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Semantic segmentation, which is a fundamental task in computer vision. Every

pixel will have a specific semantic class assigned to it through semantic

segmentation methods. Embedded systems and mobile devices are di�cult to

deploy high-accuracy segmentation algorithms. Despite the rapid development

of semantic segmentation, the balance between speed and accuracy must be

improved. As a solution to the above problems, we created a cross-scale fusion

attention mechanism network called CFANet, which fuses feature maps from

di�erent scales. We first design a novel e�cient residual module (ERM), which

applies both dilation convolution and factorized convolution. Our CFANet is

mainly constructed from ERM. Subsequently, we designed a new multi-branch

channel attention mechanism (MCAM) to refine the feature maps at di�erent

levels. Experiment results show that CFANet achieved 70.6% mean intersection

over union (mIoU) and 67.7% mIoU on Cityscapes and CamVid datasets,

respectively, with inference speeds of 118 FPS and 105 FPS on NVIDIA RTX2080Ti

GPU cards with 0.84M parameters.

KEYWORDS

computer vision, semantic segmentation, channel attention mechanism, residual block,

dilation convolution, factorized convolution

Introduction

Semantic segmentation is a computer vision task that involves assigning a label to every

pixel for a given image based on its content. In the context of street scenes, this task involves

identifying and labeling various objects such as buildings, roads, vehicles, and pedestrians.

In the last 10 years, scene understanding has advanced quickly in the fields of computer

vision and photogrammetry, particularly the essential task of semantic segmentation (Yang

et al., 2021). Semantic segmentation aims to assign a label for each pixel of the images. It

has a wide range of applications, including scene comprehension, autonomous vehicle and

driver assistance, and augmented reality (Lu et al., 2019). Enabling autonomous cars to be

environmentally aware so they can drive safely, andmachines to intelligently analyzemedical

images, reducing the workload for doctors and dramatically reducing the time it takes to run

diagnostic tests.

The cross-scale fusion attention mechanism network uses a combination of

convolutional neural networks (CNNs) and attention mechanisms to perform semantic

segmentation. CNNs are used to extract features from images at multiple scales, while

attention mechanisms are used to selectively focus on important regions of the image.
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The attention mechanism is an effective way to promote

accuracy by computing attention maps that indicate which

regions of the feature maps are most relevant for the

segmentation task. The attention maps are then used

to weigh the features from different scales before they

are fused together. This helps to ensure that important

information from all scales is taken into account during the

segmentation process.

In recent years, deep convolutional neural networks

(DCNNs) have demonstrated their amazing capabilities

for Image classification tasks. Since the FCN (Long et al.,

2015) was proposed, which is the pioneer for semantic

segmentation, DCNNs have shown their power in the task

of semantic segmentation. It has become the mainstream

of segmentation approaches. Compared to traditional

visual algorithms, DCNNs achieve good results with their

end-to-end approach.

Of course, the development of image segmentation technology

also has many shortcomings that need to be improved. With

the development trend of artificial intelligence, the network

model is getting deeper and bigger. As the network deepens,

training will become more and more difficult, mainly because

of the gradient explosion in the network training process

of gradient descent. Some methods have also been used

to improve the situation, such as changing weights and

normalization. However, with the deepening of the network

model, the training error increases rather than decreases.

The emergence of residual networks solves this problem

well, and its performance is greatly improved compared to a

traditional network.

Most of the prior networks (Long et al., 2015; Badrinarayanan

et al., 2017; Chen et al., 2017) neglected the segmentation

efficiency while generating outstanding results. They have several

disadvantages, including large storage overhead and low computing

efficiency. Specifically, they have high computational and storage

requirements. Therefore, creating lightweight and efficient

networks to solve the above problems is a major trend. The core

of our CFANet is ERM with dilated factorized convolution, which

can extract features while keeping the computation requirements

low. Our main contributions can be summarized as follows:

a) An ERM, which consists of convolutional decomposition

and channel shuffling operations, is designed to extract semantic

information while keeping the computational cost low.

b) MCAM is introduced to refine the feature maps at

different levels.

c) We achieve 70.6% mIoU and 67.7% mIoU on the Cityscapes

and CamVid datasets, respectively, along with the inference

speed of 118 FPS and 105 FPS on an NVIDIA RTX2080Ti

GPU card.

Overall, the cross-scale fusion attention mechanism network is

an effective approach the semantic segmentation of street scenes. It

has been shown to achieve state-of-the-art performance on several

benchmark datasets, demonstrating its potential for real-world

applications such as autonomous driving and urban planning.

Abbreviations: ERM, E�cient Residual Module; MCAM, Multi-branch Channel

Attention Mechanism.

Materials and methods

In this section, the work related to dilated convolution,

factorized convolution and real-time semantic segmentation will

be discussed. The following is a general overview of the materials

and methods used in the cross-scale fusion attention mechanism

network for the semantic segmentation of street scenes:

a) Data Collection: A large dataset of street scenes was collected

for training and validation of the neural network. This dataset

typically includes high-resolution images and corresponding

segmentation masks that label each pixel of the image with the

corresponding object or class.

b) Pre-processing: The collected data is pre-processed to

prepare it for use in the neural network. This may include resizing

the images, normalizing the pixel values, and augmenting the data

through techniques such as rotation, flipping, and cropping to

increase the size and diversity of the dataset.

c) Network Architecture: The cross-scale fusion

attention mechanism network architecture is designed and

implemented based on the specific requirements of the semantic

segmentation task.

d) Training: The network is trained using the pre-processed

data through a process of backpropagation, where the weights

of the network are adjusted to minimize the loss function. The

training process involves multiple iterations or epochs, where

the network is trained on batches of images and corresponding

segmentation masks.

e) Evaluation: The performance of the network is evaluated

on a separate validation dataset to assess its accuracy and

generalization ability. Metrics such as mIoU and pixel

accuracy are commonly used to evaluate the performance of

the network.

f) Testing: The final step involves using the trained network

to perform semantic segmentation on new images in real-world

applications. This typically involves feeding the input image

through the network and generating a segmentation mask that

labels each pixel with the corresponding object or class.

Overall, the materials and methods used in the cross-scale

fusion attention mechanism network for semantic segmentation

of street scenes involve collecting and pre-processing data,

designing and implementing the neural network architecture,

training and evaluating the network, and finally testing it in real-

world applications.

Dilated convolution

Dilated convolution is a convolutional neural network

operation that enables the receptive field of a convolutional layer

to be expanded without increasing the number of parameters.

It is commonly used in semantic segmentation tasks where the

output needs to preserve fine-grained spatial details. In a traditional

convolutional layer, each filter kernel slides over the input feature

map with a stride of 1, resulting in a receptive field that grows

linearly with the kernel size. Dilated convolution, on the other

hand, inserts zeros between the kernel values, effectively increasing

the kernel’s spacing or dilation rate. This means that the receptive
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field of the dilated convolutional layer can be increased without

increasing the number of parameters.

Dilated convolution is commonly used in deep learning

architectures for image analysis, such as in semantic segmentation,

where it helps to capture multi-scale features and maintain spatial

resolution. It has been shown to improve the performance of neural

networks in a variety of computer vision tasks.

For segmented tasks, the feature resolution was decreased due

to the consecutive pooling operations or convolution striding. This

invariance may have a negative impact on detailed segmentation.

To overcome this problem, dilated convolution, which has been

proven as an effective way for semantic segmentation tasks.

For example, Deeplab (Chen et al., 2017) introduced an atrous

spatial pyramid pooling module that applied dilated convolution

and pyramid framework to enlarge the receptive field. LedNet

(Wang et al., 2019) used dilated convolution in the proposed

SS-nbt module to enlarge the efficiency and the accuracy of

the residual block. RELAXNet (Liu et al., 2022) applied dilated

convolution in the process of the depth separable convolution to

compress the module model. All of the above methods demonstrate

the effectiveness and lightness of dilated convolution in the

segmentation task.

Factorized convolution

In order to improve the inference speed and ensure the

segmentation accuracy, factorized convolution is often used

to construct lightweight segmentation networks. Factorized

convolution is a technique used in deep learning for reducing the

computational cost andmemory requirements of CNNs. It involves

decomposing a standard convolutional operation into two or more

separate convolutions, each with a smaller kernel size.

The idea behind factorized convolution is that a large

convolutional kernel can be factorized into smaller kernels

that are applied sequentially. This reduces the number of

parameters in the network and can speed up computation without

sacrificing accuracy.

Factorized convolution has several advantages over standard

convolutional layers. First, it reduces the number of parameters

in the network, which can reduce overfitting and make training

faster. Second, it reduces the computational cost of the network

by breaking down the convolution into smaller operations. Finally,

factorized convolution can improve accuracy in certain cases by

allowing for more efficient and targeted feature extraction.

Factorized convolution is commonly used in mobile and

embedded deep learning applications where computational and

memory resources are limited. It has been shown to be effective in

a variety of computer vision tasks, including image classification,

object detection, and semantic segmentation.

There are two kinds of factorized methods often used

in lightweight networks. One is factorized the standard 3 ×
3 convolution into a stacked 1 × 3 and 3 × 1 convolution,

and the other is depth separable convolution that factorized

the standard convolution into a depth-wise convolution

and point-wise convolution. These two factorized methods

can dramatically decrease the amount of the parameters.

Many real-time semantic segmentation approaches, including

FASSD-Net (Rosas-Arias et al., 2021), MDRNet (Dai et al.,

2021), and MSCFNet (Gao et al., 2021) use it to construct

efficient networks.

Attention mechanisms

Attention mechanisms are a technique used in deep learning

to selectively focus on certain parts of the input data during

the learning process. It was initially introduced in natural

language processing for machine translation, but has since

been applied to other domains, including computer vision and

speech recognition.

For humans, when we look at a picture, we consciously notice

the salient areas and ignore the less important ones. We ask

the computer to imitate our behavior, and motivated by this

observation, attention mechanisms are introduced into computer

vision in order to imitate this aspect of the human visual system.

This is the so-called attention mechanism, which is essentially a

mechanism for focusing local information. Attention mechanisms

have achieved great success in many visual tasks, including image

classification, object detection, semantic segmentation, etc.

The idea behind attention mechanisms is to selectively

emphasize different parts of the input data, based on their relevance

to the task at hand. This is achieved by assigning a weight to

each input element, which determines its relative importance. The

weights are learned through the training process, allowing the

model to adapt to different input patterns. Attention mechanisms

are commonly used in neural networks that process sequential

or spatial data, such as recurrent neural networks (RNNs) and

CNNs. In RNNs, the attention mechanism is typically used to

selectively weight different time steps of the input sequence, while

in CNNs, it is used to weight different spatial locations in the

feature maps. Attention mechanisms have been shown to improve

the performance of neural networks in a variety of tasks, including

image captioning, machine translation, and speech recognition. It

has become a standard component in many state-of-the-art deep

learning architectures.

The channel attention mechanism and the spatial attention

mechanism are two often used mechanisms. The purpose of using

the channel attention module is to make the input image more

meaningful. The importance of each channel of the input image

is calculated through the network. So as to achieve the purpose

of improving the feature representation ability. The attention

mechanism (Vaswani et al., 2017) was originally proposed in the

natural language field and it assigns each word a different weight.

Now, it has been widely used in computer vision tasks. SENet

(Hu et al., 2018) generated the feature map weights by modeling

the relationship between channels. Besides the channel attention

mechanism, CBAM (Woo et al., 2018) used spatial attention

mechanisms to assign weights for pixels. The fusion of the high-

level and low-level features in the segmentation tasks is an efficient

way to improve the accuracy performance. SaNet (Fan and Ling,

2017) introduced a channel shuffle operation for the fusion of the

different level features. JPANet (Hu et al., 2022) presented a bilateral

path to fuse the feature from different levels.
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FIGURE 1

Illustration of the bottleneck (A), non-bottle-1d (B), Shu	enet module (C), and ERM (D) residual structure.

FIGURE 2

The structure of the MCAM.

Methodology

In this section, we first introduce our ERM, which is used for

feature extraction.

Subsequently, MCAM is proposed by us. Next, we present the

MCAM module that includes the attention mechanism, which is

used to fuse features at different levels. At the end of this section,

we will discuss the overall architecture of our CFANet, which fuses

different levels of features.

E�cient residual module

We concentrate on enhancing the residual structure’s

effectiveness, which is frequently used in modern CNNs for

computer vision tasks. Recent years have seen numerous successful

uses of lightweight residual structures, including bottleneck

(Figure 1A), non-bottle-1d (Lu et al., 2019) (Figure 1B), and

Shufflenet module (Long et al., 2015) (Figure 1C), motivated by

LedNet (Wang et al., 2019) and MSCFNet (Gao et al., 2021),

We devise an ERM to improve performance with the limitation

of computational capacity. Our ERM module is shown in

Figure 1D.

In Figure 1, at the beginning of ERM, a standard 3

× 3 convolution is used to decrease the number of the

channel by half. The following is a two-branch structure with

depth-wise convolution. To be specific, a standard 3 × 3

is divided into consecutive 1 × 3 and 3 × 1 convolutions.

The other branch applies dilated depth-wise convolution,

which can help enlarge the receptive field. The two-branch

is refined by MCAM, which will be introduced in the

next subsection.
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FIGURE 3

Illustration of the overall architecture of the CFANet.

FIGURE 4

Illustration of the initial convolution and down sampling unit.

Multi-branch channel attention mechanism

The attention mechanism can give varying weights to

the traits to draw attention to the crucial ones and ignore

the unimportant ones. In this paper, we present MCAM to

generate different weights for the channels, which is shown in

Figure 2.

The convolution is chosen as the local channel context

aggregator, which utilizes point-level channel interactions only

for each spatial location. As Figure 2 shows, our MCAM module

uses global average pooling and 3 × 3 standard convolution

in the upper and bottom branches simultaneously. The

results from two branches are added element by element.

After that, the sigmoid function is used to generate different

weights for channels. This procedure can be expressed

as follows:

MCAM (F) = F∗σ
(

Add
(

AvgP (F) + Conv3×3 (F)
))

(1)

Where F∈ RC × H × W denotes the input feature maps, C,

H, W represent the channel, height, and width of the feature map,

respectively. σ is sigmoid activation function. Conv3×3 denotes

standard convolutionwith kernel 3×3. Addmeans the channel wise

addition. AvgP is the average pooling operation.

Network architecture design

Based on ERM, we design the architecture of CFANet as shown

in Figure 3. In this section, we will introduce the final model of

the CFANet.

As can be seen from Figure 3, we first use three 3 × 3

conservative standard convolutions with stride 2 to extract the

initial feature of the input images. After the initial convolution,

a down sampling unit is used to reduce the size of the feature

map and expand the reception domain. However, too many down

sampling operations will cause the information, thus, we only

employ three down sampling units in our method, thus, the final
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resolution of the feature map is 1/8 of the input. Our initial

convolution and down sampling unit are shown in Figure 4.

The pseudonym code of our CFANet is shown as follows:

Input: Image/

Output: The segmentation results

Step 1: Initial Convolution

initial_features = Convolution(input_image,

filters)

Step 2: Fusion and Subsampling

downsampled_image = downsample(input_image,

scale_factor=2)

fusion1 = Concatenate(initial_features,

downsampled_image)

subsampling1 = Subsample(fusion1,

scale_factor=2)

Step 3: Output to ERM Block1

output_ERM_Block1 = ERM_Block1(subsampling1)

Step 4: Fusion and Subsampling

downsampled_image2 =Downsample(input_image,

scale_factor=4)

fusion2 = Concatenate(output_ERM_Block1,

downsampled_image2)

subsampling2 = Subsample(fusion2,

scale_factor=2)

Step 5: MCAM Module

output_MCAM_Module = MCAM_Module(subsampling2)

Step 6: Feature Fusion

fusion3 =Concatenate(output_MCAM_Module,

input_image)

Step 7: MCAM Feature Extraction

output_MCAM_FeatureExtraction =

MCAM_FeatureExtraction(fusion3)

Step 8: 1x1 Convolution

adjusted_features =

Convolution_1x1(output_MCAM_FeatureExtraction,

num_channels)

Step 9: Upsampling

output_feature_map = Upsample(adjusted_features,

scale_factor)

Algorithm 1. Cross-scale fusion attention net (CFA-Net).

Experiments

In this part, details and results of our experiments will be

presented on the popular semantic segmentation benchmarks

Cityscape (Cordts et al., 2016) and CamVid (Brostow et al.,

2009). The network was trained on these two data sets, which

consisted of high-resolution street view images labeled with pixel-

level semantic labels. They used cross-entropy loss functions to

train the network and data enhancement techniques such as

random scaling and clipping to increase the diversity of the training

data. The performance of the proposed network is evaluated

using several metrics, including mIoU and pixel accuracy. The

results show that the proposed network outperforms several state-

of-the-art semantic segmentation networks on the Cityscapes

dataset, demonstrating the effectiveness of the cross-scale fusion

attention mechanism.

Datasets

Cityscapes dataset
The Cityscapes dataset, contains 19 semantic classes and

includes 5,000 fine-labeled samples with the resolution 2,048 ×
1,024. The total 5,000 images are divided into training, validation,

and test parts. The training parts contain 2,975 images, the

validation subset has 500 samples and the test sets have 1,525

images. The sample image and corresponding labels can be seen

in Figure 5.

CamVid dataset
The CamVid dataset is collected from a car video sequence,

which contains 11 semantic classes and includes 710 labeled images

(367 images for training, 101 images for validation, and 233 images

for testing). The sample image can be seen in Figure 6.

Data augmentations

In order to overcome the over fitting issue, data enhancement

was performed using a horizontal flip and random scale 126. The

random scale contains {0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} Besides, we

also use color jitter to adjust the brightness, control, and saturation

of the training images and labels.

Training protocols

We train our network with Stochastic Gradient Descent

(Bottou, 2010) (SGD) optimizer on Cityscapes dataset with a

batch size of 8 on a single NVIDIA RTX2080Ti Card which

has 24 GB GPU memory. The learning rate is adjusted by

a polynomial policy in the training process. The polynomial

policy is computed by Ircur = init < uscore > Ir ×
(

1− epoch
total<uscore>epoch

)power
. The initial learning rate is 4e-

2.

When performing training on the CamVid dataset, Adam

(Kingma and Ba, 2014) is used as the optimizer with a

batch size of 8 and an initial learning rate of 1e-3. We also

use a polynomial policy to adjust the learning rate of the

training process.

Ablation studies

In this section, the effectiveness of our proposed

MCAM was verified by ablation studies. All the ablation

experiments are performed on the CamVid dataset, which
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FIGURE 5

The corresponding images and labels of Cityscapes dataset.

FIGURE 6

The corresponding images and labels of CamVid dataset.

training is time-saving. We trained 1,000 epochs for all the

ablation experiments.

Ablation studies on MCAM
In order to prove the effectiveness of MCAM, we removed all

the MCAM in our CFANet. The experiment results can be seen in

Table 1.

From Table 1, it can be observed that the mIoU

decreases by 1% when MCAM is removed. The

TABLE 1 Ablation results on MCAM.

Methods MCAM Paramets (M) mIou

CFANet
√

0.84 67.7

CFANet × 0.77 66.7

parameters are reduced to 0.07 million. In other words,

our ECAM can effectively increase accuracy with

negligible parameters.
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TABLE 2 The comprehensive comparisons on Cityscapes dataset.

Method Input Backbone Parameters (M) FLOPs (G) mIoU (%)

SegNet (Badrinarayanan et al., 2017) 640× 380 VGG16 29.50 286 57.0

Enet (Paszke et al., 2016) 512× 1,024 No 0.36 3.8 58.3

SQNet (Hu et al., 2018) 1,024× 2,048 SqueezeNet – 270 59.8

ESPNet (Mehta et al., 2018) 512× 1,024 ESPNet 0.36 113 60.3

CGNet (Wu et al., 2020) 360× 640 No 0.5 - 64.8

ContextNet (Han et al., 2020) 1,024× 2,048 No 0.85 – 66.1

EDANet (Yang and Gao, 2019) 512× 1,024 No 0.68 81 67.3

ERFNet (Romera et al., 2017) 512× 1,024 No 2.10 – 68.0

Fast-SCNN (Zhang et al., 2018) 1,024× 2,048 No 1.11 – 68.0

BiseNet (Yu et al., 2018) 768× 1,536 Xception39 5.80 14.8 68.4

ICNet (Zhao et al., 2017) 2,048× 1,024 PSPNet 26.50 28.3 69.5

DFANet (Li et al., 2019a) 1,024× 1,024 Xception 7.80 3.4 71.3

Ours 1,024× 512 No 0.84 10.4 70.6

FIGURE 7

The visual results on Cityscapes validation set (from the most-left to right-most is: input, DFANet, and ours).
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Performance

In this subsection, Compare our algorithm with the

state-of-the-art model. We first report the comparison

results on Cityscapes and Camvid benchmarks, then

analyze the speed of our model and compute the FPS of

other state-of-the-art methods under the same status for

fair comparison.

Performance on Cityscapes datasets
A quantitative and quantitative comparison of the

urban landscape with other methods is shown. The

comparison metrics consist of input size, backbone network,

parameter amount, Flops, and the mIoU, the results can be

seen in Table2.

It can be observed from Table 2, that the mIoU is comparable

to the current state-of-the-art methods, but our CFANet is

more lightweight and efficient. The results on Cityscapes

show that our approach achieves 71.5% mIoU with only 0.84

million parameters. Compared to DFANet, our method has a

similar accuracy but our method only has 0.84M parameters.

Compared to DFANet, our method has a similar accuracy

but our method only has 0.84M parameters. In addition, in

order to visualize the results of different methods in terms

of segmentation effects, we provide visual comparisons on the

Cityscapes validation set. The visual comparison results can be seen

from Figure 7.

We also provide a per-class IoU on Cityscapes datasets. Per-

class IoU can be seen in Table 3.

Performance on camvid
To further verify the effectiveness of our

CFANet, we also evaluated our CFANet on

the CamVid dataset. As shown in Table 4, our

CFANet obtained remarkable performance against

other methods.

From a comprehensive, we select some methods and compared

them from four perspectives: input size, backbone, parameter, and

mIoU(on test set). As Table 4 shows, our CFANet achieves the

best mIoU without backbone. Compared to BiseNet and ICNet,

our CFANet is 0.6% higher than ICNet. However, it should

be noticed that ICNet has a huge parameter. We provide the

visual comparison results of these methods on the CamVid test

dataset in Figure 8.

We make a series of supplementary experiments to assess

the time performance on an NVIDIA Jeston TX2 platform. The

experiment results are shown in Table 5.

A clear comparison is made with other popular algorithms in

terms of FLPOS and memory. The results are shown in Table 6.

As shown in Table 6, the memory cost of our CFANet is similar

to the ERFNet, but the accuracy performance of our CFANet (in

terms of mIoU) is 2.6% higher than it. When compared to the

EDANet, the FLOPs of our method are slightly higher than it,

but we achieved a 3.3% accuracy promotion, which is significant

progress. All the mentioned discussion can prove the effectiveness

of our proposed CFANet. T
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TABLE 4 Comparisons with some of state-of-art methods on CamVid test set.

Methods Input size Backbone Parameter mIoU

ENet (Paszke et al., 2016) 360× 480 No 0.36M 51.3

SegNet (Badrinarayanan et al., 2017) 360× 480 VGG16 29.5 55.6

NDNet (Yang et al., 2020) 360× 480 No 0.5 57.2

DFANet (Li et al., 2019a) 720× 960 Xception 7.8 64.7

Dilation (Rosas-Arias et al., 2021) 720× 960 VGG16 140.8 65.3

CGNet (Wu et al., 2020) 360× 480 No 0.5 65.6

BiseNet (Yu et al., 2018) 720× 960 Xception39 5.8 65.6

DABNet (Li et al., 2019b) 360× 480 No 0.76 66.4

FDDWNet (Liu et al., 2019) 360× 480 No 0.80 66.9

ICNet (Zhao et al., 2017) 720× 960 PSPNet50 26.5 67.1

Ours(CFANet) 360× 480 No 0.84 67.7

FIGURE 8

The visual results on Camvid testing set. From the most-left to right-most is: Input (A), Ground-Truth (B), DABNet (C), and ours (D).
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TABLE 5 The time performance on NVIDIA Jeston TX2.

Method Input Platform FPS Accuracy mIoU (%)

SegNet (Badrinarayanan et al., 2017) 640× 480 TX2 5 58

Enet (Paszke et al., 2016) 640× 480 TX2 26 58.3

EDANe (Yang and Gao, 2019) 640× 480 TX2 42 67.3

ERFNet (Romera et al., 2017) 640× 480 TX2 39 68.0

Fast-SCNN (Zhang et al., 2018) 640× 480 TX2 57 68.0

Ours(CFANet) 640× 480 TX2 55 70.6

TABLE 6 The comparison results in terms of FLOPS and amount of memory.

Method Input Amount of the memory (MB) FLOPs (G) Accuracy mIoU (%)

SegNet (Badrinarayanan et al., 2017) 512× 1,024 1,830 326.26 58

Enet (Paszke et al., 2016) 512× 1,024 0.36 3.8 58.3

SQNet (Hu et al., 2018) 512× 1,024 895 270 59.8

ESPNet (Mehta et al., 2018) 512× 1,024 85 3.2 60.3

CGNet (Wu et al., 2020) 360× 640 783 6.98 64.8

ContextNet (Han et al., 2020) 512× 1,024 356 1.78 66.1

EDANet (Yang and Gao, 2019) 512× 1,024 353 8.95 67.3

ERFNet (Romera et al., 2017) 512× 1,024 806 25.8 68.0

Fast-SCNN (Zhang et al., 2018) 512× 1,024 309 1.76 68.0

Ours (CFANet) 512× 1,024 821 10.4 70.6

Conclusions

In this paper, A new semantic segmentation method, CFANet,

is proposed. Which fuses 1/2, 1/4, 1/8 feature maps of the input

images. Subsequently, we present a novel ERM consisting of

convolution decomposition and dilated convolution. We build our

core architecture by using ERM. Besides, we deviseMCAM to refine

the feature map from different stages. Experiment results show that

our method achieves 70.6 and 67.7% mIoU along with 118 FPS and

108 FPS on a single NVIDIA 2080Ti GPU card.

In spite of this, we still have a lot of issues to resolve in the near

future. In existing lightweight segmentation models, much useful

information is lost in order to obtain the smallest possible model

size without compromising accuracy. There is still an unsatisfactory

level of segmentation accuracy. Furthermore, the inference speed

is not fast enough to process high-resolution images. Additionally,

while semantic segmentation networks are extremely important for

edge devices, their power consumption is not adequately addressed

in existing research. For this reason, we are exploring a novel

architecture for semantic segmentation to improve the trade-off

between inference speed, accuracy, and power consumption in

the future.
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