based on fully

convolutional networks (FCN; Long et al., 2015). However, Their

common shortcoming is limited ability to gain long-range context

information, missing the global information. Recent research

has focused on how to widen the visual field to simulate the

remote context of an image. Inspired by non-local (Wang et al.,

2018) approaches, some methods (Chen et al., 2016; Liu et al.,

2017; Ding et al., 2018; Li et al., 2019; Hou et al., 2020; Pal

et al., 2022) use attentional mechanisms to establish connections

between image contexts. Transformer architectures also achieve

good results in semantic segmentation, focusing on multi-scale

feature fusion (Zhang et al., 2020; Chen et al., 2021; Wang

et al., 2021; Xie et al., 2021; Jin et al., 2022a,b,c, 2023), and

contextual feature aggregation (Liu et al., 2021; Strudel et al.,

2021; Yan et al., 2022). For example, SETR (Zheng et al., 2021)

uses the transformer framework to serialize images to achieve a

fully attention-based feature representation encoder. In Cross ViT

(Chen et al., 2021), a dual-branch transformer is used to group

patches of different sizes in images, and multiple interactions with

the attention mechanism are performed to integrate information

better. FPANet (Wu et al., 2022) utilized a lightweight feature

pyramid fusion module FPFM to reduce the number of feature

channels. Additionally, SeBiFPNwas employed to acquire semantic

and spatial information from images and to merge features from

various levels.

2.2. Attention and self-attention
mechanisms

The introduction of the attention mechanism has shifted

the attention to important areas and ignored irrelevant parts.

The application of attention mechanism can be regarded as

a dynamic selection process that adaptively achieves feature

weighting processing based on the importance of the input. The

superiority of the attention mechanism has been demonstrated in

multiple visual tasks. For example, in semantic segmentation tasks,

the classic channel attention module called SENet (Hu et al., 2018)

improves the representation ability of the network by modeling

the interdependence among convolutional feature channels. Classic

spatial attention module (SAM) can also be utilized (Zhu et al.,

2019). In recent years, many hybrid attention modules, such as

the convolutional block attention module (CBAM; Woo et al.,

2018), which contains the channel attention module (CAM) and

the spatial attention module (SAM). For instance, DANET (Fu

et al., 2019) employs two distinct attention modules in the spatial

and channel dimensions and combines the outputs of these

modules to enhance feature representation, thereby effectively

improving segmentation accuracy. MANet (Wang et al., 2022)

is used to alleviate the problem of excessive complexity of

non-local networks by replacing the traditional single densely

connected graph with two sparsely connected graphs. Attention
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mechanisms have many types, and excellent hybrid attention

mechanisms similar to CBAM and DANET have not yet been

fully developed.

Self-attention mechanisms and non-local neural networks have

been proven to be highly successful in various tasks because of

their effectiveness in modeling long-range contextual information.

Particularly, within the realm of natural language processing

tasks, self-attention mechanisms can automatically calculate and

explore the relationships between the sentences themselves and

finally obtain the connections among each variable in the sentence

and all variables. For example, in transformer, self-attention

helps to encode specific words while still obtaining information

from other words in the sentence. However, in the field of

imaging, the mechanisms for paying attention have not been

sufficiently developed. In image classification tasks, Bello et al.

(2019) developed a novel two-dimensional relative self-attention

mechanism, which infuses relative positional information while

maintaining translational equivariance, thereby making it very

suitable for images. This attention mechanism is used to improve

the convolutional operator to replace convolution by concatenating

convolutional feature maps with a set of feature maps generated

by the self-attention mechanism. The construction of the attention

mechanism in this paper is also inspired by this.

2.3. Few-shot segmentation

Manual annotation is time consuming, laborious, expensive,

and does not fit the learning style of humans. Therefore, been

studied extensively in recent years. Existing few-shot learning

updates these three components by incorporating two steps: first,

associating the encoder’s support set and query set image features,

and second, minimizing the loss of the difference between the

measurement prediction and the underlying facts of the query

sample. A prototype learning or feature stitching approach is

adopted when we need to solve the issue about how to associate

support and query images. In OSLSM (Shaban et al., 2017), a

two-branch one-time semantic image segmentation method is

introduced to achieve few-shot segmentation. In this method, the

first branch takes the labeled image as an input and produces

a vector of parameters as an output. The second branch takes

these parameters and a new image as input and produces a new

class of image segmentation masks as output. PL (Dong and Xing,

2018) uses a prototype network to learn a prototype for each class.

Then, it computes the cosine similarity between the test sample

and each prototype to predict the class label. In CANet (Zhang

et al., 2019), an iterative optimization module is used to iteratively

optimize the results for merged queries and supporting features.

In PMMs, the proposed model enhances the representations

of semantic information in images through the association of

image regions with multiple prototypes. Using an expectation-

maximization (EM) algorithm, the model estimates the prototype-

based semantic representation. Interestingly, PMMs use duplex

mode to suppress the background region. Although the simple

duplex network can partially address the problem in ambiguous

boundaries, the limited interaction between the support set and

query set, as well as the lower exploitation of the duplex network,

can negatively influence the performance of PMM. In SSA-Net

(wang et al., 2022), a spatial self attention network is introduced to

broaden the sensory domain and enhance representation learning

by extracting valuable contextual information from deeper layers

through the use of a self-attention mechanism. CRCNet (Liu et al.,

2022) explains the concept of cross reference, which involves

predicting and cross-referencing query images and support images

simultaneously. This approach helps mitigate issues related to

semantic ambiguity and feature distribution that arise during few-

shot learning. However, CRCNet ignores the deeper mining of both

when pursuing a large number of interactions between support and

query sets.

Our study is inspired by the duplex manner in PMMs,

which can effectively depress background regions in few-shot

segmentation tasks and improve the accuracy of segmentation.

Features extracted through the backbone network, such as Resnet,

contain a significant amount of redundant information. Despite

their effectiveness in capturing local details, these features often

fail to provide a global information of the input data. This

limitation arises from the relatively narrow perceptual field of the

network, which hinders the extraction of more comprehensive and

meaningful information. In light of these observations, we believe

that further exploration of feature selection and representation

techniques is necessary to improve the performance of deep

learning models in complex tasks. Therefore, the information

extracted from the backbone network should be further processed

before using the duplex method to maximize the effectiveness of

the method. We have also made appropriate improvements to the

duplex manner in PMMs to make the support–query interaction

more adequate.

3. Method

3.1. Overview

To acquire more contextual information within the learning

network, extract the target regions efficiently, and play the role of

duplex mode efficiently, we design DAAConv, as shown in Figure 2.

Our model also includes two network branches: the support

branch and the query branch. Two weight-sharing CNNs are used

as the backbone network for feature extraction in the support

and query branches. The support image’s feature set S is then fed

into DAAConv. After being processed by the attention module,

the feature set continues to be fed into the DPMC. In DPMC,

the feature set is first divided into a positive (foreground) sample

set, S+, and a negative (background) sample set, S-. Subsequently,

a Prototype vector is generated using the EM algorithm before

proceeding to the next step with duplexing. One side of the

duplex mode uses PMS to activate query features, and dynamic

convolution using custom convolution kernels learned from the

support set by the kernel generator, which will effectively connect

the support and query sets, while the other side generates

probability maps by element-wise multiplication. Finally, the two

sides are combined for semantic segmentation.

In summary, we construct a new hybrid attention module

called DAAConv and a new duplex network called DPMC. The

two modules combined in the network can effectively obtain

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1206189
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zeng et al. 10.3389/fnbot.2023.1206189

FIGURE 2

Overall structure of our method with the double-layer attention augmented convolutional module (DAAConv) and the dynamic prototype mixture

convolutional network (DPMC).

contextual information, focus on important regions, improve

the duplex model performance, fully mine the information in

support and query, and increase the support–query interaction. The

complementarity of the two modules effectively addresses the lack

of support–query set interaction and deeper information mining in

traditional few-shot segmentation. Next, we will explain each part

mentioned above in detail.

3.2. DAAConv module

Next, we will formally introduce our DAAConv module. First,

to obtain the channel information of the support set, we utilize

the SE (Hu et al., 2018) attention module in the first layer of

the attention mechanism, which mainly consists of squeeze and

excitation, to effectively determine themeaning of each channel and

weight the features according to the meaning, so as to highlight

the important features and repress the non-important ones. The

use of this module has successfully enabled the information to

be used in various ways. The use of this module successfully

focuses the information on the foreground part and weakens the

background part.

Specifically, we refer to the height, width, and number of input

filters of an activation map, given an input tensor S of shape

(H,W,C). First, we pass X through the squeeze and excitation

channel attention network. Then we obtain the output:

DAA1 (S) = U = SE (S) . (1)

Next, we feed the output U ∈ R
H′×W′×C′

into our second

layer of attention, the self-attention mechanism. For the choice

of the second layer of the attention mechanism, we draw on the

multi-head-attention (MHA) part of a novel attention mechanism

(AAConv; Bello et al., 2019). Self-attention is a recent advancement

in capturing long-range interactions, but is mainly used in

sequence modeling and generative modeling tasks. In contrast,

AAConv preserves translational isomorphism while injecting

relative position information, hence making it well suitable for
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images. We only selected the multihead-attention part as our

second stage of the attention mechanism:

DAA2 (U) = MHA (U) . (2)

The composition of DAA (Double-layer Attention Augmented

networks) can effectively enable features to obtain contextual

information and focus attention where we need it. DAA

is only a part of our double-layer attention augmented

convolutional module.

DAA (S) = DAA2 (DAA1 (S)) . (3)

In our experiments, we found that the improvement of

segmentation accuracy is more limited if we only use DAA. DAA

can effectively capture the long-distance information of an image

but ignores the local information. So, we introduce an additional

feature mapping in the network or the second layer of our two-layer

attention module. We achieve a balance between long-range and

close-range information by concatenating the convolution module,

which enhances localization, with the self-attention module, which

captures long-range information.

We pass the support sets extracted through the backbone

network sequentially through the ordinary convolution and SAM

(Zhu et al., 2019).

X′ = SAM (Conv (S)) . (4)

Finally, we concatenate the additional feature map obtained

and the attentional feature maps generated by DAA through the

concatenating operation.

DAAConv (S) = S′ = Concat [SAM (Conv (S)) ,DAA (S)] . (5)

We solve the high memory footprint of the self-attentive

mechanism by using smaller batch sizes.

3.3. DPMC networks

3.3.1. Prototype generation
After the image features have passed through the DAAConv we

have designed, more contextual information is effectively extracted,

and important region features are automatically captured, which

will be of good help for our next processing. We will then describe

in detail the DPMC that we have designed.

We name the DAAConv(X) obtained above as S′ ∈

R
H′′×W′′×C′′

. S is spatially divided into foreground samples S′+ for

object part learning and background samples S′− for background

part learning. In the prototyping section, DPMC relies on the idea

of the probability mixture model (Yang et al., 2020), as

p
(

s′i |θ
)

=

K
∑

k=1

wkpk
(

s′i |θ
)

. (6)

where wk represents weight, and pk
(

s′i |θ
)

denotes the kth

base model.

Next, we obtain the prototype using the EM algorithm, which

consists of iterative E-steps and M-steps. The expected value of the

sample si is calculated in each E-step.

Eik =
pk

(

s′i |θ
)

∑K
k=1 pk

(

s′i |θ
)
. (7)

In each M-step, the mean vectors are updated using the

expectation, as

µk =

∑N
i=1 EikS′i

∑N
i=1 Eik

(8)

We have successfully obtained the prototype using by EM

algorithm. Then, we will use our duplex mode to process the

prototype we obtained.

3.3.2. Job in duplex mode
The prototype vector that corresponds to S′+ is µ+ =

{µ+
k
, k = 1, ...K}, and the prototype vector corresponding to S′−

is µ− =
{

µ−
k
, k = 1, ...,K

}

. In the baseline, the authors have

conducted ablation experiments, which demonstrate that the effect

is optimal when “K = 3.” Therefore, we will not perform additional

experiments and will use “K = 3” as the default value.

3.3.2.1. PMS

Distinguishing from the P-Match in baseline, we redesigned a

PMS, as shown in Figure 3. We perform the Matrix Multiplication

of the processed support set with the foreground prototype. The

feature fusion of support sets at different scales can mine more

information in the support set. We then upsample the obtained

results into the query set processed by the SE module.

Q′ = PMS
(

µ+
k
,Q, S

)

, k = 1, ...,K. (9)

Compared with baseline, the PMS we designed accomplishes a

deeper mining of support set information by fusing features from

different scales of support sets.

3.3.2.2. Dynamic convolution

For more accurate segmentation, we innovatively introduce

the dynamic convolution of the feature sets obtained from the

EM algorithm and the PMS. The dynamic convolution generator

based on the support set can enable more sufficient interaction

between the support and query sets. Specifically, the support feature

set S and its corresponding masks are inputted into a kernel

generator that produces the dynamic convolution ker1, ker2 and

ker3 (i.e., one set of quadratic kernels and two sets of asymmetric

kernels). Then, for each of the three prototypes, we perform

convolution operations and summation using each of these three

convolution kernels.

Q′′
k = Conv

(

kerk, PMS
(

µ+
k
,Q, S

))

,k = 1, ...,K. (10)

More details about the kernel generator can be found in Liu

et al. (2022).
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FIGURE 3

Visual illustration of our proposed PMS.

3.3.3. Another job in duplex mode
In this section, we first multiply each prototype vector by the

query feature Q using Element-wise Multiplication. Consequently,

the resulting graph is converted into a probability map by

using the softmax function on the channels and summing them

to produce two probability maps, foreground, and background,

M+
p , andM−

p .

To activate the object of interest, this is then further

concatenated with the query function:

Q′′′ = Concat
(

M+
p ,M

−
P ,Q

′′
)

. (11)

Finally, Q′′′ is passed to a decoder to generate a segmentation

maskMQ for the query image:

MQ = Conv
(

ASPP
(

Conv
(

Q′′′
)))

. (12)

4. Experiments

4.1. Experimental setting

4.1.1. Datasets
In our experiment, we validated the model on two classic

few-shot segmentation datasets, namely, PASCAL-5i and COCO-

20i. The first dataset is generated from PASCAL VOC 2012

(Everingham et al., 2009) with additional mask annotations

from SDS (Hariharan et al., 2014) and consists of 20 semantic

categories evenly divided into four-folds. The second dataset

is built from MS COCO (Lin et al., 2014) and is composed

of 80 semantic categories divided into four folds. Notably,

COCO-20i includes 40,137 images (80 categories), which is

higher than PASCAL-5i. Therefore, COCO-20i is a more

challenging benchmark.

4.1.2. Evaluation indicators
In our experiments, we use mIoU as our evaluation metric.

mIoU is a standardmetric for semantic segmentation thatmeasures

the overlap ratio between the generated and original regions (i.e.,

the ratio of intersection to union). A higher mIoU indicates better

segmentation results. mIoU can be calculated as follows

mIoU =
1

C

C
∑

i=1

IoUi, (13)

IoU =
TP

TP + FP + FN
. (14)

In predicted masks, TP (true-positives) are pixels that are truly

predicted to be a part of the class, FP (false-positives) are pixels

that are falsely predicted to be a part of the class, and FN (false-

negatives) are pixels that are falsely predicted not to be a part of

the class.

4.1.3. Implementation details
Our approach takes PMMs (Yang et al., 2020) as the baseline

and employs VGG-16 and ResNet50 as the backbone. To obtain

the prototype, we iterated the EM algorithm for 10 rounds.

We use four data enhancement strategies (Zhang et al., 2019):

normalization, horizontal flipping, random cropping, and random

resizing. Although limited by computational resources, we used a

learning rate of 0.0035 and a batch size of four to train both datasets,
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FIGURE 4

Segmentation results of DPCN, DPMC+, and DPMC. DPCN represents the method used in Liu et al. (2022). The method does not use duplex

networks. DPMC+ represents the working path that only uses the foreground (i.e., the working path where the PMS is located). DPMC represents our

complete duplex network.

which did not affect our ability to demonstrate the effectiveness

of our method. We ran a total of 200,000 steps. Our experiments

were implemented using PyTorch 1.7 and ran on an NVIDIA

RTX 3060 12g GPU.

4.2. Duplex mode analysis

Several existing studies have proposed models for solving the

few-shot segmentation task using duplex networks. However, these

models have only utilized duplex networks as a tool and have not

delved into further exploration of their potential. This instance

makes the performance of the duplex mode not fully developed.

To demonstrate that duplex mode is a good solution for few-

shot segmentation tasks, we visualize the segmentation results of

DPMC with duplex mode, DPMC with only a single chain in the

foreground, and DPCNwith excellent performance without duplex

mode, as shown in Figure 4. The single chain and DPCN can also

perform the segmentation task well when segmenting images with a

strong difference between the object and the background. However,

when the background is more similar to the segmented objects,

the duplex mode shows its superiority well, such as the chair and

the cow. The much better-performing DPCN does not perform

well with this tricky problem and show larger errors in two tasks,

cow and chair, where the background is extremely similar to the

segmentation target.

TABLE 1 Duplex mode analysis of our DPMC on PASCAL-5i .

Model Mean

DPMC++DAAConv 58.4

DPMC+DAAConv 61.9

DPMC+ represents the working path that uses only the foreground (i.e., the working path

where the PMS is located). The bold values represent the best performance.

The experimental results in Table 1 show that the use of duplex

mode effectively improves the segmentation accuracy by 3.5%.

4.3. Performance

PASCAL-5i: We report the mIoU in the 1-shot and 5-shot

settings in Table 2. In 1-shot and 5-shot settings, they outperform

state-of-the-art methods, especially for the 5-shot setting, with a

backbone of ResNet50, exceeds the baseline by 7% and exceeds the

previous best model HSNet by 0.2%. Our model also performs well

in the 1-shot setting, thereby outperforming the baseline by 5.5%,

HSNet by 2.2%, and MMNet by 0.1%. Our experimental results

show that ourmodel effectively improves the baseline and enhances

the performance of the duplex mode.

We visualized several random segmentation results in the

PASCAL-5i dataset, as shown in Figure 5. Our network shows

a significant improvement in segmentation compared with the
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TABLE 2 Comparison with state-of-the-arts on PASCAL-5i dataset under 1-shot and 5-shot settings.

Method Backbone 1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

OSLSM (Shaban

et al., 2017)

VGG16 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9

co-FCN (Rakelly

et al., 2018)

VGG16 36.7 50.6 44.9 32.4 41.1 37.5 50.0 44.1 33.9 41.4

HSNet (Min et al.,

2021)

VGG16 59.6 65.7 59.6 54.0 59.7 64.9 69.0 64.1 58.6 64.1

PFENet (Tian et al.,

2020)

ResNet50 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

SCL (Zhang et al.,

2021)

ResNet50 63.0 70.0 56.5 57.7 61.8 64.5 70.9 57.3 58.7 62.9

MMNet (Wu et al.,

2021)

ResNet50 62.7 70.2 57.3 57.0 61.8 62.2 71.5 57.5 62.4 63.4

CWT (Lu et al.,

2021)

ResNet50 56.3 62.0 59.9 47.2 56.4 61.3 68.5 68.5 56.6 63.7

CRCNet (Liu et al.,

2022)

ResNet50 63.4 69.7 55.8 56.9 61.5 65.2 70.9 55.9 61.8 63.5

MANet (Ao et al.,

2022)

ResNet101 63.9 69.2 52.5 59.1 61.2 66.7 70.3 54.2 64.5 63.9

RPMMs (Baseline)

(Yang et al., 2020)

VGG16 47.1 65.8 50.6 48.5 53.0 50.0 66.5 51.9 47.6 54.0

DPMC+DAAConv

(Ours)

VGG16 55.8 69.5 55.4 52.9 58.4 62.2 69.8 58.3 54.5 61.2

RPMMs (Baseline)

(Yang et al., 2020)

ResNet50 55.2 66.9 52.6 50.7 56.4 56.3 67.3 54.5 51.0 57.3

DPMC+DAAConv

(Ours)

ResNet50 62.9 70.7 56.8 57.2 61.9 65.7 71.9 62.1 57.5 64.3

mIoU of each fold and averaged mIoU of all folds are reported. The baseline is RPMMs. The bold values represent the best performance.

FIGURE 5

Segmentation results of our model and baseline.

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1206189
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zeng et al. 10.3389/fnbot.2023.1206189

TABLE 3 Comparison with state-of-the-arts on COCO-20i dataset under 1-shot and 5-shot settings.

Method Backbone 1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

FWB (Nguyen et al.,

2019)

VGG16 18.4 16.7 19.6 25.4 20.0 20.9 19.2 21.9 28.4 22.6

PFENet (Tian et al.,

2020)

VGG16 33.4 36.0 34.1 32.8 34.1 35.9 40.7 38.1 36.1 37.7

SAGNN (Xie et al.,

2021)

VGG16 35.0 40.5 37.6 36.0 37.3 37.2 45.2 40.4 40.0 40.7

RePRI (Boudiaf

et al., 2021)

ResNet50 31.2 38.1 33.3 33.0 34.0 38.5 46.2 40.0 43.6 42.1

MMNet (Wu et al.,

2021)

ResNet50 34.9 41.0 37.2 37.0 37.5 37.0 40.3 39.3 36.0 38.2

SCL (Zhang et al.,

2021)

ResNet101 36.4 38.6 37.5 35.4 37.0 38.9 40.5 41.5 38.7 39.9

MANet (Ao et al.,

2022)

ResNet50 33.9 40.6 35.7 35.2 36.4 39.1 48.3 41.1 40.9 42.3

CRCNet (Liu et al.,

2022)

ResNet50 35.1 42.2 41.3 36.4 38.7 40.5 45.6 42.4 41.2 42.4

RPMMs (Baseline)

(Yang et al., 2020)

ResNet50 29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5

DPMC+DAAConv

(Ours)

VGG16 33.1 38.4 35.8 31.5 34.7 37.5 43.1 38.4 42.2 40.3

DPMC+DAAConv

(Ours)

ResNet50 36.9 40.9 39.1 37.9 38.7 39.5 44.5 42.6 44.2 42.7

mIoU of each fold and averaged mIoU of all folds are reported. The baseline is RPMMs. The bold values represent the best performance.

baseline. We can also observed from the figure that our network

can dig into finer details compared with baseline, as seen in places,

such as stool legs and airplane wings. Our network can effectively

distinguish and segment similar objects, such as motorbikes and

cars, when they appear together, thus outperforming the baseline.

COCO-20i: COCO-20i is more challenging as it has a larger

variety of objects and greater variation than PASCAL-5i. Ourmodel

performs well in 1-shot and 5-shot settings. Table 3 reports the

mIoU of our model in these settings, showing that our model

significantly outperforms the baseline. Our model outperforms the

baseline by 8.1% in the 1-shot setting and by 7.2% in the 5-shot

setting. It also outperforms MMNet, the best performing model

on COCO-20i, by 1.2% in the 1-shot setting and RePRI, the best

performing model, by 0.6% in the 5-shot setting. The experimental

results demonstrate that our model can perform equally well in

more difficult scenarios.

4.4. Ablation study

To evaluate the effectiveness of our constructed DPMC and the

usefulness of DAAConv in duplex mode, we conducted a series of

ablation experiments, as shown in Table 4.

4.4.1. Superiority of DPMC
According to two separate experiments conducted by PMMs

and DPMC, our designed DPMC effectively improved PMMs.

TABLE 4 Ablation study of our DPMC and DAAConv on PASCAL-5i .

PMMs DPMC DAA DAAConv mIoU

X 55.3

X 57.9

X X 60.2

X X 61.9

PMMs represent the baseline, DPMC represents the complete duplex network we built, DAA

represents a single-layer DAAConv using only SE and self-attention layer, and DAAConv

represents our complete attention module. The bold values represent the best performance.

The segmentation accuracy of DPMC has been improved by 2.3%

relative to PMMs, thus providing additional evidence that our

DPMC design effectively utilizes information from support and

query features to enhance image segmentation.

4.4.2. E�ectiveness of DAAConv
We evaluated the segmentation results of two experiments:

DPMC running alone and DPMC and DAAConv running

together. Our findings indicate that the addition of DAAConv

can improve segmentation accuracy by 4% in the duplex mode.

This experimental result effectively demonstrates the effectiveness

of our constructed hybrid attention mechanism in improving the

performance of duplex mode in small sample segmentation tasks.
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TABLE 5 Generalization ability of the proposed DAAConv.

Methods backbone mIoU Improvement

CANet (Zhang et al.,

2019)

ResNet50 55.40 –

CANet+DAAConv ResNet50 57.28 +1.88

FWB (Nguyen et al.,

2019)

ResNet101 55.71 –

FWB+DAAConv ResNet101 57.22 +1.51

PANet (Wang et al.,

2019)

VGG16 48.10 –

PANet+DAAConv VGG16 50.29 +2.19

4.4.3. Necessity of double-layer attention
structure

We conducted two experiments using DPMC with DAA

(DAAConv without Conv and SAM) and DPMC with DAAConv.

Our findings indicate that the SAM and Conv layers in DAAConv

play a crucial role in enhancing the model’s final segmentation

accuracy by 1.7%.

4.4.4. Generalization of DAAConv
DAAConv is effective in several prototype models, including

CANet, FWB, and PANet. When inserted after the backbone

network of these models, DAAConv has improved their

performance to some extent, as shown in Table 5.

5. Conclusion and future work

We propose a DAAconv and a DPMC based on duplex mode

to solve challenging few-shot segmentation tasks. DAAConv can

effectively obtain contextual information and focus on important

regions, and the double-layer structure achieves a balance between

long-range and close-range information. DAAConv fits well with

the idea of focus and suppression of duplex network, which can

effectively improve the performance of duplex mode. Meanwhile,

DPMC improves the duplex strategy by fully exploiting the

information in support and query and fully realizing the support–

query interaction. Moreover, DPMC retains the advantages of

duplex mode, which can effectively solve complex segmentation

scenarios, such as ambiguous boundaries, when combined

with DAAConv. Extensive experiments have shown that the

combination of DAAConv and DPMC performs well in few-shot

segmentation tasks.

Future work will focus on two parts. First, we will continue

to improve our model as we attempt to test it on a larger

dataset and continuously test it in complex real-world scenarios.

Second, we will combine the algorithm with the robotics

algorithm to complete a complete set of work from recognition

to operation.
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