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Considering the dynamics and non-linear characteristics of biped robots, gait

optimization is an extremely challenging task. To tackle this issue, a parallel

heterogeneous policy Deep Reinforcement Learning (DRL) algorithm for gait

optimization is proposed. Firstly, the Deep Deterministic Policy Gradient (DDPG)

algorithm is used as the main architecture to run multiple biped robots in parallel

to interact with the environment. And the network is shared to improve the

training e�ciency. Furthermore, heterogeneous experience replay is employed

instead of the traditional experience replay mechanism to optimize the utilization

of experience. Secondly, according to the walking characteristics of biped robots,

a biped robot periodic gait is designed with reference to sinusoidal curves.

The periodic gait takes into account the e�ects of foot lift height, walking

period, foot lift speed and ground contact force of the biped robot. Finally,

di�erent environments and di�erent biped robot models pose challenges for

di�erent optimization algorithms. Thus, a unified gait optimization framework

for biped robots based on the RoboCup3D platform is established. Comparative

experiments were conducted using the unified gait optimization framework, and

the experimental results show that the method outlined in this paper can make

the biped robot walk faster and more stably.

KEYWORDS

gait optimization, biped robot, Deep Deterministic Policy Gradient, experience replay,

parallel heterogeneous strategy

1. Introduction

As robotics research continues to advance, robots have development trends in various

fields (Singh et al., 2022). Particularly, the biped robot, as a kind of bionic robot, has higher

adaptability, operation ability and interactivity due to its human-like double-leg structure.

However, gait optimization, as a key issue in the stable walking technology of biped robots,

has always been a hot and difficult point in the field of robotics research. In the early stage

of gait optimization research, traditional control methods were widely used in the field of

gait control of biped robots. The main categories include the following: fixed gait control

methods, such as human walking parameters (Horn et al., 2020; Rosa and Lynch, 2022),

zero moment point (ZMP) (Farid et al., 2022; He and Yamamoto, 2022), etc. Paredes et

al. proposed an approach based on a linear inverted pendulum model to deal with biped

gait, but the auxiliary input of gait parameters is required to achieve stable walking of

biped robot (Paredes and Hereid, 2022). Despite their low computational requirements,

the aforementioned methods exhibit limited flexibility, as they are tailored to a single
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scenario and are susceptible to external perturbations. Feedback-

based gait control methods, which refer to real-time adjustments

based on the external environment and internal state perceived

by the robot, such as passive walking (Safartoobi et al., 2021),

fuzzy logic control (Maroger et al., 2021; Dong et al., 2022),

etc. These methods also have some drawbacks, with high

requirements for sensors and computing power. Optimization-

based gait control methods, which mainly refer to the theory of

optimization algorithms (Duburcq et al., 2020), inevitably require

not only a large number of calculations, but also complex control

planning. Currently, Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) have been applied to optimize the gait of

biped robots (Tao et al., 2021; Liu et al., 2022a). Kashyap et al.

demonstrated the superiority of PSO over GA in gait optimization

by their study (Kashyap and Parhi, 2021). However, since the

gait control of the biped robot is a multi-objective optimization

problem, too many parameters need to be set for the biped robot,

which may cause the PSO algorithm to fail to obtain the optimal

value during optimization, resulting in the limitation of the walking

speed of the robot. Generally speaking, most traditional research

methods have problems such as low efficiency, poor robustness, and

low generalization.

The advent and progression of reinforcement learning (RL)

has opened up new avenues for gait control of biped robots

(Kasaei et al., 2021). RL methods do not depend on the level of

robot hardware and also allow parameter debugging in a short

time (Castillo et al., 2020). However, the extraction of biped

robot state features based on reinforcement learning approach is

not an easy task (Wu et al., 2020). Combined with more stable

machine learning networks, RL has gradually developed into DRL,

which provides a new solution for dealing with high-dimensional

features (Niroui et al., 2019; Clegg et al., 2020). DRL can better

handle complex state spaces from real-world scenarios of biped

robots. DRL is able to automatically learn abstract, high-level

feature representations and acquire strategies for control from

environmental feedback through continuous training. Such an

approach to learning strategies is more stable and can effectively

avoid the effects of inaccurate dynamic models (Rodriguez and

Behnke, 2021). DDPG is a DRL algorithm for continuous control,

which extends the application of RL by learning end-to-end to

control directly based on the original inputs and outputs (Li et al.,

2019). DDPG-based biped robot walking revolves around multiple

action strategies based onMarkov Decision Process (MDP) to learn

algorithms (Tao et al., 2022). Compared with the greedy policy

in parallel algorithm training in Tao et al. (2022), the algorithm

proposed in this paper is better at dealing with the instability

of parallel architecture. Although the biped gait control method

based on DDPG enables the algorithm to converge faster through

the experience replay mechanism, the same problem exists. The

excellent performance of the experience replay mechanism requires

many conditions, such as larger storage space, more training

samples and more advanced hardware. Moreover, the current

experience replay methods do not make full use of good experience.

Additionally, the biped gait control method based on DDPG also

lacks effective reward functions.

Building upon the aforementioned discourse, a parallel

heterogeneous DRL algorithm to optimize the walking gait of

biped robots is proposed by considering the algorithmic efficiency,

experience utilization, and insufficient reward of DRL. Specifically,

the main contributions of this paper are summarized in the

following aspects.

1) The designed algorithm is based on the DDPG algorithm

as the main architecture, which uses the multi-threading

function of CPU to run the intelligent body in parallel

to interact with the environment. The network model and

learning experience are shared through a multi-threaded

approach, allowing a large number of experience samples to be

acquired at a low cost. In addition, experience samples filtered

and stored by heterogeneous experience playback mechanism

are used to sample excellent and common experience samples

with different sampling probabilities to speed up training.

2) The gait of a biped robot is characterized by periodicity. In

this paper, a sinusoidal periodic curve is used to construct

the foot trajectory reference of the biped robot when walking.

The reference has a positive effect on constructing positive

reward incentives to generate good experience samples, which

ultimately improves training efficiency. The foot velocity and

ground reaction force during the cycle are also taken into

account to provide assurance for the stability of the robot

when walking.

3) Different environments and different biped robot models

pose challenges for different optimization algorithms. Based

on the RoboCup3D platform, a unified biped robot gait

optimization training framework is constructed. The solution

defines standard gait optimization tasks and provides a

common environment interface for various optimization

algorithms. When comparing the effects of different

algorithms on the gait of the biped robot, only the algorithm

module needs to be replaced, which reduces the baseline error

caused by the difference in the environment.

The rest of the paper is organized as follows: Section 2

presents the work related to gait optimization of biped robots.

Basic definitions and citations needed for this paper are given in

Section 3. Section 4 presents the proposed algorithm, and Section 5

gives a general bipedal robot gait optimization training framework.

In Section 6, the robustness of proposed method is verified by

comparative experiments. In the end, the research is concluded in

Section 7.

2. Related work

The traditional gait optimization method first plans the

trajectory of each joint in the gait of biped robot according to the

expected walking requirements, and then calculates the trajectory

of each joint angle by using an inverse kinematic model. Generally

speaking, gait optimization is to keep the biped robot stable

and avoid falling down when walking, as well as to make the

walking posture look beautiful. Due to complexity of the multi-link

structure of biped robot, many researchers have obtained various

simplified models through reasonable simplifications. The 3D

Center of Gravity ZMP (COG-ZMP) model proposed by He et al.
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considered the effect of center of gravity acceleration on the stability

of robot motion and used centroidal viscoelasticity control to

stabilize the whole-body posture during the landing phase (He and

Yamamoto, 2022). Safartoobi et al. modeled the impulsive hybrid

dynamics based on classical bipedal passive walking dynamics

model (Safartoobi et al., 2021). Elhosseini et al. used an improved

Whale Optimization Algorithm to optimize parameters of biped

robot, and results demonstrated that the method was with better

convergence characteristics and smaller error (Elhosseini et al.,

2019). Tao et al. used a parallel multigroup PSO to optimize key

parameters in the gait model, and results showed that the method

were stable during the switching between single-support phase and

dual-support phase (Tao et al., 2021).

Since RL does not require an accurate mathematical model,

many researchers have applied RLmethods to control biped robots.

Castillo et al. used a RLmechanism that combined physical insights

gained from the hybrid nature of walking dynamics and the

recognized zero dynamics approach for three-dimensional biped

walking, which eventually produced stable limit walking cycles

(Castillo et al., 2020). Liu et al. combined Q-learning with radial

basis function network to solve the walking problem of biped robot

in different terrain (Liu et al., 2018). RL and deep learning have

been combined by researchers to propose the DRL approach. The

most famous algorithm for DRL is Deep Q-learning (DQN) (Liu

et al., 2022b). Wu used passive dynamic walker as a reference and

trained the controller using DQN algorithm to make the robot

possible to walk on different slopes (Wu et al., 2019). Melo et al.

used Proximal Policy Optimization to train gait of the humanoid

robot where the output was the step size and the direction of the

robot (Melo et al., 2021). Chun et al. proposed a deep reinforcement

learning algorithm for gait optimization of biped robot based

on realistic environmental. In their study, DDPG was used as

a parameter setting method for a biped robot on a real-world

environmental testbed, where the trained robot could maintain the

walking stability even with short walking times and long strides

(Chun et al., 2023).

3. Preliminaries

In the interaction between RL and environment, agents learn

appropriate actions to maximize the reward signal or achieve a

certain goal. RL can be formalized as MDP. An MDP is defined as

a four tuple (S,A, Pa,Ra), where S represents a finite set of states,

and A represents a finite set of actions. Pa(s, s
′) = Pr(st+1 = s′ |

st = s, at = a) indicates the probability of transitioning to state s′

from s under the time t taking action of a and Ra(s, s
′) indicates the

current reward.

The objective of RL is in order to find a mapping function π

(usually called “strategy”) from state to action which maximizes

the cumulative rewards. The cumulative rewards can be defined

as follows

Rt =

T
∑

i=t

γ i−tr(si, ai), (1)

where r(si, ai) is the reward obtained by taking action ai in the state

si; γ represents the attenuation factor and γ ∈ [0, 1].

In the process of optimization, the expected value of R1 from a

start state distribution is defined as

J = Eri ,si∼E,ai∼π [R1]. (2)

Next, the action value function Q is defined. The expectation of

the obtained feedback value is Q after taking action at according to

strategy π , and the calculation process of Q is given as

Qπ (st , at) = Eri≥t ,si>t∼E,ai>t∼π [Rt | st , at]. (3)

Furthermore, the Bellman Equation can be defined as Lillicrap

et al. (2015)

Qπ (st , at) =Eri≥t ,si>t∼E[r(st , at)

+ γEat+1∼π [Q
π (st+1,πst+1 ]]. (4)

DRL is a variant of RL that uses deep learning techniques to

improve learning efficiency and accuracy. DDPG is a representative

DRL method that is effective in solving the continuous control

problem by generating Q values or action probabilities through a

deep neural network and outputting continuous actions. DDPG

uses two types of networks: actor networks and critic networks,

which continue the idea of DQN by using a fixed target network.

Each network includes both a target network and an estimation

network. The traditional Policy Gradient method uses a random

strategy to acquire actions by sampling the distribution of the

current optimal strategy. In contrast, DDPG adopts a deterministic

strategy, with the actor network taking the current state as input

and outputting a deterministic action. The critic network is used to

fit the state-action value function, with its input consisting of the

current state and actions generated by the actor network, and the

output being the current state-action pair Q value. This Q value is

used to update the parameters of the actor network.

4. Methodology

4.1. Parallel heterogeneous policy DRL
algorithm

The framework of the proposed method is shown in Figure 1.

In the context of this manuscript, multiple agents are executed in

parallel by utilizing the multithreading capabilities of computer

CPUs to achieve global goals by sharing empirical data and

strategies. Notably, the DDPG algorithm serves as a pivotal

component of the framework outlined in this paper. Therefore,

the proposed method in this paper is also known as the parallel

heterogeneous policy DDPG algorithm (Parallel DDPG).

DDPG is a method of differentiating strategy. The behavior

strategy is random but the evaluation strategy is deterministic

(Wang et al., 2016). Random strategy can explore and produce

a variety of behavioral data, which can be used by deterministic

strategy for improvement of the strategy. DDPG is an Actor-

Critic algorithm based on Deterministic Policy Gradient (DPG).
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FIGURE 1

The process of gait optimization with Parallel DDPG. Multiple DDPG agents execute in parallel through the multi-thread function, and achieve global

goals by sharing empirical data and strategies.

The learning process of Q(s, a) in critics is the same as that in

Q-learning.

∂L(θQ)

∂θQ
=ES,a,r,s′∼D[(TargetQ

− Q(s, a | θQ)
∂Q(s, a | θQ)

∂θQ
)].

(5)

TargetQ = r + γQ′
(

s′,π
(

s′ | θµ′
)

| θQ
′
)

. (6)

The value gradient on the actor network is

∂J (θµ)

∂θµ
= ES

[

∂Q
(

s, a | θQ
)

∂a

∂π (s | θµ)

∂θµ

]

. (7)

∇θ Jβ (µθ ) =

∫

S
ρβ (s)∇θµθ (s)Q

µ(s, a)

∣

∣

∣

∣

a=µθ

ds

= Es∼ρβ

[

∇θµθ (s)Q
µ(s, a)

∣

∣

a=µθ

]

.

(8)

MSE (Mean Squared Error) is adopted as the loss function, and

Monte Carlo method is used to obtain unbiased estimation when

calculating the gradient expectation of strategy. The gradient on

the critic and actor network can be used to update network. Due to

the reference to the structure of DQN, there is an additional target

network. Although both DDPG and DQN use target networks

to improve convergence and stability, parameters are updated in

different ways. DDPG proposes a soft update instead of copying

parameters directly to the target network. Specifically, DDPG sets

up a copy for actor network and a copy for critic network separately

as their own objective network. The updating formula for weight of

target network is defined as

θ ′ ← τθ + (1− τ )θ ′, (9)

where τ << 1.

The change of target value calculated by the target network

will be very small which improves the stability of learning to a

certain extent. In the environment-exploring phase of algorithm,

DDPG adds a random noise sampled from a noise process N to the

strategy performer, so as to take both exploration and exploitation

into account, as shown in Equation (10) (Lillicrap et al., 2015).

µ′ (st) = µ
(

st | θ
µ
t

)

+ N. (10)

DDPG adopts the experience replay mechanism which is

similar in DQN. In the learning phase, a buffer with limited size

is set up to store the tuples of state transition in the training

process, i.e., (st , at , rt , st+1). When the buffer is full, the old tuple is

discarded. In the process of training, these tuples of state transition

are randomly sampled from the buffer to update the critic network

and the actor network, which enables the algorithm to learn from

some irrelevant state transitions.

The proposed Parallel DDPG algorithm greatly improves the

diversity of experience samples through the parallel training of

multiple biped robots controlled by multiple threads. But each

biped still uses the same actor network and critic network.

All robots feed their state data back to the environment

process according to the same actor network. Actor network

and environmental processes interact in parallel to collect

experience samples.

It is worth noting that the benefits of the parallel framework

were previously demonstrated in our work (Tao et al., 2022).

However, in contrast to our previous approach of selecting the

corresponding at value based on the maximum Qi value, the

parallel DDPG algorithm proposed in this paper collects the

control outputs of each DDPG agent and performs a simple

voting process, taking the mode as the final control output, ie,

a = µ(s|θµj ), Q(s, aj|θ
Qj ) = median(Q(s, ai|θ

Qi )). This approach

improves the robustness of the algorithm. Our framework setting

is particularly effective in addressing the issue of instability in

parallel models. By integrating the outputs of multiple models,

we are able to smooth the results and reduce fluctuations,
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which is a crucial improvement for the parallel framework.

The instability problem is particularly prominent in parallel

architectures, and our approach provides a promising solution to

this challenge.

The experience generated by the interaction is stored in the

experience filtering unit, and the actual experience playback is

performed using two experience pools in this work. The two

experience pools are the common experience pool and the excellent

experience pool. The common experience pool is similar to the

experience pool of the traditional DDPG algorithm. The excellent

experience pool is used to store excellent experience with high

rewards. Experience stats are added each round. At the end of each

round, the stored experience is filtered by the experience filtering

unit and sorted into the corresponding experience pool. The size

of common experience pool and excellent experience pool is fixed.

The probability of sampling from the Excellent experience pool

and updating the parameters is α and the probability of sampling

from the common experience pool and updating the parameters

is 1 − α. Parallel DDPG with the heterogeneous experience replay

mechanism is shown in Algorithm 1.

Throughout the training process of gait optimization, each

robot observes the current state from the environment and the

Parallel DDPG algorithm calls the state function to obtain the state

information of all robots. The actions output by the deterministic

policy are executed by all robots separately in the simulated

environment. After that, the reward for evaluating the gait is

fed back to the Parallel DDPG algorithm. After each round,

the experiences in the experience pool are sampled to update

the Parallel DDPG model parameters. This process is iterative

until termination. The training function algorithm is shown in

Algorithm 2.

4.2. Cyclic gait of biped robot

The leg state of biped robot walking is divided into

swing phase and support phase. Both phases are a cyclical

behavior and switch between the two. A sinusoidal curve is

used as a foot height reference for the swing phase. The

reference sinusoidal trajectories for the left and right feet are

constructed as

hleft = max(0, hsin(2π t/T + δ)−1h), (11)

hright = max(0, hsin(2π t/T + δ + π)−1h). (12)

In Equations (11) and (12), changing h − 1h can adjust the

maximum foot lift height of the biped robot in the swing phase.

1h/h is responsible for adjusting the timing of the double support

phase. The T value is responsible for adjusting the step frequency

of biped robot walking. Therefore, different styles of walking gaits

of biped robots can be generated using Equations (11) and (12).

On the basis of Equations (11) and (12), this paper also designs

a function punished (ξ∗) to consider the effects of ground reaction

force and foot velocity in cyclic gait, where ξ∗ ∈ [−1, 1] is the

1: Randomly initialize the weighted values of the

Critic network Q(s, a|θQ) and Actor network (s, |θµ) as

θQ and θµ

2: Initialize weight values of Q′ and µ′ in the

target network θ(Q′)←− θQ, θ(µ′)←− θµ

3: Initialize the steps of each thread

4: for episode = 1, M do

5: Initialize the random noise process N

6: Get initial observation value S1 of the state

of environment

7: for t = 1, T do

8: Select the action based on current strategies

and noise at = µ(st |θ
µ)+ Nt

9: Execute action at, get reward rt, and observe

new state st+1

10: Save (st , at , rt , st+1) in the experience screening

unit and copy it to common experience pool

11: end for

12: Calculate the reward value for each step Res

13: if Res is greater than the historical optimal

reward value, it will be deposited in Excellent

experience pool

14: Sample from two experience pools

15: Set yi = ri + γQ′(si+1,µ
′(si+1|θ(µ

′))|θQ)

16: Update critics by minimizing TDerror:

L =
1

N

∑

i

(yi − Q(si, ai|θ
Q))2

17: Use the strategy gradient calculated from the

mini-batch tuple to update the actor:

∇θµ J ≈
∑

i

∇aQ
(

s, a | θQ
)

∣

∣

∣

∣

∣

s=si ,a=µ(si)

∇θµ µ
(

s | θµ
)

∣

∣

∣

∣

∣

∣

si

18: Update target networks

θQ
′
← τθQ + (1− τ )θQ

′

θµ′ ← τθµ + (1− τ )θµ′

19: end if

20: end for

Algorithm 1. Parallel DDPG algorithm.

relative progress of the cycle gait.

punished (ξ∗) = a |ξ∗| + b
dξ∗

dt
, (13)

where, a and b are weighting factors. When the biped robot is

in the single support phase, this paper increases the parameter a

to increase the foot speed and reduce the ground reaction force,

which helps to improve the robot’s maneuverability. When the

bipedal robot is in the dual support phase, boosting parameter

b can enhance ground reaction force and abate the pace of the

two supporting legs, which ultimately serves to optimize robot

stability. The specific framework of the periodic gait is shown

in Figure 2.
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Environment configuration

1. Set up the gait parameters of NAO robot

2. Set up initial location of NAO robot

3. Call the status function for the next status of

NAO robot

Status function

1. Judge whether NAO robot falls down in simulation

environment

2. Obtain the current information or that of next

status from RoboCup3D simulation platform

3. Calculate the distance the NAO robot walks

within 10s

Action function

1. Judge whether NAO robot falls down

2. Obtain the current state of the robot and get

the gait parameters by Parallel DDPG algorithm

3. Input gait parameters to gait model for

generation of gaits

4. Enable the NAO robot to walk in the simulation

environment for gait training

5. Obtain reward value in accordance with reward

function, evaluate action and give feedback

Reward Function

1. Judge the status of the robot

2. Calculate the size of reward value

Algorithm 2. Training algorithm.

FIGURE 2

Periodic gait reference trajectories for biped robots. The leg

movement of a biped robot during walking is divided into two

phases: the swing phase and the support phase. These two phases

cyclically alternate with each other. During the swing phase, a

sinusoidal curve is used as a reference for the desired height of the

foot.

4.3. MDP construction

The purpose of MDP construction is to learn a set of strategies

to enable biped robots to walk quickly and stably.

1) State space

To set the bipedal robot in motion, the position qi and

velocity q̇i of 8 joints are selected as part of the state space.

Considering the kinematics of the biped robot, the following

parameters are also added to the state space: the position of

the Center of Mass (CoM) of each step, the angular velocity of

the torso provided by the torso velocity gyro sensor, the torso

acceleration provided by the torso acceleration accelerometer

sensor and the calculation of the pressure sensor of both feet,

the resulting force is used in the state space. Finally, tomeet the

requirements of cyclic gait walking for biped robots, the phase

vector [sin(2πT + δ0), cos(2πT + δ0)] and velocity command

vx are also taken as part of the state space.

2) Action space

The output of the policy consists of the desired joint

positions of the slave joints of the robot (8 per robot). The

predictions of the network for the desired joint positions are

added to fixed motor biases corresponding to the semi-sitting

position of the robot, which are then sent to the lower-level PD

controller.

3) Reward

To enable the biped robot to produce a fast and stable

periodic gait, a reward function is designed according to the

following rules.

(1) Periodic imitation rewards

In order to encourage the robot foot to walk according

to the sinusoidal curve, the speed and force of the foot are

considered to accelerate the training. The periodic imitation

reward function is designed as

R1 = exp(−
1

0.052

2
∑

i=1

(hrefi − hfooti )
2)+ rgro + rspe, (14)

where, hrefi is the reference height of the left and right feet;

hfooti is the actual height of the left and right feet; rgro and rspe
are rewards for foot velocity and force, constructed as

rgro = I
gro

left
· Fleft + I

gro

right
· Fright , (15)

rspe = I
spe

left
· Sleft + I

spe

right
· Sright , (16)

where, Fleft and Fright are the ground reaction forces on the left

and right feet, respectively; Sleft and Sright are the speeds of the

left and right feet, respectively.

(2) Stability

In order to maintain the stability of walking, a biped robot

needs to keep ZMP inside the support polygon at all times when

walking. The support polygon is the smallest polygon area where

the biped robot foot is in force contact with the ground. The smaller

the distance of ZMP point from the center of support polygon, the

more stable the biped robot. A coordinate system is established at

the center of support polygon, and the distance between ZMP and

the center of support foot is used as a reward.

R2 = a2 ∗

N
∑

k=1

√

(

px(k)
)2
+

(

py(k)
)2
, (17)

where px(k), py(k) are the coordinates of ZMP in each gait sequence,

and a2 is the weight.

(3) Body shaking

In the leg support stage of biped robot, a biped robot

is rewarded by criterion that the CoM of biped robot is
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always at the midpoint of the two-foot coordinate line, so

that the torso of biped robot is always stable during the fast

walking process.

R3 =

{

0 pshake < c1,

c otherwise,
(18)

where c1 is the threshold; pshake is the deviation between the actual

drop point of CoM on X and Y axis and the midpoint of the

line connecting centers of feets. The larger the value of pshake, the

larger the body sway angle of biped robot during walking, and

the more unstable the gait is. In the theoretical case, the best gait

results are obtained when the value of pshake is 0. However, in the

actual training process, the coordinate information obtained from

RoboCup3D simulation server has some errors, so when pshake is

greater than c1, the training needs to be punished and the penalty

value is the constant c.

(4) Speed tracking reward

The velocity tracking reward for biped walking is designed as

R4 = 0.65exp(−pv)+ 0.25exp(−po), (19)

TABLE 1 Partial list of python interface function.

Name of
function

Descriptions of function

Reset() Reset the robot to initial state

Step() Execute the action of walking

Connect() Build link with simulation server in prior to

execution of training

GetState() Get the current state of the robot

GetReward() Get award for execution of a pervious action

where,

pv =
‖vp,x, vp,y − vc‖

2

max(0.12, 0.5‖vc‖2)
, (20)

po =
sin2(0.5 < op, ou >)

0.1
. (21)

Finally, the reward for each step is constructed as

R = 0.6R1 + 0.2R2 + R3 + 0.5R4, (22)

5. An optimized algorithm general gait
training framework

Recently, various optimization algorithms have emerged one

after another. However, different simulation environments and

FIGURE 4

Scene graph of robot gait training. Multiple robots are placed within

the training environment, ready for training to begin.

FIGURE 3

Universal training framework for biped robots. The frame of the biped robot adopts a modular design, allowing for easy replacement of the

algorithmic components as needed. To train the biped robot gait, a tested algorithm simply needs to be connected to the framework through the

OpenAI Gym interface.
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FIGURE 5

Comparison of parallel DDPG, DDPG, PPO, A3C training curves. The

parallel DDPG achieves higher average rewards than the other three

algorithms.

FIGURE 6

The Parallel DDPG algorithm is utilized to control the training of two

biped robots with di�erent physical parameters, resulting in two

very similar learning curves.

diverse motion models of biped robots have brought challenges

to the testing standards of different optimization algorithms.

For above-mentioned reasons, an optimized algorithm general

gait training framework is designed for various algorithms.

The framework defines standard gait optimization tasks

and provides a common environment interface for various

optimization algorithms. The training framework is mainly

composed of RoboCup3D simulation environment, team code and

OpenAI Gym.

The optimized algorithm general gait training framework

uses RoboCup3D simulation environment to provide simulated

physical environments such as stadiums and standard robots.

The motion model of UT Austin3D is used as a unified motion

model within the framework, and is open to the outside world to

adjust parameters of walking engine. The frame is also modularly

designed. The algorithm only needs to be connected to framework

FIGURE 8

Angle change of hip joint. The trajectory fluctuations of the Parallel

DDPG algorithm display the most pronounced periodicity, while

those of the other two algorithms exhibit more oscillations.

FIGURE 7

X-axis and Z-axis motion trajectory of swinging leg.
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FIGURE 9

Shake comparison of biped robot trained by three algorithms.

through the interface of OpenAI Gym to train biped robot gait.

When comparing the gait optimization performance of different

algorithms, the impact of differences in the simulation environment

and motion models is reduced. And there is no need to repeat the

development every time, so that researchers can focus more on the

optimization of the algorithm.

This paper encapsulates functions related to gait and some

other functions necessary from the team code into Python interface

which are shown in Table 1. Then, according to the abstract

definition of environment defined by OpenAI Gym (Torrado et al.,

2018), the optimization environment of biped robot is edited and

registered locally to the environment collection of Gym, which

can provide the function of receiving action, feedback observation

and reward for RL algorithm as other existing environments. The

system structure of optimization environment for the biped robot

is shown in Figure 3. As the team code is built based on the C++,

this paper uses ctypes module in Python library to compile C++

code into the form of dynamic linking library, i.e., so file under

Linux system.

6. Experiment and analysis

Experiments were conducted under the proposed general gait

training framework. In the simulation platform, the range of

viewing angles is −120◦ to 120◦. In order to get accurate data

during the training process, the setViewCones value of server was

changed from 120◦ to 360◦. In the configuration of DDPG network

structure, the numbers of input nodes and output nodes were 24

and 27, respectively. Three hidden layers with 300 nodes each were

set in this network. The learning rate of actor were 0.0001 and the

learning rate of critic were 0.001. The discount factor γ was 0.995

and the τ in the soft update was 0.01. The scene of biped robots

using Parallel DDPG algorithm for gait training in RoboCup3D is

shown in Figure 4.

To verify the effectiveness of the Parallel DDPG algorithm

in gait optimization for bipedal robots, this paper compares

the performance of Parallel DDPG, Asynchronous Advantage

Actor-Critic (A3C), DDPG, Proximal Policy Optimization (PPO),

and CMA-ES algorithms and conducts result analyses for

each algorithm.

Firstly, the learning speed and reward value of the Parallel

DDPG, A3C, DDPG, and PPO algorithms were compared. Each

algorithm was trained for 21,000 times in the same environment,

and the average reward value was recorded every 300 times. The

variation of the average reward value during the training process

is shown in Figure 5. The Parallel DDPG algorithm achieved

the highest average reward value among the four algorithms. In

addition, compared to the DDPG and A3C algorithms, the Parallel

DDPG algorithm converged to the optimal average reward value

the fastest, requiring only 23 episodes. Although the PPO algorithm

converged to the optimal average reward in fewer episodes, its

average reward value was much lower than that of the parallel

DDPG algorithm.

To evaluate the generalization performance of our proposed

algorithm, we conducted additional experiments using another

bipedal robot, Atlas, in the Roboschool simulation environment.

The simulation environment was different from the soccer field

used in our general gait training framework. We trained Atlas

using the same 21,000 time steps as in the previous experiment

and recorded the average reward values, which were compared

to the performance of the NAO robot. As shown in Figure 6,

both robots converged under the training of our algorithm, with

similar convergence speed and optimal average reward values.

These results demonstrate the generalization performance of

our algorithm.

As CMA-ES is a global search algorithm that can serve as a

benchmark to evaluate performance, and DDPG is the basis for

the proposed Parallel DDPG, comparing the two algorithms can

demonstrate the effectiveness of the improvement. Therefore, we

conducted a more detailed comparison and analysis between the

two algorithms.

We defined a reference system in which the X-axis points ahead

of the robot, the Y-axis points to the left side of the robot, and

the Z-axis points above the robot. Using this reference system, we

recorded the X-axis and Z-axis trajectories of the walking swinging

legs of three algorithms in Figure 7. The Parallel DDPG algorithm

optimizes the trajectory of the robot when raising and lowering its

feet to ensure stability. As shown in Figure 7, the trajectory obtained

by the Parallel DDPG algorithm is smoother than that of the DDPG

and CMA-ES algorithms.

Figure 8 depicts the alterations in the hip joint angle of the

robot following 200 cycles of training (0.05 s per cycle) using

the three algorithms. The Figure 8 evidences that the hip joint

coordination of the biped robot, utilizing the parallel DDPG

algorithm, surpasses that of the other two algorithms, with swift

and steady changes.

At the onset of the dual support phase, the anticipated

coordinates of the CoM are positioned at the midpoint between

the two feet. In the initial stage of dual support stage, the vehicle

body swing is firstly detected by comparing the center point of

two feet and two coordinates of CoM where the equation is xf =

cx − (xfootR + xfootL)/2. The biped robot utilizing the Parallel

DDPG algorithm has less jitter and stable changes, and the results
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FIGURE 10

Walking state diagram of biped robot under three algorithms. (A) Parallel DDPG. (B) CMA-ES. (C) DDPG.

are shown in Figure 9. The Parallel DDPG algorithm displays the

narrowest fluctuation range of xf , specifically between −0.3 and

0.4. In contrast, the DDPG algorithm exhibits a fluctuation range

of xf between −1.1 and 1.5, while the CMA-ES algorithm displays

a fluctuation range of xf between−1.3 and 1.7.

The variations of angle and angular velocity between the leg and

hip joints when the biped robot walks under the three algorithms is

shown in Figure 10. All three algorithms enabled the biped robot

to walk stably. The angular velocity of Parallel DDPG algorithm,

CMA-ES algorithm, and DDPG algorithm are 2.2, 3.4, and 1.3

rad/s in the first step, respectively. The Parallel DDPG algorithm

reaches the maximum angular velocity in the second step, as

shown in Figure 10A. The angular velocity of CMA-ES algorithm

fluctuates in the early stage and stabilizes after adjustment is shown

in Figure 10B. DDPG reaches the maximum value at step 4, as

shown in Figure 10C. Moreover, the angular velocity achieved

by the Parallel DDPG algorithm surpasses that of the other two

algorithms. The aforementioned outcomes indicate that the biped
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FIGURE 11

Biped robots walking details of three algorithms. (A) Parallel DDPG. From left to right: t = 6.12 s, t = 6.25 s, t = 6.37 s, t = 6.50 s. (B) DDPG. From left to

right: t = 6.12 s, t = 6.25 s, t = 6.37 s, t = 6.50 s. (C) CMA-ES. From left to right: t = 6.12 s, t = 6.25 s, t = 6.37 s, t = 6.50 s.

robot trained by the Parallel DDPG algorithm boasts of the longest

stride and maintains a rapid walking pace. The biped robot is able

to maintain a stable gait when the rate of change of the moment

of the swing legs converges. The biped robot using Parallel DDPG

algorithm achieved a consistent swing leg moment rate of change

in 1.7 s, as shown in Figure 10A. CMA-ES algorithm and DDPG

algorithm achieved a consistent swing leg moment rate of change

in 3.6 and 3.2 s, respectively, as shown in Figures 10B, C. So Parallel

DDPG algorithm made the biped robot reach the stable walking

state in the shortest time.

Figure 11 shows the walking details of three algorithms tested

on the RoboCup3D simulation platform for training a bipedal

robot. The time point selected is in the middle and late stages of

training, which is a period suitable for comparison. The CMA-ES

algorithm resulted in a very unstable state, as shown in Figure 11C,

with the bipedal robot’s body wobbling. In contrast, the Parallel

DDPG and DDPG algorithms could maintain stability of the

bipedal robot’s torso due to autonomous learning based on UT

Austin3D. The Parallel DDPG algorithm obviously showed a more

stable pose.
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When using three algorithms to walk, ZMP trajectories of biped

robot are shown in Figure 12. ZMP trajectories of DDPG andCMA-

ES algorithms are close to the edges of support polygons. However,

the ZMP trajectory profile of the Parallel DDPG shifts between the

support polygons, which results in a large ZMP stability margin for

the bipedal robot.

Figure 13 portrays the CoM landing point variations for the

three methods. Throughout the biped support phase, the CoM

FIGURE 12

ZMP trajectories optimized by three algorithms.

FIGURE 13

The changes in the CoM landing points for three algorithms.

utilizing the Parallel DDPG algorithm remains consistently stable

at the center of the connection between the two legs, whereas the

CoM using DDPG and CMA-ES displays instability.

Three algorithms were tested when the biped robot walked 15

meters away. Table 2 presents the average outcomes of 100 tests,

indicating that a biped robot incorporating the Parallel DDPG

algorithm requires less time and exhibits a faster walking speed for

the identical distance. The average speed of the biped robot utilizing

the Parallel DDPG algorithm reached 0.85 m/s, whereas the average

speed of DDPG algorithm was 0.75 m/s, and the average speed of

CMA-ES algorithm was 0.71 m/s.

Finally, a summary of the performance of the three algorithms

that were further analyzed is shown in Figure 14. Figure 14

summarizes the performance of the three algorithms in terms of

jitter range span, average speed of walking 15 m, and time to reach

stable walking state. The results in the figure align well with our

previous summary of the performance of the three algorithms.

7. Conclusion

In this paper, a parallel heterogeneous DRL algorithm is

proposed to optimize the walking gait of a biped robot. The parallel

training method improves the training speed. The heterogeneous

experience replay is used to replace the traditional experience

replay mechanism to increase the efficiency of experience

application. Sinusoidal curves have been used as a reference

FIGURE 14

This figure describes the performance comparison of the three

algorithms when controlling the biped robot to walk.

TABLE 2 Straight speed comparison.

Algorithm Distance (m) Time (s) Speed (m/s)

Average Max Min Average Max Min

Parallel DDPG 15 17.63 18.99 17.05 0.85 0.88 0.79

DDPG 15 20.07 22.38 18.75 0.75 0.80 0.67

CMA-ES 15 24.03 26.79 23.08 0.62 0.65 0.56
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for the foot of the bipedal robot, which increases the potential

of excellent empirical sample generation. The proposed training

framework for biped robots gait optimization provides a unified

test environment for gait training of different algorithms and

reduces the effects of simulation environment and motion model

differences. Experiments demonstrate that the Parallel DDPG

algorithm enables a faster and more stable gait. However, it is

important to note that there are limitations to this study due to

the gap between simulation and practical application. In future

research, we plan to extend the proposed method to a real biped

robot and investigate various styles of periodic gaits. Overall, our

results provide valuable insights into the development of gait

optimization algorithms for biped robots, and we believe that our

approach can be further improved and refined in future research.
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