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Deep neural networks (DNNs) have been shown to be susceptible to critical

vulnerabilities when attacked by adversarial samples. This has prompted the

development of attack and defense strategies similar to those used in cyberspace

security. The dependence of such strategies on attack and defense mechanisms

makes the associated algorithms on both sides appear as closely processes, with

the defense method being particularly passive in these processes. Inspired by

the dynamic defense approach proposed in cyberspace to address endless arm

races, this article defines ensemble quantity, network structure, and smoothing

parameters as variable ensemble attributes and proposes a stochastic ensemble

strategy based on heterogeneous and redundant sub-models. The proposed

method introduces the diversity and randomness characteristic of deep neural

networks to alter the fixed correspondence gradient between input and output.

The unpredictability and diversity of the gradients make it more di�cult for

attackers to directly implement white-box attacks, helping to address the

extreme transferability and vulnerability of ensemble models under white-box

attacks. Experimental comparison of ASR-vs.-distortion curves with di�erent

attack scenarios under CIFAR10 preliminarily demonstrates the e�ectiveness of

the proposed method that even the highest-capacity attacker cannot easily

outperform the attack success rate associated with the ensemble smoothed

model, especially for untargeted attacks.

KEYWORDS

deep neural network, adversarial robustness, stochastic ensemble, random smoothing,

cyberspace security

1. Introduction

Deep learning techniques have been successfully applied in various computer vision

applications, ranging from object detection (Ren et al., 2016) and image classification (Perez

andWang, 2017) to facial recognition (Parkhi et al., 2015) and autonomous driving (Bojarski

et al., 2014) and even in medical computer-aided diagnosis (Hu et al., 2020; You et al., 2022).

In these application scenarios, deep learning can be used as an enhancement technique

for real data as an artificial intelligence generated content (AIGC) technique to improve

performance on the one hand, and as a tool to generate false data to degrade the performance

of the model on the other. However, with the increasing use of deep neural networks

(DNNs) in various application areas, such as facial recognition technology, for encryption

applications, autonomous driving technology for road safety, and computer-aided diagnosis
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for life safety, there is an urgent need to principally ensure effective

defense against security threats, not just the good performance.

The studies on adversarial samples reveal the extreme

vulnerability of deep networks, making the study of their

robustness even more urgent for security applications. In, Szegedy

et al. (2014) discovered that the input-to-output mappings

learned by DNNs are generally discontinuous so that even

small perturbations in some network inputs can lead to high

misclassification errors, which are known as adversarial samples. As

a result, many adversarial learning methods similar to cyberspace

security games have been developed for both the attack and defense

sides. Research on attack and defense in DNN primarily focuses

on adversarial samples because of their proactive role in attack and

defense games (Akhtar and Mian, 2018; He et al., 2020).

The development of attack methods is constantly intertwined

with the proposal of defense methods. Both types of methods

act as opposing sides in a competitive game, developed in

a mutually promoting and closely reciprocal process. Certified

defense methods are supported by rigorous theoretical security

guarantees that obtain a robustness radius under the Lp distortion

constraint (Fischetti and Jo, 2017). Nevertheless, these certified

defense methods are still not widely used in DNN architectures

on big data through exact or conservative approaches. More

flexible and effective defense methods are empirical methods

based on assumptions and experimental results (Papernot et al.,

2016; Lakshminarayanan et al., 2017; Kurakin et al., 2018).

Although empirical defense methods are convenient, they have

practical limitations in their applicability, which may result in

attackers generating more challenging adversarial samples to break

the defense.

The rapid development of attack algorithms and extensive

research on empirical defenses eventually led to the game of attack

and defensive in deep learning files. For example, the distillation

method (Papernot et al., 2016) which uses gradient shielding

to prevent white-box attacks, is not effective against the CW

attack (Carlini and Wagner, 2017). The model ensemble method

(Lakshminarayanan et al., 2017) was initially proposed as a defense

method but has been found to be ineffective (He et al., 2017)

and is now commonly used as an attack method to improve

the transferability of adversarial samples (Tramèr et al., 2018).

The nature and wide applicability of empirical defense methods

have sparked intense competition with attack methods. However,

defense methods are primarily passive.

According to theoretical developments in cybersecurity, the

two sides in a competitive game without a strongly secure defense

method will eventually reach a Nash equilibrium (Attiah et al.,

2018). To address this challenge, generalized robust-control defense

methods, such as moving target defense (MTD) (Jajodia et al.,

2011) and dynamic defense model (DDM) (Wu et al., 2019; Wu,

2020), have been proposed with probabilistic formulations of the

network attributes. The inherent randomness and unpredictability

of the system make it more difficult for the attacker to detect,

highlighting the importance of the same defense approach applied

in DNNs. Recent research on adversarial robustness indicates that

adversarial examples are inevitable for DNNs. This article starts

from the premise of learning from the development experience of

cybersecurity under the current technical levels and treating the

classification problem based on deep neural networks as a whole

system rather than a single model. In the case where effective

adversarial samples mostly depend on specific model information

while the adversarial transferability needs to be improved, this

article proposes an attribute-based stochastic ensemble model

using the DDM ideology to combine randomness with model

diversity. In the proposed method, the ensemble quantity, network

architecture, and smoothing parameters are used as ensemble

attributes to dynamically change it before each inference prediction

request. As shown in Figure 1, these variable attributes of

the ensemble model represent a more active and generalized

defense approach to overcome the limitations of empirical and

deterministic defense at the current stage. In summary, the main

contributions of our study are as follows:

(1) Facing the endless arms race of adversarial attack and

defense, this article proposes an attribute-based stochastic

ensemble model using the DDM ideology to combine

randomness with model diversity. A more diverse collection

of heterogeneous and redundant models is created for the

ensemble, accounting for variations in ensemble attributes

and dynamically changing structures for each inference

prediction request at the model level, hoping to further

change the passive position of the defense at this stage.

(2) For the robustness evaluation of the proposed method,

this article considers the attack and defense game idea

as a starting point, assuming that the attacker knows the

defense strategy, and simulates a series of possible adversarial

game processes for a more comprehensive evaluation. The

different capabilities of the attack scenario are set up and the

potential defense risks are assessed using attack success rate

versus distortion (ASR-vs.-distortion curves) based onMonte

Carlo simulations.

(3) We analyze different robustness results under attack

scenarios and algorithms with various capabilities and

identify important conditions for the proposed method to

exert its advantages in practice. The experimental results

under CIFAR10 show that even the most capable attacker

is unable to outperform the best result under current

random-based methods, demonstrating the effectiveness of

the proposed method in attack and defense games.

2. Related work

2.1. Defense method based on input
randomization

Recently, theoretical guarantees for the robustness of

DNNs have been gradually combined with relevant aspects of

cybersecurity. Random smoothing was originally proposed based

on the intention of differential privacy (Lecuyer et al., 2019)

from cyberspace defense methods to prevent the attackers from

obtaining exact gradient information by adding random noise to

the input image during training and testing (Cohen et al., 2019;

Lecuyer et al., 2019; Li B. et al., 2019). Random self-ensemble

(RSE) (Liu et al., 2018) and Smoothed WEighted ENsemble

(SWEEN) (Liu et al., 2020) improve the adversarial robustness by

combining the randomness properties in the case of the ensemble.
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FIGURE 1

A graphical illustration of the proposed variable attributes of ensemble strategy for adversarial robustness of deep neural networks.

Unlike these previous studies, this study is inspired by the DDM

ideology in cyberspace security and sets the model parameters

on which the attack conditions directly depend as the objects of

randomization to further improve the adversarial robustness under

ensemble conditions.

2.2. Defense methods based on diversified
ensemble networks

In addition to the gradient shielding effect of the random

smoothing, the robustness provided by ensemble models also

depends on the diversity of the sub-model (Lakshminarayanan

et al., 2017). Constraints on the gradient diversity of sub-models

mostly depend on empirical conclusions about the diversity

of model architecture (Kurakin et al., 2018) or the training

hyperparameters (Wenzel et al., 2020) and gradient diversity

between sub-models (Pang et al., 2019). Unlike the fixed ensemble

of diverse sub-models in these methods, this study uses the

empirical conclusions of model attributes to contrast the diverse

sub-models. By randomly selecting these attributes, this method

combines diversity and randomization characteristics to improve

adversarial robustness under the ensemble condition.

2.3. Adversarial samples and robustness
evaluation

Attack algorithms can be divided into white-box and black-

box methods based on their capabilities (Akhtar and Mian,

2018). White-box methods rely on full knowledge of the network

gradients. The fast gradient sign method (FGSM) (Goodfellow

et al., 2015) is a basic and effective method that generates

adversarial samples by adding the sign reverse of the gradient to the

original images. Based on attack performance and transferability,

iteration-based approaches include the basic iterative method

(BIM) (Kurakin et al., 2016), momentum iterative method (MIM)

(Dong et al., 2018), and projected gradient descent method

(PGD) (Madry et al., 2018). In contrast, black-box attackers have

no knowledge of the network gradients that can be divided

into query-based and transfer-based methods. The query-based

method achieves gradient estimation by querying the output of

the target model including natural evolution strategies (NES) (Ilyas

et al., 2018), simultaneous perturbation stochastic approximation

(SPSA) (Uesato et al., 2018), and NATTACK (Li Y. et al.,

2019). The transfer-based method generates adversarial samples

by constructing substitution models, usually using the ensemble

model constructed by normally trained sub-models (Tramèr et al.,

2018) or shadow model (Zhang et al., 2022). In previous studies,

different adversarial sample generation algorithms can verify the

different performances of the defense method from different

perspectives. Unlike the previous single analysis of the defense

capability under optimal attack algorithms, this study considers the

game-like nature of the attackers and designs more diverse attack

and defense scenarios under random conditions to fully verify the

effectiveness of the proposed method.

3. Materials and methods

This study focuses on the image classification task of CIFAR10

(Krizhevsky andHinton, 2009) for preliminary verification. Section

3.1 first introduces the basic method of random smoothing and

shows the relationship with the proposed stochastic ensemble

model to theoretically demonstrate that the proposed method

achieves a certified robust radius no less than the state-of-the-

art (Liu et al., 2020) under the random conditions. Furthermore,

the empirical diversity requirement between sub-models in

the ensemble is characterized by attribute-based heterogeneous
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redundant models to improve the robustness of the stochastic

ensemble model in Section 3.2. Finally, Section 3.3 outlines the

strategy for a stochastic ensemble approach with variable attributes.

3.1. Preliminaries of stochastic ensemble
modeling

Let the random smoothing model g be trained by a basic

classifier f by sampling, adding the noise δ ∼ N
(

0, σ 2I
)

to the

input images and minimizing the corresponding classification

losses (Cohen et al., 2019; Lecuyer et al., 2019; Li B. et al., 2019).

For the model prediction in the training and testing process, the

output of random smoothing model g is defined as a mathematical

equation as follows:

g (x) = Eδ∼N(0,σ 2I)

[

f (x+ δ)
]

(1)

An ensemble model fens containing K models obtains the

final prediction by summing the function outputs of the

individual candidate models. The mathematical representation of

the ensemble model can be written as follows:

fens (x, θ) =

K
∑

k=1

f (x, θk) (2)

The SWEEN approach creates an ensemble-smoothed model

with a weight parameter ω for each model, which improves the

provable robustness radius (Liu et al., 2020). In terms of the

probability distribution of the input noise, the predicted output of

the SWEENmodel is given by a mathematical expectation operator

as follows:

SWEEN = Eδ

[

K
∑

k=1

ωkf (x+ δ; θk)

]

=

K
∑

k=1

ωkEδ

[

f (x+ δ; θk)
]

=

K
∑

k=1

ωkg (x; θk) (3)

The constant weight parameters ω of the candidate models are

independent of the SWEEN model output and can be optimized

as ω*. Unlike SWEEN, the ensemble attributes of the proposed

stochastic ensemble model (SEM) are randomly adjusted to

dynamically structure the ensemble model at each time inference

prediction request making the output of candidate models in

SEM have an additional mathematical expectation in terms of

probability of occurrence. However, the probability of occurrence

of a particular candidate model under the SEM is assumed to be

determined by the expectation E
(

fk
)

occurrence
= ωk and statistically

independent of the prediction expectation. Therefore, as shown

in Equation (4), the stochastic ensemble and SWEEN models can

be equivalent in terms of output expectations. The theoretical

improvement of the robustness radius by the SWEEN model

(Liu et al., 2020) is a special case of the SEM. By controlling

the probability of the occurrence of sub-models, the SEM can

theoretically achieve well-certified robustness. However, more

importantly, such changes based on the model level improve the

dynamic properties of the ensemble and achieve a more generalized

dynamic change of the model gradient in each inference prediction:

SEM = E

[

K
∑

k=1

fk (x+ δ; θk)

]

=
K
∑

k=1

E
(

fk
)

apparence

× E
[

fk (x+ δ; θk)
]

SEM=
K
∑

k=1

ω∗
k
E
[

fk (x+ δ; θk)
]

=
K
∑

k=1

ωkE
[

fk (x+ δ; θk)
]

= SWEEN when ωk = ω∗
k

(4)

3.2. Attributes-based heterogeneous
redundant models

The application of random input to the sub-model parameters

in SWEEN (Liu et al., 2020) improves the certified robustness of

the ensemble. The analysis in Section 3.1 has shown that these

sub-models can also serve as a random condition, expanding

randomness at the model level without compromising the certified

robustness. According to previous empirical defense conclusions,

the diversity between sub-models enhances the robustness of

the ensemble condition (Pang et al., 2019; Wenzel et al., 2020).

Moreover, diversity is also the DDM property in cybersecurity

(Wu et al., 2019). Therefore, the first step for the proposed

variable attribute-based SEM is a collection of heterogeneous

redundant sub-models. In addition to the diversity of the model

architectures (Kurakin et al., 2018), different hyperparameters

for optimizing the sub-models can also have different effects on

the convergence of the gradient (Wenzel et al., 2020). Random

smoothing hyperparameters for a variety of noise parameters

in training further enhance model redundancy and diversity

within the same architecture. The proposed SEM uses network

architecture, depth, and width as well as smoothing parameters as

variable ensemble attributes. In Section 4.5, we present detailed

experimental results on the influence of model architecture and

other parameters.

The heterogeneous redundant model collection is obtained by

separately training a smoothed model on the CIFAR10 dataset

(Krizhevsky andHinton, 2009; Hendrycks et al., 2019). The variable

ensemble attributes in this study include architectures of different

depths and widths. Table 1 shows the approximated certified

accuracy (ACA) of the predictive performance of each sub-model.

The models marked in red did not meet performance requirements

and were excluded from subsequent experiments. Although some

simple models, such as AlexNet and shallow VGG, were unable

to achieve stable smoothed prediction, unsmoothed models were

used for the SEM. The experimental results in Section 4.5 further

demonstrate that the heterogeneity of the model collection plays a

crucial role in the robustness of the stochastic ensemble.

3.3. Stochastic ensemble with variable
attributes

In a model ensemble, temporal gradient variations result

from attribute-based gradient changes in each smoothed model.

This article proposes a stochastic ensemble strategy based on
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TABLE 1 Heterogeneous redundant model collection on CIFAR10.

Model architecture Smoothing parameter σ Model architecture Smoothing parameter σ

0.25 0.75 1.5 0.25 0.75 1.5

DenseNet (Gao et al., 2017) VGG (Simonyan and Zisserman, 2014)

DenseNet100 (95.5) 94.03 89.96 83.56 VGG11 (92.1) 9.99 80.11 20.88

DenseNet121 (94.1) 91.23 87.01 82.08 VGG13 (94.3) 65.67 10.0 61.18

DenseNet161 (94.2) 92.31 87.88 82.80 VGG16 (93.9) 9.99 9.99 9.99

DenseNet169 (94.0) 91.29 87.96 81.11 VGG19 (93.3) 91.83 87.50 81.74

WRN (Zagoruyko and Komodakis,

2016a) (96.2)

91.78 90.23 83.43 AlexNet (Krizhevsky et al., 2017) (77.2) 9.99 9.99 9.99

ResNet (He et al., 2016) InceptionV3 (Szegedy et al., 2016) (93.8) 91.91 86.86 80.38

ResNet18 (93.3) 90.49 86.63 80.15 MobileNetV2 (Sandler et al., 2018) (94.2) 88.91 84.74 77.35

ResNet34 (92.9) 91.20 87.20 81.76 ResNext (Xie et al., 2017) (96.2) 93.12 88.70 80.62

ResNet50 (93.9) 91.16 86.29 80.28 GoogleNet (Szegedy et al., 2015) (92.7) 91.63 87.61 80.64

heterogeneous redundant models, where each prediction is made

by the stochastic selection of ensemble attributes. The randomness

of the model attributes reflects SEM randomness, which varies

in the frequency of the ensemble quantity, network architecture,

and smoothing parameters when multiple requests for gradient

or output information are made. The model randomly selects the

number of sub-models for the ensemble. Once the number of

ensemble models has been determined, the model stochastically

selects the model architecture from Table 1. Next, it randomly

selects various parameters of the selected model architecture, such

as network depth and smoothing parameters. Finally, the ensemble

model is determined based on these stochastic ensemble attributes.

Algorithm 1 provides a detailed explanation of the selection process

for this method.

Require: Image x for classification, K-ensemble

quantity, f-model architecture, δ-smoothing

parameter; fk (x+ δ)-model source output before

softmax

Ensure: outputensemble-softmax operation of ensemble model

1. While inference prediction request for one user

do

2. Randomly determine the model quantity K for the

ensemble;

3. Randomly select the number of model

architectures f according to model quantity K;

4. Randomly select different smoothing parameters δ

for each model architecture, the

sub-model of ensemble is determined by fk finally;

5. sourceensemble ← 0

6. for each k ∈ [1,K]do

7. sourcemodel ← fk (x+ δ)

8. sourceensemble ← sourceensemble + sourcemodel

9. end for

10. outputensemble ← softmax (sourceensemble)

11. end while

Algorithm 1. Framework of the stochastic ensemble for the defense

system.

Figure 2 shows a flowchart of the stochastic ensemble strategy.

By incorporating the model architecture into ensemble attributes,

each iteration of the ensemble incorporates gradient differences

based on changes in the network architecture. In addition, network

depth and smoothing parameters were used as ensemble attributes

to increase ensemble diversity. The number of sub-models in

each ensemble iteration is relatively small [set as (1–4) in this

article] compared to all of the model collections to ensure gradient

differentiation. On the one hand, a larger number of sub-models

sets in each ensemble iteration will reduce the ensemble diversity

and gradient variations. On the other hand, a large number of sub-

models sets in the ensemble will lead to improved transferability of

adversarial samples generated from a possible white-box attack for

a single ensemble iteration. For probabilistic ensembles, allowing a

single model in the stochastic state does not affect the mathematical

expectation of the prediction, but ensures a diversity gradient

change in each ensemble iteration. The attribute of the ensemble

quantity plays a key role and has an important impact on

robustness, which will be discussed in detail in Section 4.5.

The SEM introduces the dynamic nature of DNNs through

the stochastic selection of the ensemble attributes. The dynamic

changes reflect the random distribution of input noise and

probabilistic gradient information during each ensemble iteration.

Essentially, the randomness of ensemble attributes shields the

gradient information and increases the confusion under white-box

and query-based black-box attacks.

4. Experiments and results

Currently, most single static models rarely consider both white-

box and black-box attack robustness evaluation comprehensively

but consider white-box attack robustness as the evaluation metric.

The probabilistic gradient of the proposed SEM makes it difficult

for attackers to fully discover the model parameter of each

particular ensemble iteration. From the attackers’ point of view, the

more effective attack is no longer the white-box attack defined in

the original evaluation but is based on the attacker’s knowledge of

themodel collection to achieve the black-box attack or approximate
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white-box attack. This section comprehensively designs different

knowledge of attacker against the SEM and comprehensively

illustrate the potential and drawbacks of the proposed method.

To define and evaluate the robustness under random conditions,

the attack success rate is further defined as a potential risk by

ASR-vs.-distortion curves (Dong et al., 2019) based on Monte

Carlo simulations. For the conclusion of robustness, this section

generally verified and evaluated adversarial robustness same as

the definition in cyberspace security: the most capable attacker

for SEM cannot easily outperform the best result under current

random-based methods.

4.1. Attack success evaluation metrics
based on empirical risk

The ASR-vs.-distortion curves are generated by an optimal

search of the adversarial perturbation budget (Dong et al., 2019).

Due to the random condition, the Monte Carlo simulation is used

for approximate evaluation as in random smoothing (Cohen et al.,

2019). Each adversarial sample xadv is hard-predicted N times by

the SEM, and the most predicted category is considered the output

category with the highest probability. The baseline accuracy of the

clean sample through this simulation is 93.4%. Compared with

the according accuracy result of the single smoothing model in

Table 1, there is no damage but even improvement for clean-sample

prediction. The attack success rate with the adversarial sample x is

given as follows:

Succ
(

C,Aε,p

)

=























1
N

(

N
∑

n=1

(

K
∑

k=1

gk
(

Aε,p (x)
)

)

one_hot

)

max

6= y untargeted

1
N

(

N
∑

n=1

(

K
∑

k=1

gk
(

Aε,p (x)
)

one_hot

))

max

= yt targeted

(5)

The attack success probability is redefined as the proportion

of Monte Carlo simulations in which each k-th iteration model gk
outputs the target category for the given adversarial sample Aε,p

with a perturbation budget ε under the lp norm. This probability is

estimated using class count statistics obtained by one-hot encoding

of the category probability vector, and then converting each

predicted value to its equivalent probability using a probability

conversion function. Such probabilities can be used in a two-sided

hypothesis test that the attack success rate conforms to the binomial

distribution nsucc ∼ Binomial (nsucc + nnonsucc, ρ) as follows:

Succ
(

C,Aε,p

)

=







































































1
N

(

N
∑

n=1

(

K
∑

k=1

gk
(

Aε,p (x)
)

)

one_hot

)

max

6= y or

1
N

(

N
∑

n=1

(

K
∑

k=1

gk
(

Aε,p (x)
)

)

one_hot

)

max
c 6=y

≥ α untargeted

1
N

(

N
∑

n=1

(

K
∑

k=1

gk
(

Aε,p (x)
)

)

one_hot

)

max

= yt or

1
N

(

N
∑

n=1

(

K
∑

k=1

gk
(

Aε,p (x)
)

)

one_hot

)

t

≥ α targeted

(6)

The abstention threshold α is a parameter used to limit the

probability of returning an incorrect prediction in order to control

potential empirical model risk (Hung and Fithian, 2016). A value

of α directly affects the ASR-vs.-distortion curves. In this case, the

threshold α is set at 0.3 to evaluate the random smoothing model.

4.2. Attack scenarios

In this section, the attacker’s knowledge of the SEM attributes

is discussed in detail and the attack scenarios are designed to

fully characterize the robustness of the proposed method. By

comparing the robustness evaluation results of attackers with

different capabilities under the proposed method with the results

of the contrast models, the attack scenarios are designed to discuss

two aspects of robustness: first, under which attack capabilities

is the proposed method most vulnerable and which is the most

robust. This will help defenders to understand which attributes are

important for protection. Second, whether the proposed method is

robust enough such that even an attacker with the highest attack

capability cannot easily exceed the attack success rate associated

with the best contrast method (Athalye et al., 2018).

In the random condition, different attackers can have different

degrees of knowledge about themodel collection, but no knowledge

about the current ensemble state. From an attack point of view,

the attacker should use a white-box attack under expectation, a

transfer-based attack under the substitution model, or a query-

based black-box attack. The attacker’s capabilities are determined

by the knowledge of the model collection and the ensemble

attributes, as outlined from high to low in Table 2. In the white-box

attack under expectation, attackers A and B have full knowledge

of model collection and are implemented as Expectation Over

Transformation (EOT) attack method (He et al., 2017; Croce

et al., 2022) white-box attack according to the different expectation

estimation iteration. In the transfer-based attack under the

substitutionmodel, attackers C andD have partial knowledge of the

model collection and are defined according to the different transfer

strategies. In addition, attacker E uses the query-based black-box

attack algorithm. The analysis of our experimental setup highlights

the varying ability of the A–D attackers to approximate the gradient

distribution expectation, which comprehensively illustrates the

robustness of our method under more complicated conditions.

4.3. Experimental settings of competitive
baseline methods

To verify the improvement of robustness, several ensemble

methods were selected as baselines for comparison, including

RSE (Liu et al., 2018), random smoothing (Liu et al., 2020),

and the adaptive diversity promoting (ADP) (Pang et al., 2019).

For the details of the experiment, both the random smoothing

ensemble and baseline ensemble method used three different

model architectures, namely, DenseNet100, ResNet50, and WRN,

as shown in Table 1, which perform better on clean datasets. The

parameters of the smoothed models were chosen as Gaussian

noise with δ 0.25. Figure 3 shows that neither the ADP nor the
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FIGURE 2

A flowchart of the stochastic ensemble smoothing strategy.

RSEmethods outperform the ensemble-smoothedmethod. Among

the defenses based on randomness and ensemble diversity, the

ensemble smoothed model has SOTA results at this stage and

structure as the contrast method F in attack scenarios. In a follow-

up experiment, the random smoothing-related method with the

best robustness is used as a contrast method (corresponding to the

four curves of F, G, J, and K in the contrast methods as shown in

Table 2) to demonstrate the performance of the proposed method

for brief.

4.4. Robustness analysis based on the
attack scenario

A comprehensive evaluation of adversarial robustness can

be achieved by considering different combinations of attack

capabilities, methods, targets, and perturbation constraints. Further

attacks are carried out by the algorithm using three standard

methods (BIM, MIM, and PGD) with attackers A, B, C, and D and

contrast methods F, G, H, and I, respectively. In addition, NES and

SPSA attacks were used in conjunction with contrast methods E, G,

K, L, and M. For all ASR-vs.-distortion curves, the search step was

set to 10 while the binary search step was set to 20. For the white-

box attacks, the number of attack iterations of both the BIM and

MIM was set to 20, while for the query-based black-box attacks,

the maximum number of queries was set to 5000. The following

experiments aim to evaluate the proposed methods and analyze the

defense characteristics of dynamics under different attack scenarios

set in Section 4.2.

4.4.1. Transfer-based and white-box attack
analysis

Figure 4 shows the ASR-vs.-distortion curves for untargeted

transfer-based attacks. A, B, C, and D represent different attack

scenarios, while the contrast methods F, G, H, and I are shown
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TABLE 2 The definition of the attacker’s ability from high to low and the contrast method.

Attacker tag Definition Contrast method Definition

White-box

attack as EOT

Attacker A The attacker has full knowledge of the model collection

and can obtain ensemble attributes in real-time.

However, they lack the ability to predict these attributes

for the next ensemble iteration, where their best

strategy is to implement the EOT attack on each

ensemble iteration for the expectation of gradient.

Under

White-box

attack

Contrast

method F

The ensemble smoothed model

under a white-box attack

Contrast

method G

The single-smoothed model

under a white-box attack

Attacker B The attacker has full knowledge of the model collection

but cannot obtain ensemble attributes in real-time,

where their one of the attack strategies is to implement

an EOT attack on periodic ensemble iteration.

Contrast

method H

The ensemble model under a

white-box attack

Contrast

method I

The single model under a

white-box attack

Transfer-based

black-box

attack

Attacker C The attacker has knowledge of half of the models in the

collection for the experiment. Their best attack strategy

is to structure the alternative SEM model on known

models as an EOT method for generalized adversarial

samples.

Under

Black-box

attack

Contrast

method J

The ensemble smoothed model

under the black-box attack

Contrast

method K

The smoothed model under the

black-box attack

Attacker D The attacker has knowledge of half of the models in the

collection. Their more direct attack strategy is to use all

the known models as an ensemble model to generate

transfer adversarial samples.

Contrast

method L

The ensemble model under the

black-box attack

Query-based

black-box

attack

Attacker E The attacker lacks any knowledge of the model

collection or gradients and can only query the model

probability vector to implement a black-box attack.

Contrast

method M

The single model under the

black-box attack

as dashed curves. Compared to the baseline models, we can

observe that the ensemble model is highly vulnerable to white-

box attacks, even worse than the single models. The random

smoothing method improves the robustness of a single model, and

the ensemble-smoothed model further improves the robustness

and addresses the vulnerability of the ensemble under white-

box attacks. Among all attack methods, attacker B has the worst

attack performance, indicating that protecting the model from

frequent access to gradient information at each iteration is crucial

for SEM robustness. Attacker D, who has partial knowledge of

the model collection but ensemble attributes in each iteration,

can achieve transfer attacks through the ensemble and achieves

similar robustness performance (even better than PGD) compared

to attacker A. However, comparing the performance of attackers

C and D, the SEM does not improve the attack transferability

effect as a regularization method. This reveals the importance of

protecting the model collection for SEM robustness. When the

attacker has a higher transferability attack algorithm (for the MIM

and PGD), the benefits of transferability are only for attacker D

and are no longer attained by SEM. For the ensemble smoothed

model (F curves) that has the SOTA performance between

the contrasting baseline methods, the best attack performance

cannot easily exceed the attack success rate associated with

it.

Figure 5 shows the ASR-vs.-distortion curves for targeted

transfer-based white-box attacks. When comparing different attack

algorithms, the improved transferability of the PGD method does

not significantly improve the attack performance under SEM.

However, its robustness is significantly improved against the

momentum-based attack, indicating that the randomness of the

gradient at the model level has some impact on the confusion

of the gradient direction. The variation in the attack knowledge

of model collection between A and C does not significantly

affect the robustness of SEM when against targeted attacks.

However, contrary to the conclusion drawn from untargeted

attacks, the robustness performance of SEM under A and C

does not consistently exceed that of the ensemble smoothed or

single smoothed model, demonstrating the lack of heterogeneity

of the model in the gradient direction. However, as the detailed

results in the second line of Figure 5 shown, the proposed

method consistently demonstrates superior robustness under small

perturbations. When comparing attackers A, B, C, and D, the

weakest attack performance is exhibited by B (although this could

be reversed when attacker D uses the PGD algorithm). Combined

with the results of the untargeted attacks, we suggest that reducing

the frequency of ensemble changes is critical for SEM when the

model collection and ensemble attributes can be obtained by

an attacker.

4.4.2. Query-based black-box analysis
The results of an untargeted source-based black-box attack

are depicted in Figure 6A. The ensemble model exhibits weaker

robustness to both NES and SPSA attacks compared to the single

model, highlighting the vulnerability of the ensemble model to

black-box attacks. Both the SPSA and NES approaches assume
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FIGURE 3

The ASR-vs.-distortion curves for di�erent ensemble baseline methods under untargeted (first line) and targeted (second line) white-box attacks: (A)

BIM; (B) MIM; and (C) PGD.

FIGURE 4

The ASR-vs.-distortion curves for untargeted transfer-based white-box attacks: (A) BIM, (B) MIM, (C) PGD. The A–D solid lines show the

ASR-vs.-distortion curves under di�erent attack capabilities while the dashed lines F–I show the curves under the contrast method. Compared to the

two curves, the stochastic ensemble has better robustness even under the strongest adversary.

that the gradient direction of adversarial samples follows a certain

probability distribution. This assumption is based on randomly

sampling the gradient direction under a probability distribution,

with the step size controlled by the loss value. The evaluation of

the SEM under this expectation hypothesis is essentially a measure

of the overlap between the gradient direction and the assumed

distribution direction under the probability. In the experiment, the

SEM does not demonstrate superior untargeted black-box defense
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FIGURE 5

The ASR-vs.-distortion curves for targeted transfer-based white-box attacks: (A) BIM, (B) MIM, and (C) PGD. The solid lines A–D show the result

under di�erent attack capabilities while the dashed lines F–I show the curves under the contrast method. The second line shows the corresponding

detail result with a small perturbation for clarity. From the detailed result, it can be concluded that the SEM exhibits superior robustness performance

under conditions of small perturbation.

effectiveness compared to the smoothed ensemble, suggesting

that the SEM based on different smoothing parameters may be

more susceptible to high variance noise expectations (set δ as 1

for contrast method). We believe that this characteristic can be

attributed to the high ensemble probability of an unsmoothed

model or a smoothed model with low variance. As a result,

the defensive effectiveness of SEM is not as impressive as

that of the ensemble-smoothed model in terms of probability.

This result highlights the influence of the smoothing model

collection on the attack performance with respect to the smoothing

parameter distribution.

In comparison, the results for the targeted source-based black-

box attacks that show a decrease in overall accuracy are shown in

Figure 6B. Nevertheless, the same conclusion regarding robustness

can be drawn. The sensitivity of the model to specific noise

distributions was analyzed through experiments with black-box

attacks, and it was found that the smoothing model resulted in

improved defense performance against adversarial samples based

on specific noise distribution assumptions. However, the model’s

susceptibility to noise with varying parameters under different

smoothing parameters limits its defense capabilities. Such noise

assumptions are independent of the true gradient information of

the model and rely primarily on changes in the model output and

the number of queries. Improvements in the selection of smoothing

parameters for the ensemble strategy are needed to further enhance

the defensive capabilities.

4.5. Robustness analysis based on the
stochastic ensemble strategy

This section examines the effect of ensemble quantity

and heterogeneity on the robustness of the proposed method.

Specifically, we compare ensembles with quantities of 1, 2, and

3 to those with quantities of 6, 7, and 8 (multi_ensemble).

In addition, we compare a stochastic ensemble consisting of a

single-architecture CNN with different smoothing parameters.

To ensure comparable prediction accuracies with our method,

we choose the WRN (Zagoruyko and and Komodakis, 2016b)

as the single-architecture neural network (single_architecture).

To expand the stochastic ensemble model collection space and

introduce model gradient variations, we smooth the WRN using

seven different smoothing parameters (0.12, 0.15, 0.25, 0.5, 0.75,
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FIGURE 6

The ASR-vs.-distortion curves for source-based black-box attacks: (A) untargeted attack; (B) targeted attack. The left side of each attack target

represents the NES, while the right side represents the SPSA. The solid line E shows the result of the SEM under a source-based attack. The dashed

lines J–M represent the curve under the contrast method.

FIGURE 7

The ASR-vs.-distortion curves for untargeted white-box attacks under di�erent attack methods and ensemble strategies: (A) BIM, (B) MIM, and (C)

PGD. The solid lines represent the ASR-vs.-distortion curves under di�erent ensemble strategies, while the dashed lines represent the same curves

under the contrast method for comparison.

1.0, and 1.25) under Gaussian noise via stability training (Li B. et al.,

2019), semi-supervised learning (Carmon et al., 2019), and pre-

training (Hendrycks et al., 2019). The resulting stochastic ensemble,

consisting of a single-architecture CNN, shows heterogeneity in its

smoothing attributes.

Figures 7, 8 show the results of our robustness evaluation using

different ensemble strategies. The negative impact of ensemble

quantity on robustness is evident, as shown by the red solid line.

As explained in Section 3.3, a larger ensemble quantity leads

to reduced gradient differences and increased transferability of

adversarial samples across ensemble iterations. The blue solid line

in Figure 7 indicates that architectural heterogeneity has a greater

impact on the adversarial robustness of the SEM. When there are

no architectural differences between the ensemble models, even

in the random smoothing case, the SEM can actually increase

vulnerability to adversarial samples.

Figure 8 confirms that an SEM without architectural

heterogeneity is even more vulnerable than an ensemble

model. Viewing the ensemble strategy of SEM as a form of

dropout operation (Baldi and Sadowski, 2013), we observe

that when the ensemble quantity is large and there is

insufficient architectural diversity, the SEM method becomes

a regularization technique that conversely enhances the

capability of adversarial samples, especially under targeted

attack.

5. Conclusion

This study proposes a dynamic defense method for the

generalized robustness of deep neural networks based on random

smoothing. This dynamic nature based on the ensemble system

is a change from the perspective of the existing random method

from the model level to the system level. The ensemble attributes

are considered as the changeable factor and dynamically adjusted

during the inference prediction phase. The proposed method
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FIGURE 8

The ASR-vs.-distortion curves for white-box targeted attacks under di�erent attack methods and ensemble strategies: (A) BIM, (B) MIM, and (C) PGD.

The solid lines represent the ASR-vs.-distortion curves under di�erent ensemble strategies, while the dashed lines represent the same curve under

the contrast method.

has the characteristics of diversity, randomness, and dynamics to

achieve the probabilistic attribute dynamic defense for adversarial

robustness without damaging the accuracy of clean samples.

Through an optimal search of perturbation values under different

attack capabilities, attack methods, and attack targets according

to the degree of the real-time ability of an attacker to obtain

knowledge of the model collection and gradients, a comprehensive

evaluation under CIFAR10 preliminarily demonstrates that when

the image distortion is small, even the attacker with the highest

attack capability cannot easily exceed the attack success rate

associated with the ensemble smoothed model, especially under

untargeted attacks.

The robustness of our proposed method relies heavily on the

heterogeneity and confidentiality of the model collection. Through

experimental setups under different attack scenarios, this study

also finds that the proposed SEM can achieve better robustness

by limiting the ability of the adversary. Therefore, based on these

findings, future studies will be conducted (1) to further improve

the robustness against white-box attacks, adaptive control of the

ensemble changes based on attack detection is a crucial research

direction; (2) under the query-based black-box analysis, the smooth

parameter selection probability of the ensemble strategy is a crucial

optimization direction for this study; (3) for practical applications,

both the number of parameters of the model and the forward

efficiency of the ensemble prediction should be considered. In this

study, the robustness is evaluated on the CIFAR10 dataset, but there

are practical application problems because of the large training cost.

Therefore, the light weight of the ensemble model is an important

research direction.
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