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Introduction: A hot cell is generally deployed with a teleoperation power

manipulator to complete tests, operations, and maintenance. The position and

pose of the manipulator are mostly acquired through radiation-resistant video

cameras arranged in the hot cell. In this paper, deep learning-based target

detection technology is used to establish an experimental platform to test

the methods for target detection and pose estimation of teleoperation power

manipulators using two cameras.

Methods: In view of the fact that a complex environment a�ects the precision

of manipulator pose estimation, the dilated-fully convolutional one-stage object

detection (dilated-FCOS) teleoperation power manipulator target detection

algorithm is proposed based on the scale of the teleoperation power manipulator.

Model pruning is used to improve the real-time performance of the dilated-

FCOS teleoperation power manipulator target detection model. To improve the

detection speed for the key points of the teleoperation power manipulator,

the keypoint detection precision and model inference speed of di�erent

lightweight backbone networks were tested based on the SimpleBaseline

algorithm.MobileNetv1was selected as the backbone network to performchannel

compression and pose distillation on the upsampling module so as to further

optimize the inference speed of the model.

Results and discussion: Compared with the original model, the proposed model

was experimentally proven to reach basically the same precision within a shorter

inference time (only 58% of that of the original model). The experimental results

show that the compressed model basically retains the precision of the original

model and that its inference time is 48% of that of the original model.

KEYWORDS

teleoperation power manipulator, camera, target detection, pose estimation, deep

learning

1. Introduction

Hot cells in nuclear power plants and high-energy physics devices are shielded from

radiation (Zheng et al., 2015; Zhang et al., 2022), and they play a crucial role in testing,

operation, and maintenance activities. To facilitate tasks such as inspection, assembly,

disassembly, transportation, and part repair, hot cells are equipped with either a master-slave

manipulator or a teleoperation power manipulator (Pezhman and Saeed, 2011; Assem et al.,

2014; Zhang et al., 2021). These manipulators are necessary to mitigate the harmful effects of

radiation on humans. To assist the teleoperator, the teleoperation power manipulator relies

on sensing technologies, including visual sensing (Maruyama et al., 2014) and force sensing

(Oosterhout et al., 2012), to gather information about the operation area.
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In hot cells, where the radiation environment limits the use of

certain sensors, radiation-resistant cameras are commonly installed

to capture on-site images and transmit them to operators via the

network. To regularly replace single modules in a tokamak vessel,

Qiu et al. (2016) used a hand–eye coordination method to ensure

the consistency between the operator’s hand movement and the

manipulator’s end effectormovement. Ribeiro et al. (2020) designed

a hand–eye camera system for the acquisition of key information

in the operating environment. Lionel et al. (2018) introduced

the virtual reality technology in the assembly and tooling design

of the tokamak diverter to assist teleoperators and successfully

achieved assembly with a gap of <1mm. Ferreira et al. (2012)

designed a localization system based on cameras to accurately

estimate the position and direction of CPRH by capturing

video streams for the implementation of an augmented reality

system. Liu et al. (2020) proposed the vision-based breakpoint

detection algorithm and successfully identified and captured tiles

that had fallen onto the diverter by employing the watershed

segmentation algorithm.

Most of the information about the teleoperation power

manipulator’s position and pose comes from radiation-resistant

cameras in the hot cell. The operator’s teleoperation efficiency

is impacted by the limited visual information provided by this

method of observation solely by human eyes through cameras.

The application of technologies such as virtual reality (VR) or

augmented reality (AR) can integrate the information of cameras

into the operation platform of VR or AR, which is conducive to

improving the operation efficiency (Qiu et al., 2016; Lionel et al.,

2018; Ribeiro et al., 2020). However, obtaining the teleoperation

powermanipulator’s position and pose from the photographs is one

of the issues that need to be resolved in the hot cell.

The deep learning-based pose estimation algorithm can quickly

distinguish poses from RGB images and achieve satisfactory

estimation results. Kehl et al. (2017) proposed a direct regression-

based 6D pose estimation method to achieve end-to-end 6D

pose estimation. DeePose (Toshev and Szegedy, 2014) applied a

convolutional neural network (CNN) to human pose estimation

for the first time and achieved higher precision than traditional

methods. Pose coordinate regression-based algorithms, on the

other hand, only constrain the pose coordinates with the mean

square error and ignore the supervision of the spatial information

of the key points, making it difficult to further improve their

regression precision. Wei et al. (2016) proposed a sequential

architecture composed of convolutional networks to predict the

locations of the key points and introduced the key points heatmap

as the input of the next stage, which provides rich spatial

information for the subsequent network layer and improves the

robustness of the algorithm. Sun et al. (2017) proposed HRNet,

which is composed of multi-resolution subnetworks connected in

parallel and achieved the best pose estimation results on the COCO

dataset in 2019. Mišeikis et al. (2018a,b) proposed a multi-objective

CNN, which uses 2D images to estimate the 3D positions of the

key points and used transfer learning techniques to adapt the

CNN trained to estimate the poses of UR robots to Kuka robots.

Heindl et al. (2019) proposed amulti-robot pose estimationmethod

based on a recurrent neural network, which uses 2D images as

input and simultaneously infers the number of robots in the scene,

the joint locations, and the sparse depth maps around the joint

locations, demonstrating high generalizability to the real-world

images. Ning et al. (2020) presents a real-time 3D face-alignment

method that uses an encoder-decoder network with an efficient

deconvolution layer which has low prediction errors with real-

time applicability. Wu et al. (2022) presents an age-compensated

makeup transformation framework based on homology continuity,

and the experimental results show that the framework outperforms

existing methods.

The technical conditions for the pose estimation of

teleoperation power manipulators are provided by the

aforementioned studies. In this paper, target detection and pose

estimation of teleoperation power manipulators are designed based

on deep learning, obtaining the teleoperation power manipulator’s

position and pose by two cameras in the hot cell, which is few

studied in this field at present. A dilated-fully convolutional

one-stage object detection (dilated-FCOS) target detection

algorithm for teleoperation power manipulators is suggested in

accordance with its scale. For teleoperation power manipulators,

a keypoint detection algorithm based on SimpleBaseline has

been developed. This algorithm reduces the model’s inference

time while maintaining model precision. Through teleoperation

power manipulator pose estimation experiments, an experimental

platform for teleoperation power manipulator operation is

established to confirm the methods’ viability and efficacy.

The following is the layout of the remainder of the paper:

the construction of the experimental platform and the production

of the experimental data are both covered in detail in Section 2;

the proposed dilated-FCOS teleoperation powermanipulator target

detection method is presented in Sections 3; the keypoint detection

method is in the Section 4; experiments and discussion are themain

focus of Section 5; summary of this work and suggestions for future

research are presented in Section 6.

2. Experimental platform and
experimental data

2.1. Construction of the experimental
platform

The experimental platform (Figure 1) consists of several

components: a teleoperation power manipulator, a camera system

with two cameras, a motion capture system, an image processing

module, and a teleoperation power manipulator display module.

The camera system captures real-time operational images of the

teleoperation power manipulator, while the image processing

module detects targets and estimates the pose of the manipulator.

The updated pose information is then inputted into the

teleoperation power manipulator display module to adjust its

position accordingly.

(1) Teleoperation power manipulator. Figure 2C depicts the

teleoperation power manipulator for teleoperation. It is configured

with eight degrees of freedom, consisting of four rotational and four

translational degrees of freedom. The mobile platform, depicted

in Figure 2A in two dimensions, allows the teleoperation power

manipulator to move forwards and backwards to reach the desired

operational position. Figure 2B presents the 3D model of the
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FIGURE 1

Experimental platform.

FIGURE 2

Model of the teleoperation power manipulator. (A) Mobile platform model. (B) Manipulator model. (C) Real manipulator.

teleoperation powermanipulator, which includes a base, a shoulder,

an upper arm, a forearm, a wrist, and an end effector.

(2)Motion capture system. Camera calibration and the creation

of a global coordinate system that is parallel to the mobile

platform’s translational direction are both made easier by the

motion capture system. The OptiTrack system (Motive Optical

motion capture software., 2023) is the motion capture system used

in this paper.
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TABLE 1 OPT-CC500-GM-04 camera parameters.

Parameter type Parameter value

Data interface GigE

Resolution 2,448(H)∗2,048(V)

Chip size 2/3”

Maximum frame rate 30 fps

Pixel size 3.45 µm

Exposure time 34 µs-1 s

Optical interface C

Size 29mm x 29mm x 42 mm

(3) Camera system. The camera system consists of two

industrial cameras, which capture the operational status of the

teleoperation power manipulator from two different angles. Table 1

provides the specific parameters of the cameras, including a focal

length of 16mm, a distortion rate of <0.2%, and a resolution of 5

million pixels.

(4) Image processing module. The function of the image

processing module is to locate the teleoperation power manipulator

in a complex environment through the target detection algorithm,

send the relevant information to the key points detection network

for pose estimation, and input the pose information into the

teleoperation power manipulator display module. The angles of

the rotation joints of the teleoperation power manipulator are

calculated based on the angles between the vectors formed by every

two key points (O’Donovan et al., 2006). The translational joints are

located by determining the translational distances of the key points

in the 3D space through multiview-based triangulation (Zeng et al.,

1999). The target detection and pose estimation methods of this

module are the main research contents of this paper.

(5) The teleoperation power manipulator display module.

The module was developed using Python and the V-REP

Robot Simulator (Liu et al., 2017). To accurately represent the

real teleoperation power manipulator, a model was created in

Solidworks and subsequently imported into V-REP. The multiview

teleoperation power manipulator pose estimation model is then

utilized to continuously update the virtual teleoperation power

manipulator’s translational distances and pose information.

2.2. Preparation of the training dataset

To build a teleoperation power manipulator target detection

model, the sample data for training the target detectionmodel must

be prepared first. The sample data are prepared in the following

two steps:

(1) Acquisition of moving images of the teleoperation

power manipulator

The image data are acquired mainly through the continuous

acquisition of moving images of the teleoperation power

manipulator from different angles through two cameras. To

improve the robustness of the model, data were collected under

different lighting conditions.

(2) Dataset labeling

The key points (namely, the base, the shoulder, the upper arm,

the forearm, and the wrist) of the teleoperation power manipulator

are shown in Figure 3. The labeling tool LabelImg and the Visual

Object Classes (VOC) Format are utilized in this paper. With

reference to the MPII human pose estimation dataset (Simon et al.,

2016), the files are labeled with the visibility and coordinates of

the five key points. In addition, to improve the ability of the

model to detect occluded key points, the slightly occluded key

points were labeled and set to be visible. The different positions

of the teleoperation power manipulator have different degrees of

illumination during the operation. Color dithering is used to boost

the robustness of the model to illumination, and random noise is

added to the data to boost the model’s robustness. The total number

of samples generated was 4,000. The numbers of samples in the

training set and the test set obtained after random allocation of the

total samples were 3,600 and 400, respectively.

3. Dilated-FCOS method

Fully Convolutional One-Stage Object Detection (FCOS)

(Coppelia Robotics GmbH, 2022) is a fully convolutional anchor-

free single-stage target detection algorithm. To suit the application

of teleoperation power manipulator, a dilated-FCOS teleoperation

power manipulator target detection method, is proposed. The

structure of dilated-FCOS is shown in Figure 4.

(1) The improved network structure of the FCOS. According

to the characteristics of the large target in teleoperation power

manipulator detection, the FCOS network structure is modified to

improve the detection precision, to reduce the time required for

feature extraction, and to increase the model inference speed.

(2) Channel pruning of the FCOS. The FCOS target

detection model’s backbone network (darknet19) was optimized

with the channel pruning algorithm to make it more precise

and effective due to its high parameter redundancy and high

computational overhead.

3.1. Method

3.1.1. FCOS network
The structure of the FCOS network is shown in Figure 5.

Darknet-19, the backbone network of FCOS (Andriluka et al.,

2014), outputs three scale outputs (C3, C4, C5), and the feature

pyramid outputs five scale outputs (P3, P4, P5, P6, P7). P3 is a high-

resolution feature map with rich spatial information. P4 focuses on

the detection of small targets. P5, P6, and P7 are low-resolution

feature maps with rich semantic information, which focus on the

detection of large andmedium targets. The design concept of FCOS

is divided into the following points:

(1) Pixel by pixel for the detection. Anchor-based algorithms

often rely on artificially designing a significant number of

anchor frames to enhance the recall rate. However, this approach

introduces a challenge of imbalance between positive and negative

samples during training, as the majority of anchor frames

are negative samples. Additionally, the calculation complexity

increases due to the intersection ratio between all anchor frames
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FIGURE 3

Keypoint labeling. (A) Camera(View)1. (B) Camera(View)2.

FIGURE 4

Dilated-FCOS method.

FIGURE 5

Network structure of the FCOS.
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and boundary boxes during training. In contrast, FCOS is an

anchor-free algorithm that avoids the use of anchor frames. Instead,

it maps each feature point on the feature map to the original

map and performs regression. By incorporating a larger number

of positive samples, FCOS facilitates improved model training and

leads to significant enhancements in the detector’s performance.

(2) Multi-scale training strategy

Deep network has rich semantic information, that is, the output

result is not affected by the position of the feature graph, which

is suitable for classification task; the shallow feature has rich

spatial information, that is, the output result changes according

to the change of the features, which is suitable for regression task.

Target detection requires both the regression of the target location

and the target classification. To solve these two contradictory

tasks simultaneously, FCOS adopts a feature pyramid structure

to fuse the feature maps at different scales, so that the semantic

information and spatial information between the different feature

maps can complement each other. The feature pyramid network

FIGURE 6

Feature pyramid networks.

structure is shown in the Figure 6. The first part of the network

is the path from the bottom, the backbone network, and the path

is the lack of spatial information, and the features, adding the

spatial information and semantic information of the feature map.

In the third part, the lateral connection path adjusts the number of

channels in the fusion to perform prediction and regression tasks.

Integrating the information of different scales, the feature pyramid

greatly improves the target detection accuracy of FCOS.

(3) Center confidence degree prediction

As shown in Figure 6, the central confidence degree is a branch

increased in the prediction of each test head. The calculation of

the central confidence is such as formulas (1). The detection box

away from the central point is optimized by the cross entropy loss

function. By combining the boundary box away from the object

with the non-maximum suppression, the detection performance is

significantly improved.

centerness =
√

min(l∗, r∗)

max(l∗, r∗)
× min(t∗, b∗)

max(t∗, b∗)
(1)

where l∗, r∗, and b∗ are the distance from the sampling point to the

four sides of the boundary box.

3.1.2. The improved network structure of the
FCOS

Figure 7 shows the improved network structure of the FCOS

with two major improvements.

(1) Improving the detection precision of the FCOS.

Teleoperation power manipulator detection is a form of large

target detection. Considering that the C5 feature layer has a

limited detection scale range, a dilated encoder (Tian et al., 2020)

FIGURE 7

The improved network structure of the FCOS.
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FIGURE 8

Dilated encoder.

is introduced to enrich the receptive field of the C5 feature layer

by stacking continuous dilated residual units, and P6 is retained

to improve the robustness of large target detection. The dilated

encoder is shown in Figure 8. The first part of the encoder reduces

the number of output channels through a 1 × 1 convolutional

layer and then extracts semantic feature information through a 3

× 3 convolutional layer. The second part enlarges the receptive

field through stacking continuous 3 × 3 dilated residual units with

different dilation rates.

(2) Improving the inference speed of the model. Detecting the

shallow features of small targets has very little effect on large targets

such as teleoperation power manipulators. The shallow feature

maps (P3, P4) are discarded here to improve the detection speed

of the FCOS, and the P7 feature layer is discarded to improve

the real-time performance of the network model. The improved

network only performs the final classification, position regression,

and central confidence interval prediction on the feature maps P5

and P6.

3.1.3. Channel pruning of the FCOS
Channel pruning (Redmon and Farhadi, 2017) is a method that

improves the real-time performance of a model by compressing

the model. Through sparse training on the channel scaling factor,

channel pruning leads to channel sparsification.

Adding a batch normalization (BN) layer (Chen et al., 2021)

after the convolutional layer can achieve rapid convergence and

better generalization performance. The calculation formulas of BN

are as follows:

Ẑ = Zin−µ√
σ 2+ε

Zout = γ Ẑ + β
(2)

where Zin is the input tensor, Zout is the output tensor, µ is the

vector of themean value of the convolution result of each channel, σ

is the vector of the variance of the convolution result, ε is a constant,

γ is the learnable scaling factor in the BN layer, and β represents the

learnable bias coefficient in the BN layer.

In Formula (2), when γ approaches 0, the effect of Zin on

Zout is negligible. Here, γ is used as the scaling factor, and the

parameter γ is penalized to save computational overhead and to

avoid introducing unnecessary parameters.

The steps of channel pruning are as follows: (1) put all image

data samples into the optimal model for sparse training; (2) sort the

FIGURE 9

The loss–epoch curve.

scaling factor γ of each BN layer; (3) prune the convolution layer

corresponding to the scaling factor that has little effect on model

performance; and (4) fine-tune the newmodel obtained by pruning

to improve the detection performance of the network.

3.2. Test of dilated-FCOS

3.2.1. E�ectiveness test of the pre-trained model
Darknet19 is designed for ImageNet (Krizhevsky et al., 2012).

Compared with the ImageNet dataset, the teleoperation power

manipulator dataset is relatively small in size. Therefore, we first

load and pre-train darknet19 on ImageNet to obtain the network

weights to improve the network convergence speed. Two sets

of experiments are set up to verify the effectiveness of the pre-

trained model. Experiment 1 uses random weights to initialize

the network, while Experiment 2 uses pre-trained weights on

ImageNet to initialize the network. Both sets of experiments used

the same learning strategy and optimization method. After 100

iterations, the loss curve was obtained, as shown in Figure 9. The

results show that loading the pre-trained model can accelerate the

model convergence.

3.2.2. Performance test of target detection
FCOS, Faster-RCNN (Ren et al., 2016), and dilated-FCOS were

used for the target detection performance test. In the experiment,

the mean average precision (mAP) (Henderson and Ferrari, 2017)

was used to measure the target detection performance of the model,

and the inference time (ms) was used to measure the inference

speed of the model. The intersection over union (IoU) threshold

was set to 0.5, and a uniform image input size of 640× 640 was used

in all three models. The test results shown in Table 2 indicate that

the dilated-FCOS is superior to the FCOS in both model precision

and inference time.

To further test the robustness of the network, two sets of

experiments were conducted in this study. In the first set, 640

x 640 images with color perturbations were used as inputs,

while in the second set, images with noise interference were fed
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into the network. The partial experimental results, as shown in

Figure 10, demonstrate that the network exhibits excellent anti-

interference ability.

3.2.3. Performance test of channel pruning
The first step of channel pruning is sparse training and

screening out the channel numbers that have little impact on

the output result. It is necessary to set the sparsity coefficient λ.

TABLE 2 Performance comparison of di�erent models.

Model mAP (%) Inference time (ms)

FCOS 93.78 31.59

Faster-RCNN 96.38 63.52

Dilated-FCOS 95.24 23.86

Figure 11 shows the distribution of the scaling factor γ at different

λ values. It can be seen that when λ = 2, γ is sparsified, but the

effect is not obvious; when λ = 5, γ is close to 0, and the effect is

obvious. Since λ = 5 is effective in screening the channel number,

λ = 5 is selected to complete the sparse training.

Table 3 compares the performances of the model on the

teleoperation power manipulator test set under different pruning

rates. The original model has an mAP of 95.24%, a params

of 35.96M, and an inference time of 23.86 s on RTX 2080Ti.

When the pruning rate is set to 0.1, the precision of the

model increases slightly. This indicates that a higher precision

can be achieved with fewer model parameters by removing

the number of redundant channels of the original model.

When the pruning rate is 0.1–0.6, the average precision of

the model generally shows a slow downward trend. When the

pruning rate is 0.6, the precision of the model reaches 92.78%.

When the pruning rate is 0.7, the precision is reduced to

FIGURE 10

Results of network robustness. (A) Increase in brightness. (B) Decrease in brightness. (C) Adding noise.

FIGURE 11

The distribution of γ at di�erent λ values. (A) λ = 2. (B) λ = 5.
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TABLE 3 The results of channel pruning.

Pruning
ratio

mAP (%) Params Compression
ratio

Inference
time
(Ms)

0 95.24 35.96M 1 23.86

0.1 95.58 32.20M 1.11 22.93

0.2 94.46 28.84M 1.24 21.14

0.3 94.12 25.85M 1.39 20.08

0.4 93.79 23.28M 1.54 19.46

0.5 93.51 21.10M 1.70 18.38

0.6 92.78 19.32M 1.86 17.22

0.7 86.79 17.94M 2.00 17.14

FIGURE 12

Di�erent pruning rates of mAP and inference times.

86.79%. These results indicate that channel pruning can maintain

the precision of the model within a certain range and will

damage the precision of the model after exceeding a certain

threshold.

Figure 12 shows the variation trend of the model precision

and inference time on the teleoperation power manipulator

dataset at different pruning rates. The model precision shows

an upwards trend as the pruning rate increases from 0 to 0.1

and a gentle downward trend as the pruning rate increases

from 0.3 to 0.6, while the inference time shows a more obvious

downward trend as the pruning rate increases as the pruning

rate increases, which indicates high model precision and small

inference time delay at this time. When the pruning rate

reaches 0.7, the precision decreases drastically, which indicates

that pruning has severely damaged the precision of the model

and has little effect on the optimization of the inference time.

Therefore, the pruning rate is selected to be 0.5 in this paper

to simultaneously achieve high precision and high inference

speed.

FIGURE 13

The diagram of loss.

FIGURE 14

PCK under di�erent pixel thresholds.

4. Keypoint detection method

SimpleBaseline (Xiao et al., 2018) is a simple and efficient 2D

human keypoint detection network composed of the backbone

network ResNet (Szegedy et al., 2016) and three transposed

convolutions that are responsible for upsampling to restore the

resolution. In this paper, a SimpleBaseline-lite-based keypoint

detection method for teleoperation power manipulators is

established through two main steps: replacing ResNet with

a lightweight backbone network to improve the real-time

performance of the model; compressing the channels of transposed

convolutions to improve the inference speed of the model.

4.1. Setting of model training parameters

In this test, the PyTorch framework is used for model training,

and the number of iterations is 140 epochs. The warmup strategy is

used to improve the convergence speed of the model. The learning

rate increases as the number of iterations increases and reaches the

initial learning rate. The initial learning rate of the optimizer Adam

is set to 0.001, and when the number of iterations reach 50 epochs,

its learning rate decreases by 10-fold. The loss function is shown in

Figure 13. The model can complete the convergence in 70 epochs.
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FIGURE 15

Visualization of prediction results on test sets. (A) Viewing angle 1. (B) Viewing angle 2.

In this paper, the Percentage of Correct key points (PCK) (Xiao

et al., 2018) is used to analyse the detection performance of the

SimpleBaseline network. PCK is the percentage of the predicted key

points with a normalized distance from the ground truth that falls

within the set threshold. PCK is calculated using formula (3).

PCK=

∑
i δ

(√
(xi−x̂i)+(yi−ŷi),ε

)

∑
i 1

δ (a, ε) =
{
1,a≤ε
0,a≻ε

(3)

where (xi, yi) are the 2D coordinates of a keypoint, (x̂i, ŷi) are the

2D coordinates of the keypoint predicted by the network, and ε is

the pixel threshold.

Figure 14 shows the PCK of the 2D key points of the

teleoperation power manipulator under different pixel thresholds.

The experimental results show that the PCK reaches 91.5% under

the pixel threshold of 40. Figure 15 shows the distribution of the

key points predicted by the network, which indicates that the

SimpleBaseline network has a good detection effect on the key

points of the teleoperation power manipulator.

4.2. Test and selection of lightweight
convolutional networks

The lightweight feature networks MobileNetv1 (Howard et al.,

2017), MobileNetv2 (Liu et al., 2018), MobileNetv3 (Howard et al.,

2020), and ShuffleNetv2 (Ma et al., 2018) are used to replace

ResNet50 as the feature extraction network and are tested on the

teleoperation power manipulator dataset. The results are shown in

Figure 16.

Figure 16 shows that among the four types of lightweight

networks, the sparsity coefficient λ of MobileNetv2 and that

of MobileNetv3 have a relatively large decrease. Based on

FIGURE 16

The PCK of di�erent lightweight networks under di�erent pixel

thresholds.

the analysis of the network structure, MobileNetv2 has many

depthwise separable convolutions compared withMobileNetv1 and

introduces an inverted residual structure to solve the problem of

the deactivation of depthwise separable convolutions. However,

compared with the traditional convolution, the depthwise separable

convolution extracts less effective feature information, resulting in

the lack of spatial localization information and affecting the model

precision.

The detection of the 2D key points of teleoperation power

manipulators requires the contextual information of the feature

map, which requires rich spatial information. For low-dimensional

feature maps, the greater the number of channels is, the more

abundant the spatial information. Resnet50, MobileNetv1, and

ShuffleNetv2 have many channels in the low-dimensional network

layer and can achieve good results in the detection of key points of

teleoperation power manipulators.
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Table 4 shows the test performances of different feature

extraction networks. The input image size for both training and

testing is 800 × 160. The params of MobileNetv1-SimpleBaseline

is only 27% of the original value, the computational complexity

is reduced to 55% of the original value, and the inference

time is reduced to 56% of the original value. In summary,

the MobileNetv1-SimpleBaseline network is selected in this

paper.

4.3. Pose distillation

The upsampling module of SimpleBaseline is composed of

three transposed convolutions with 256 channels. As the resolution

of the upsampling feature map increases, the computational

overheads of the transposed convolutions also increase. Compared

with ResNet50, MobileNetv1 has an inferior feature extraction

performance and sparser input features of the transposed

convolutions. Keeping the number of channels in MobileNetv1 the

same as that in ResNet may cause model redundancy and reduce

the inference speed.

In this paper, the model is optimized by compressing the

number of channels in the transposed convolutional layer. The

number of channels of the three transposed convolutions is set to

64 n, 32 n, and 16 n, respectively, i.e., 384, 192, and 96 (n is the

number of key points, which is set to 6). After compressing the

number of channels, the computational complexity is reduced to

1/3 of the original value, and the params is reduced to 2/3 of the

original value.

Table 5 compares the performance of the MobileNetv1-

SimpleBaseline after compression of the number of channels

(SimpleBaseline-a) with the performance of the uncompressed

network. After channel compression, the model redundancy

is reduced, and the parameters and computational complexity

are greatly reduced. Although the computational overhead is

greatly reduced, and the detection time is only 64% of that

of the original model, the detection precision has reached

94% of that of the original model. This result shows that

there are still redundant parameters in the upsampling

module of SimpleBaseline-a. Based on this network, a model

with higher precision is designed through pose distillation in

this paper.

Pose distillation transfers the knowledge learned by a large

network with good performance to a small network that

is isomorphic or anti-isomorphic to the large network and

compresses the model without significantly reducing the precision

of the model (Hinton et al., 2014). The training process can be

divided into two stages: training a powerful keypoint detection

network as a teacher network and training a lightweight student

model that simultaneously has high precision and high speed. The

teacher model guides the student network to acquire high-level

semantic information and strengthens the learning of the overall

feature and spatial information by the student model.

Here, MobileNetv1-SimpleBaseline is selected as the teacher

model, and SimpleBaseline-a is selected as the student model. The

experiment is based on the PyTorch 1.5.1-GPU framework, the

experimental operating system is Ubuntu 18.04, and the CUDA

version is 10.2. The resolution of the network input image is 800

× 160, the initial learning rate is set to 0.001, the Adam optimizer is

used, the batch size is set to 16, the momentum is set to 0.9, and the

number of iterations is set to 140. The results are shown in Table 6.

Table 6 shows that the model precision of the student model

after pose distillation was improved by 2%, but the parameters,

computational complexity, and inference speed did not change.

The results show that pose distillation can improve the detection

precision of the key points of the teleoperation power manipulator.

The effectiveness of pose distillation is further illustrated by

the visualized images in this paragraph. Figure 17 shows the

predictions of the original student model (SimpleBaseline-a) and

the student model after pose distillation (SimpleBaseline-lite)

and the labeled visualized images. Occlusion and self-occlusion

will inevitably occur in the teleoperation power manipulator

(Figure 17A). Some occluded key points reduced the ability of the

student model to extract spatial feature information, so the student

model cannot fully learn the knowledge between channels of the

feature map and the knowledge between the feature maps, resulting

in a large deviation between the prediction result and the labels,

which is the main reason for the decrease in detection precision.

After the “tutoring” by the teacher model, as shown in Figure 17B,

TABLE 4 The performance of the lightweight SimpleBaseline in the test set.

Feature extraction network Parameter Computational complexity
(GFLOPs)

Inference time (ms) PCK@40 pixel(%)

ShuffleNetv2 7.54M 12.97 22.73 90.3

MobileNetv1 9.50M 14.07 18.17 90.9

MobileNetv2 9.56M 13.92 21.2 83.4

MobileNetv3 5.57M 11.37 23.93 81.1

Resnet50 33.99M 25.18 30.21 91.5

TABLE 5 Comparison of the performances of SimpleBaseline-a and mobileNetv1-SimpleBaseline.

Network Parameter Computational complexity (GFLOPs) Inference time (ms) PCK@40pixel(%)

SimpleBaseline-a 8.75M 6.49 14.73 87.4

MobileNetv1-SimpleBaseline 9.50M 14.07 18.17 90.9
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TABLE 6 Comparison of model performance after distillation.

Network Parameter Computational complexity (GFLOPs) Inference time (ms) PCK@40pixel(%)

SimpleBaseline-lite 8.75M 6.49 14.78 89.4

SimpleBaseline-a 8.75M 6.49 14.73 87.4

MobileNetv1-SimpleBaseline 9.50M 14.07 18.17 90.9

FIGURE 17

Visualization of model prediction results. (A) Before the “tutoring” by the teacher model. (B) After the “tutoring” by the teacher model.

the student model has an enhanced ability to extract difficult-to-

extract feature information because the teacher model can give the

studentmodel extra supervision due to its excellent ability to extract

global spatial information. Pose distillation has improved the ability

of the student model to detect the key points of the teleoperation

power manipulator.

5. Experiment

In this section, we selected 10 arbitrary pose images

of the teleoperation power manipulator during its operation.

Simultaneously, we recorded the readings from the demonstrator of

the teleoperation power manipulator. These demonstrator readings

serve as the true values for our measurements. Our measurement

objectives encompass seven evaluation objects: the translational

distance along the x-axis, the translational distance along the y-

axis, the translational distance of the shoulder, the rotation angle

of the upper arm, the rotation angle of the forearm, the rotation

angle of the wrist, and the translational distance of the wrist.

To assess the accuracy of our measurements, we utilized the

errors associated with each evaluation object in every image as

our evaluation indicators. In Experiment 1, the improved dilated-

FCOS and SimpleBaseline-lite were used for pose estimation of the

teleoperation power manipulator. In Experiment 2, the FCOS and

SimpleBaseline were used to initialize the network with training

weights through the same optimization method.

TABLE 7 Teleoperation power manipulator pose estimation experiment.

Error Model

Dilated-FCOS +
SimpleBaseline-lite

FCOS +
SimpleBaseline

Translational

distance along the

x-axis/cm

6.27 6.36

Translational

distance along the

y-axis/cm

6.31 6.25

Translational

distance of the

shoulder/cm

4.32 4.34

Rotation angle of

the upper arm/◦
0.63 0.67

Rotation angle of

the forearm/◦
0.53 0.52

Rotation angle of

the wrist/◦
0.56 0.52

Translational

distance of the

wrist/cm

4.31 4.35

The pose estimation performances of different algorithms are

shown in Table 7. The improved dilated-FCOS + SimpleBaseline-

lite algorithm is superior to the FCOS + SimpleBaseline algorithm

in some tasks, such as translation along the x-axis, translation of the
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shoulder, the rotation angle of the upper arm, and translation of

the wrist, because the improved dilated-FCOS achieves the stable

detection of the position of the teleoperation power manipulator

by introducing a dilated encoder based on the characteristics

of the teleoperation power manipulator and thus lays a good

foundation for the subsequent pose estimation task. Other tasks

show no significant differences between the two algorithms, which

indicates that model weight reduction and pose distillation of

SimpleBaseline have not significantly affected the model precision.

However, in terms of computational speed, the average frame rate

of the improved dilated-FCOS + SimpleBaseline-lite algorithm

reaches 5.8 fps, while that of the original FCOS + SimpleBaseline-

lite algorithm reaches ∼4.3 fps, which is 74% of that of the

former. The results show that the pose estimation algorithm

proposed in this paper has better performance in the teleoperation

power manipulator pose estimation task than the FCOS +
SimpleBaseline algorithm.

6. Conclusion

In this paper, the camera-based methods for target detection

and pose estimation of teleoperation power manipulator is studied.

The dilated-FCOS algorithm is proposed based on the FCOS

algorithm and the scale of the teleoperation power manipulator.

The shallow feature maps (P3, P4) of FCOS are discarded

here to improve the detection speed of the FCOS, and the

P7 feature layer of FCOS is discarded to improve the real-

time performance of the network model. Model pruning is

used to improve the real-time performance of the dilated-FCOS

teleoperation power manipulator target detection model. To

improve the detection speed for the key points of the teleoperation

power manipulator, MobileNetv1 was selected as the backbone

network based on the study of the SimpleBaseline algorithm

and the comparison between keypoint detection precision and

model inference speed of different lightweight backbone networks.

To further optimize the inference speed of the model, the

upsampling module was subjected to channel compression and

pose distillation.

Our future work is as follows:

(1) The paper employs a motion capture system that relies

on hand-eye calibration and an extrinsic calibration method for

industrial cameras to track the movement of a teleoperation power

manipulator. However, it is important to note that the current

motion capture system may not be easily applicable in general

scenarios. As a suggestion for future research, it would be beneficial

to explore calibration methods that provide better generality and

higher accuracy, addressing the limitations of the current approach.

(2) Model training is a critical aspect of supervised deep

learning, where the quantity of training samples plays a

significant role. However, in regular practice, the amount of

available data is often limited. To address this limitation,

future work can explore the utilization of simulation data

from various scenarios to enhance the generalization ability of

the model.
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