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Significant e�orts have been made in the past decade to humanize both the form

and function of social robots to increase their acceptance among humans. To this

end, social robots have recently been combined with brain-computer interface

(BCI) systems in an attempt to give theman understanding of humanmental states,

particularly emotions. However, emotion recognition using BCIs poses several

challenges, such as subjectivity of emotions, contextual dependency, and a lack

of reliable neuro-metrics for real-time processing of emotions. Furthermore, the

use of BCI systems introduces its own set of limitations, such as the bias-variance

trade-o�, dimensionality, and noise in the input data space. In this study, we

sought to address some of these challenges by detecting human emotional

states from EEG brain activity during human-robot interaction (HRI). EEG signals

were collected from 10 participants who interacted with a Pepper robot that

demonstrated either a positive or negative personality. Using emotion valence and

arousal measures derived from frontal brain asymmetry (FBA), several machine

learning models were trained to classify human’s mental states in response to the

robot personality. To improve classification accuracy, all proposed classifiers were

subjected to a Global Optimization Model (GOM) based on feature selection and

hyperparameter optimization techniques. The results showed that it is possible to

classify a user’s emotional responses to the robot’s behavior from the EEG signals

with an accuracy of up to 92%. The outcome of the current study contributes to

the first level of the Theory of Mind (ToM) in Human-Robot Interaction, enabling

robots to comprehend users’ emotional responses and attribute mental states to

them. Our work advances the field of social and assistive robotics by paving the

way for the development of more empathetic and responsive HRI in the future.
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1. Introduction

Several efforts have been undertaken in the last decade to humanize the physical

appearance of robotic devices to improve their acceptance among human users.

Anthropomorphic robots, in particular, have gained popularity due to their humanlike

attributes that facilitate social interaction with humans (Ziemke, 2020). Humanoid robots

are often perceived as autonomous agents due to their ability to interact with the

environment and display social behavior through verbal and non-verbal channels (Banks,

2020).
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However, in order to make robotic devices more relatable

to human users, it is necessary to also humanize their behavior.

Studies in the field of Socially Assistive Robotics (SAR) have

demonstrated that personalizing robot behavior based on the

context and user needs would improve its explainability and

acceptance by the users (Benedictis et al., 2023). In this regard, the

typical approaches for development of humanlike robot behavior

are generally inspired by the reproduction of human-human

interaction mechanisms (Wallkötter et al., 2021) both at the

physical and cognitive levels.

In addition to physical engagement, a special emphasis has been

placed in recent years on the cognitive and emotional components

of the interaction. It is well-argued in the psychological literature

that a person’s emotional and/or cognitive states play a significant

role in relationships and therefore such mental states must also

be considered in social and assistive robotics (SAR) to permit the

robot to adapt its behavior accordingly (Iengo et al., 2012). If social

robots can comprehend a person’s mental state, the field of Human-

Robot Interaction (HRI) might reach a new dimension, creating

the groundwork for the development of a Theory of Mind (ToM)

(Premack andWoodruff, 1978). Equipping robots with this level of

cognitive capability may also improve interlocutor engagement in

complex social interactions (Staffa and Rossi, 2016).

This skill, either alone or in conjunction with other affective

and cognitive capacities, should result in more humanized robotic

behavior capable of achievingmutual understanding (MU) between

people and robots. To achieve MU, two approaches are necessary;

on the one hand, the robots should be able to demonstrate

more readable and transparent behavior that would increase

interpretability and anticipation by the human users (Wallkötter

et al., 2021), and on the other hand, the robots should be

equipped with high-level cognitive skills to interpret the human

partner’s global states (needs, intentions, emotional states) and

react to them accordingly. Specifically, the robot’s emotional system

must be built both in terms of affective elicitation and sensing

(Wilson et al., 2016). This can be accomplished by creating robots

capable of eliciting emotions through humanized social actions

and interpreting human emotions in the same way that a human

partner would.

On this topic, a recent survey by Ahmed et al. (2023)

exhaustively reviewed the state-of-the-art progress and related

works on emotion recognition. The authors indicated that the

most used technologies to acquire data from the human user

were physiological sensors such as electroencephalogram (EEG),

electromyography (EMG), electrodermal activity (EDA), and other

smart wearables and mounted emotion recognition tools such as

HMDs (Head Mounted Displays). They also discussed different

emotion classification methods including machine learning (ML)

or deep learning (DL) algorithms for obtaining better recognition

accuracy. It was concluded that deep learning models give better

detection accuracy thanmachine learningmodels.When compared

on the same EEG dataset (DEAP; Koelstra et al., 2011), among

the machine learning models, SVM was the best machine learning

model with the highest detection accuracy of 91.3%, and for deep

learning, the best model was the combination of three deep learning

algorithms (CNN, RNN, AE) reaching 95% accuracy.

However, it is recently argued that for better detection of

users’ affective states during HRI, the systems should be trained

and validated using neurophysiological data that was collected in

HRI settings (Alimardani and Hiraki, 2020). This is in contrast to

the majority of existing emotion classification approaches in the

literature, which use affective stimuli that users view (e.g., images

or videos) and collect data in the absence of a robot. Therefore,

research in neurorobotics can investigate humans’ neural responses

to HRI and establish a deeper understanding of the user’s internal

states, such as emotions, by employing robots as tools to study and

replicate past neuroscientific evidence.

To this end, social robots have recently been integrated with

the development of brain-computer interface (BCI) systems to

manage a more ecologically valid measurement and analysis of

human brain waves specifically for HRI application. While EEG

devices have been previously used in the robotics field for robot’s

motor control (Alimardani et al., 2013; Staffa et al., 2019), very few

approaches exist for the classification of a human’s internal state

during human-robot interaction (Alimardani and Hiraki, 2020;

Staffa and Rossi, 2022; Staffa and D’Errico, 2023). For instance,

Ogino and Mitsukura (2018) used a machine learning algorithm

to identify user emotions from EEG signals when interacting

with a robot. Another study Toichoa Eyam et al. (2021) used an

EEG-based emotion sensing system to control a robot to perform

different actions based on the user’s emotions and showed that such

an approach can improve human-robot interaction.

In general, studies on the use of EEG in robotic applications

have demonstrated the feasibility and potential of this technology

with different user groups including children (Alimardani et al.,

2021). However, there are still technical challenges to overcome,

such as noise reduction in EEG signals, appropriate feature

selection, and the complexity of the machine learning algorithms

used for emotion recognition. Therefore, this work pursued

two goals. First, we aimed to validate neuroscience theories

that suggest particular relationships between alpha and beta

waves in specific areas of the brain as a metric of a person’s

emotions during HRI. Particularly, we were interested in evaluating

whether a different personality (positive or negative) of the

robot could induce a different mental state in the users

who interacted with it. This would pave the way for a first

attempt to model ToM in HRI using neural activity, allowing

the robot to understand users by attributing mental states

to them.

Second, we were interested in tackling the commonly faced

issues in the classification of EEG signals, such as the bias-

variance trade-off, dimensionality, and noise in the input data

space. The latter, in particular, may significantly impair the

predictive power of the classifiers in real-time and out-of-the-

lab settings. While there are several machine or deep learning

models that can address some of the issues listed above,

combining them could significantly improve the performance of

the algorithms. As a result, in this paper, we propose a GOM

based on a combination of feature selection and hyperparameter

optimization techniques that can improve the overall accuracy

of various machine learning and deep learning models on

EEG signals.
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2. Background

2.1. Frontal brain asymmetry (FBA)

In Russel’s circumplex model of affect (Russell, 1980)

emotions are presented in a 2-dimensional valence-arousal

space (VAS). Thus, any emotion can be described using an

unpleasantness/pleasantness dimension (valence) and a high

arousal/low arousal dimension (activation). Related to this, Frontal

Brain Asymmetry (FBA), the asymmetry between the left and

right brain hemispheres, forms the most prominent expression of

emotion in brain signals and has been identified by neuroscience

literature as a marker of emotional processing and regulation

(Wheeler et al., 1993). FBA suggests that asymmetry in the

distribution of neural activity between the brain hemispheres in

the frontal region is associated with the valence and arousal of the

emotional states (Davidson et al., 1990). By this theory, the frontal

area of the brain exhibits differential lateralization and is organized

around approach-withdrawal tendencies (the experience of positive

affect facilitates approach behaviors and the experience of negative

affect triggers withdrawl) (Davidson et al., 1990). In contrast to the

right frontal region, which is involved in the experience of negative

emotions (lower valence values), such as fear or disgust, the left

frontal area is involved in the experience of positive emotions (high

values of valence), such as joy or happiness (Davidson et al., 1990;

Lewis et al., 2007). Therefore, this metric can be useful in various

HRI contexts, such as evaluating the effectiveness of therapeutic

interventions with assistive robots (Alimardani et al., 2020).

Initially, Davidson et al. (1990) used the asymmetry indexDI =

(L − R)/(L + R), where L and R were the power of a specific

frequency band in the left and right hemispheres, respectively.

Later, the asymmetry concept was extended integrating multiple

frequency bands involved in emotional processing: For instance,

FBA can be calculated by subtracting the power of EEG signals

in the α (8–13 Hz) and β (13–30 Hz) frequency bands extracted

from the electrodes placed on the left and right frontal hemispheres

(Mühl et al., 2014; Al-Nafjan et al., 2017; Menon et al., 2018; Zhao

et al., 2018). The electrodes that are often used to acquire FBA are

typically F3, F7, or AF7 from the left hemisphere and F4, F8, or

AF8 from the right hemisphere according to the International 10-

20 EEG positioning system (see Figure 1). Below, we show four

equations adapted from Al-Nafjan et al. (2017) that are used for

computation of emotional valence (Equations 1, 3, 5, 7) and arousal

(Equations 2, 4, 6, 8) from EEG signals. Here, αF7, αF8, βF7, and βF8

indicate the alpha and beta band powers measured from F7 and F8

channels.

v1 =
αF8

βF8
−

αF7

βF7
(1)

a1 =
αF7 + αF8

βF7 + βF8
(2)

v2 = ln(αF7)− ln(αF8) (3)

a2 = −(ln(αF7)+ ln(αF8)) (4)

v3 =
βF7

αF7
−

βF8

αF8
(5)

a3 = log2

(

βF7 + βF8

αF7 + αF8

)

(6)

v4 = αF8 − αF7 (7)

a4 =
βF7 + βF8

αF7 + αF8
(8)

2.2. Emotion classifiers

Over the last decade of research on emotion recognition

using physiological signals, researchers have deployed numerous

methods of classifiers to assess the different types of emotional

states, stress levels, and engagement levels. In a review of

EEG-based emotion recognition approaches (Suhaimi et al.,

2020), the authors point out that Support Vector Machine

(SVM) and K-Nearest Neighbor (KNN) are among the most

popular methods for emotion classification, with the highest

achieved performance being 97.33% (SVM) and 98.37% (KNN).

However, there were also other algorithms used for emotion

classification that performed equally well, such as Random Forests

(RF) (98.20%), Dynamic Graph Convolutional Neural Network

(DGCNN) (90.40%), Fisherface (91.00%), and Long-Short Term

Memory (LSTM) (92.23%).

The aforementioned findings highlight the best models

for emotion recognition tasks, but they do not accurately

reflect the overall agreement between task-specific EEG features

because some algorithms performed best in the generalized

arousal and/or valence dimensions, while others relied on highly

specific emotional markers. Comparing the actual classification

effectiveness of all the various classifiers is so difficult. We decide

to optimize and compare various classifiers for the same task

using a global optimization technique, concentrating on the top-

rated algorithms. The classifiers selected in this study were: SVM

with four different kernels (Linear, Polynomial, RBF, and Sigmoid),

KNN,Decision Tree (DT), RF, andMulti-Layer perceptrons (MLP).

These models have previously shown excellent results in stress

and emotion classification from EEG signals (Khosrowabadi et al.,

2011; Wu et al., 2017; Al shargie et al., 2018; Nishtha et al., 2022;

Rajendran et al., 2022).

2.3. Models optimization

In machine learning, hyper-parameter optimization (Feurer

and Hutter, 2019) is the process of choosing the best values

for parameters that control the learning process, which can vary

depending on the type of machine learning model used. The goal is

to find the optimal combination of hyper-parameter that minimize

a loss function on independent data (Claesen and De Moor,

2015), often estimated using cross-validation (Bergstra and Bengio,

2012). There are two common basic methods for hyper-parameter

optimization (Bergstra et al., 2011):

• Grid Search: the traditional hyper-parameter optimization

is the grid search, which involves exhaustively searching

a manually specified subset of a learning algorithm’s

hyper-parameters. Performance is evaluated through cross-

validation or evaluation on a validation set. If necessary, limits

and discretization must be set manually prior to grid search;
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• Random Search: random search replaces exhaustive

enumeration with random selection of combinations. It

can be applied to discrete, continuous and mixed spaces, and

can outperform grid search in cases where only a limited

number of hyper-parameters impact the final performance

of the machine learning algorithm. The optimization

problem is said to have low intrinsic dimensionality in such

cases. Random search is easily parallelizable and allows for

incorporation of prior knowledge by specifying the sampling

distribution. Despite its simplicity, random search remains

a significant baseline method for comparing performance of

new hyper-parameter optimization methods.

In this work, we used the grid search method for optimizing

SVM, DT, KNN and RF models while, due to its huge dimension

in the research space, for the MLP model a kind of random

search known as hyperband from Keras has been chosen. The

implementation of the methods mentioned above has been

performed using the Python library Scikit-learn which offers two

different generic algorithms for this purpose: GridSearchCV, for

exhaustive parameters combination and RandomSearchCV, for

sampling a fewer number of parameters in a parametric space with

a specified distribution. Considering the computational resources

available and the accuracy of the method, the GridSearchCV

algorithm has been selected. Note that it integrates within it a

cross-validation process known as LeaveOneGroupOut.

3. Experimental procedure

3.1. Participants

A sample of 10 Italian native-speaker (7 males and 3 females

with ages ranging from 20 to 42) participated in the experiment.

Upon arrival, participants signed an informed consent in which the

complete procedure was detailed.

3.2. EEG recording

EEG signals were gathered by the Emotiv EPOC+ headset,

which is a non-invasive 14-channels (AF3, AF4, F3, F4, FC5, FC6,

F7, F8, T7, T8, P7, P8, O1, O2) EEG device characterized by

lightweight and wireless connection with a sampling rate of 128 Hz.

In this study, we use all the 14 channels of the headset, but only

channels F7 and F8 were used for computing valence and arousal

metrics as shown by red circles in Figure 1.

3.3. Conditions

In the proposed study, we used a humanoid robot Pepper

endowed with two opposite personalities (positive and negative)

to induce different levels of emotional states in participants. All

participants experienced both conditions in a within-subjects study

design.

Due to the constraints of the Pepper robot, which does not

allow facial expressions, we implemented the robot’s personalities

by modeling voice, dialogues, head, and bodily movements (see

Table 1). Specifically, we used brief non-linguistic vocalizations,

such as laughter and short intake of surprise breath for positive

personality, and negative “oh” and repeated long intakes of sudden

breath for negative personality. The advantage to use non-linguistic

utterances is that they are universally associable with different

emotional meanings regardless of language and culture (Read and

Belpaeme, 2012), thus can be used in different experimental settings

without the need to customize the robot voice characteristics.

The dialogue was set up as a simple conversation that one can

have in the morning with a colleague or a friend, characterized by

an initial greeting and questions on how one feels, the plans for the

day, etc. The dialogue of the positive robot was enriched with some

forms of humor to elicit positive and engaging reactions (Niculescu

et al., 2013), while the negative robot’s dialogue was characterized

by fewer interactions, no humor, and longer pauses.

The head and bodily movements of the robot were designed

following Coulson’s (Coulson, 2004) and Kleinsmith’s (Kleinsmith

and Bianchi-Berthouze, 2013) works where it was shown

that specific features such as postures or gestures and their

relative dynamics (e.g., speed and amplitude) could communicate

particular emotions. Therefore, an upright posture with large and

fast movements as well as green-colored eyes was implemented

to communicate a positive personality of the robot, whereas,

for a negative personality, the robot presented a forward-leaning

posture, red-colored eyes, and less energetic and smaller gestures.

3.4. Procedure

Following instructions and the acquisition of consent, the

experimenter placed the EEG headset on the participants’ heads

and checked the signal quality. Participants were then seated in

front of a Pepper robot (Figure 2) and interacted with it under

two experimental conditions that entailed two different robot

personalities. The robot showed different arm gestures, voice, and

posture according to Table 2 to induce either a positive or negative

emotional state in the human partner. The order of conditions was

randomized and each scenario lasted about 10 min. The timing of

the administration was regulated by internal timers that were set

empirically. Therefore, if the participant did not interact after a

while, the session continued when those internal timers expired.

The EEG signals collected in each HRI scenario were labeled

according to the robot’s personality; label 0 for data from the

interaction with the negative robot and label 1 for data collected

during the interaction with the positive robot. EEG Features were

then extracted from the signals and used to train the emotion

classification models in a supervised learning manner.

4. Data analysis

The data collected by experimental sessions is composed of

2,048 records (balanced) for each of the 10 experimental subjects,

yielding a total of 20,480 entries. The data, in its original form,

consists of vectors of 148 floating point features and is classified

according to two possible classes (positive, negative).
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FIGURE 1

(A) Emotiv EPOC+ headset was used for recording of brain activity, (B) the EEG signals were collected form 14 electrode sites (shown with green)

according to the 10-20 system. The two electrodes with red circles were used for computation of Frontal Brain Asymmetry. The images are taken

from the documentation of the Emotiv EPOC+ helmet available at https://www.emotiv.com.

TABLE 1 Design of the robot personalities using vocalization and bodily movements.

Robot behavior

Voice and dialogue Head and eyes Body

R
o
b
o
t
p
er
so
n
al
it
y Positive Laughter vocalization

and short intake of

surprise breath

Straight head

with green-colored

eyes

Upright posture,

vertical and lateral extension

with large and fast movements

Negative Negative “oh” and

long intake of sudden

breath

Forward head bend

with red-colored eyes

Forwards-leaning posture,

arms at side of trunk,

less energetic and

smaller gestures

4.1. Signal pre-processing

The training of a BCI system is normally preceded by a phase

of signal pre-processing where noise and movement artifacts are

removed from the signals before a feature vector corresponding

to the classification problem is constructed. To remove the noise,

we applied a Butterworth bandpass filter with cutoff frequencies

at 0.16 and 43Hz, which is the recommended bandwidth range for

the Emotiv EPOC+ headset (Badcock et al., 2013). Additionally, we

applied an IIR filter to remove the DC Offset in the signals.

4.2. Feature extraction

Feature extraction was performed on all 14 channels recorded

by the EEG headset. First, a band-pass filter was applied to the

signals to decompose them into the following 5 frequency bands:

σ (0.54Hz), θ (48Hz), α (814Hz), β (1430Hz), and γ (3040Hz).

This resulted in 70 decomposed signals per window, 5 for each

of the 14 channels of the headset. Next, a periodigram function

was applied to the decomposed signals to calculate the power

spectral density (PSD). Therefore, each signal was converted into

the relative power distribution on the frequency axis, from which

statistical information such as mean and standard deviation were

extracted. This procedure was repeated for all five frequency bands,

yielding a total of 140 features. All the channels were used to

extract frequency band features. On these frequency bands mean

and standard deviation of the PSD have been computed obtaining

a total amount of 140 features plus the 8 features obtained by

computing valence and arousal on alpha and beta frequency

bands Finally, the 8 features described in Section 2 (v1 to v4 for

valence characteristics and a1 to a4 for arousal characteristics) were
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FIGURE 2

An overview of the experimental setup: the participant was seated in

front of a Pepper robot, while wearing the Emotiv EPOC+ headset

for EEG recording.

extracted and added to the feature vector. To summarize, each EEG

record was transformed into a feature vector including 148 features.

4.3. Feature normalization

EEG spectral features can have a wide range of values due

to individual differences, channel locations, and frequency ranges.

Therefore, feature normalization can help to reduce the impact of

outliers and make the data more suitable for the ML algorithms.

Min-max normalization is a common technique used to scale data

to a specific range, often between 0 and 1 or between −1 and 1.

This technique is useful to maintain the original scale of the data

that is uniformly distributed. The normalization of the features in

the range of [0, 1] was performed by applying the following formula

to each of the 148 features.

x′ =
x−min(x)

max(x)−min(x)
(9)

This normalization process inevitably involves information

loss due to the difference in power values measured among

different channels and frequency bands. This loss of

information is partially recovered by the eight valence and

arousal features, which describe the asymmetry between

the α and β band powers in the right and left frontal

hemispheres.

Following visualization of the normalized features, it was

observed that excessively high values of some features flattened

the distribution of normalized data toward zero. To reduce the

impact of such outlier features, the following rule was applied:

the value of 5% of the highest measurements was replaced by the

maximum value of the remaining 95% of the measurements for

each feature.

5. Global Optimization Model (GOM)

To improve emotion classification performance fromEEG data,

we adopted a GOMwhich is a classification approach characterized

by a process that combines feature selection and hyperparameter

optimization techniques (Boubezoul and Paris, 2012; Ren et al.,

2016). We considered 8 models for classification: Support Vector

Machines (SVM) with 4 different kernels (i.e., linear, poly,

RBF, sigmoid), Decision Tree (DT), K-Nearest Neighbors (KNN),

Random Forests (RF), and Multi-Layer Perceptrons (MLP). Below,

the grid of possible values for each hyperparameter of each model

is reported:

• SVM-linear: (’kernel’: [’linear’]; ’C’: [0.1, 1, 10]; ’tol’: [1e-4,

1e-3, 1e-2]; ’shrinking’: [True, False])

• SVM-poly: (’kernel’: [’poly’]; ’C’: [0.1, 1, 10]; ’degree’: [2,3,4];

’gamma’: [’scale’, ’auto’]; ’tol’: [1e-4, 1e-3, 1e-2]; ’shrinking’:

[True, False])

• SVM-rbf: (’kernel’: [’rbf ’]; ’C’: [0.1, 1, 10]; ’gamma’: [’scale’,

’auto’]; ’tol’: [1e-4, 1e-3, 1e-2]; ’shrinking’: [True, False])

• SVM-sigmoid: (’kernel’: [’sigmoid’]; ’penalty’: [’11’, ’12’]; ’loss’:

[’hinge’, ’squared_hinge’]; ’tol’: [1e-4, 1e-3, 1e-2]; ’max_iter’:

[1000, 2000])

• DT: (’criterion’: [’entropy’]; ’splitter’: [’best’, ’random’];

’max_depth’: [3, 6, 9, 12, 15, None]; ’min_samples_split’: [2, 3,

4, 5]; ’min_samples_leaf ’: [1, 2, 3, 4]; ’max_features’: [’auto’,

’sqrt’, ’log2’, None]; ’ccp_alpha’: [0.0, 0.010, 0.020, 0.030])

• RF: (’criterion’: [’entropy’]; ’max_depth’: [3, None];

’min_samples_split’: [2]; ’min_samples_leaf ’: [1];

’n_estimators’: [50, 100, 200]; ’bootstrap’: [True, False];

’oob_score’: [True, False]; ’warm_start’: [True, False];

’ccp_alpha’: [0.0])

• KNN: (’n_neighbors’: [5, 10, 20]; ’weights’: [’uniform’,

’distance’]; ’algorithm’: [’auto’, ’ball_tree’, ’kd_tree’, ’brute’];

’leaf_size’: [30, 60, 120]; ’p’: [1,2,3])

• MLP: (’n_layers’: [1, 2, 4, 5]; ’n_dense_values’: [’min’=32,

’max’=1024, ’step’=8]; ’drop_out_values’: [’min’=0, ’max’=0.9,

’step’=0.1]; ’optimizer’: [’adam’, ’adamax’]; ’output_activation’:

[’softmax’, ’sigmoid’]).

5.1. Feature selection

Univariate feature selection (i.e., the selection of the best

features based on univariate statistical tests) was used as a

technique to perform feature selection for global optimization.

The SelectPercentile function from Scikit-learn library was chosen

to implement this method. This function selects a user-specified

percentage of features that reach a high F-value in ANOVA tests.

In this work, feature selection was executed as a function of the

percentile variable in the range [5, 100] with steps of 5.

5.2. Hyperparameter optimization

Models were validated using leave-one-subject-out cross-

validation (LOOCV), in which the model is trained on all but one
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subject and tested on the subject left out. This process is repeated

for every subject in the dataset. LOOCV is a special form of CV

where the value of k is equal to the number of samples in the dataset.

This process is repeated for each proposed classification model

to select the best subset of features an optimal combination of

hyperparameters. As a result, 1600 cross-validations (10 subjects×

8 models × 20 percentiles) were performed to determine which of

the optimized models, differentiated by type and subset of features,

was globally the best at solving the emotion classification problem

at hand.

The global optimization algorithm (see Algorithm 1) iterates on

each of the basic models, while optimizing the model performance

by obtaining a subset of the best features and tuning the model

hyperparameters to that feature subset. Subsequently, models are

evaluated by cross-validation, splitting each dataset into subsets

relating to different experimental subjects. This process is repeated

for each classification model proposed so that the best subset of

features, and optimal combination of hyperparameters are chosen

for different types of models.

start

test iteration = 10

models = (SVM Linear, SVM Poly, SVM RBF, SVM

sigmoid, Decision Tree, Random Forest, KNN, MLP)

for model in models do

for percentile in range(min=5, max=100, step=5)

do

transf dataset = feature selection(dataset,

labels, percentile)

best params = HP optimization(model, transf

dataset, labels)

optimized model = build model(best params)

for iteration in range(test iteration) do

metrics = cross validation(optimized model,

transf dataset, labels)

save(metrics)

end for

end for

end for

generate plots and tables

end

Algorithm 1. Pseudo-code.

6. Results

To evaluate the performance of the proposed approach, we

computed the average metrics of accuracy, precision, recall, and F-

score from all models. Additionally, the prediction time is reported

to indicate the computational cost of the classification task for each

optimized model.

6.1. Model performance

Table 2 provides a summary of the highest performance

obtained by each of the 8 classifiers after optimization. The first

column shows the percentile of the feature vector with which the

optimized model was trained and tested, whereas the last column

shows the average response time of the model in the classification

task for a single input. All SVM models could achieve the highest

accuracy of 92% on the positive vs. negative emotion classification

task regardless of their kernels. however the SVM_sigmoid model

was about 100 to 200 times faster and so it can be considered the

best model in terms of accuracy/time ratio. While random_forest

and decision_tree also were fast and required fewer computing

resources, they yielded poor accuracy compared to the rest of the

models.

6.2. Selected features

Figure 3 presents the scores computed by the ANOVA tests

for each feature. Surprisingly, compared to the literature in which

alpha and beta frequency bands are reported as the most predictive,

gamma waves obtain the highest F-scores among the frequency

bands, along with beta and then alpha waves. Additionally,

confirming what was discussed regarding FBA (concerning the task

reported in this study), arousal values are the highest and therefore

the most predictive for classification purposes.

6.3. Neuromarkers of emotion

Figure 4 presents four scatter plots showing the mapping of

the classified emotional states (positive vs. negative) on the two-

dimensional arousal-valence feature space. Each subpanel in this

figure is composed of arousal and valence features that were

obtained by Equations (1)–(8). Blue circles indicate the feature

values during interaction with the robot with a negative personality,

whereas red circles are representative of the feature values detected

during interaction with the positive robot. As can be seen in this

figure, almost all variations of the FBA metrics adapted from Al-

Nafjan et al. (2017) yielded quite separable clusters of responses for

negative and position emotional states. This inter-class separability

of data points within the arousal-valence feature space enables

efficient localization of the decision hyperplane and hence can

explain the high prediction accuracy by SVM models on the

emotion classification task at hand.

7. Discussions and conclusions

The main goal of this work was to estimate users’ emotional

states from EEG brain activity when they interacted with a robot

with positive or negative personalities. In particular, by extracting

Frontal Brain Asymmetry (FBA) as neuromarkers of emotional

valence and arousal and employing a global optimization model for

feature extraction, we aimed to develop a reliable emotion classifier

for HRI interactions. Our results demonstrated a generally high

performance (92% accuracy) obtained by the optimized models

with only a small subset of the feature space (5 percentile) that

included FBA neuromarkers.

The results from this study validate our hypothesis regarding

the possibility of EEG-based emotion recognition in HRI

scenarios. Classification of emotional states using brain activity has

been widely studied in affective computing and brain-computer
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TABLE 2 Best classification performances obtained by the Global Optimization model. Percentile refers to the feature subset and pred_time indicates

the model’s response time.

Classifier Percentile Accuracy Precision Recall F-score pred_time(s)

SVM_linear 5 0.92 0.93 0.92 0.92 2.00E-05

SVM_poly 5 0.92 0.92 0.92 0.91 1.50E-05

SVM_RBF 5 0.92 0.92 0.92 0.91 4.30E-05

SVM_sigmoid 5 0.92 0.92 0.92 0.91 1.36E-07

MLP 5 0.91 0.92 0.91 0.91 2.92E-05

KNN 50 0.91 0.91 0.91 0.89 1.76E-04

RF 5 0.89 0.91 0.89 0.89 3.80E-06

DT 15 0.84 0.86 0.84 0.86 7.20E-08

FIGURE 3

Score results of F-ANOVA test (Y-axis) performed for each frequency band (alpha, beta, gamma, delta, theta) for each of the 14 channels recorded

plus valence-arousal values (X-axis).

interfacing literature (Al-Nafjan et al., 2017; Torres et al., 2020;

Rahman et al., 2021; Wang and Wang, 2021), however very

little is known about the potentials and challenges associated

with the application of such neurotechnology in HRI settings

(Alimardani and Hiraki, 2020). Traditionally, HRI research relies

on behavioral modalities such as facial expressions, bodily gestures,

and voice to infer a human user’s emotions during interaction

with social robots (Spezialetti et al., 2020). These techniques are

often computationally expensive, require privacy-intrusive sensors

such as cameras and microphones in the room, and may not

give an accurate evaluation of core emotional states that are not

behaviorally manifested. Our results indicate that even with a

commercial EEG headset such as Emotiv EPOC+, it is possible

to classify users’ emotional responses to a robot’s negative and

positive behavior with a relatively high accuracy. This provides

an opportunity for future research to integrate fairly inexpensive

and easy-to-use EEG headsets as a new tool for offline evaluation

of the interaction as well as real-time monitoring of the user’s

mental state. By employing such real-time BCI systems in HRI, it

is then possible to endow robots with appropriate social skills and

adaptive behavior that would maximize the efficiency and quality of

interaction (Prinsen et al., 2022).

To classify the emotional responses of users from EEG

signals, we proposed a global optimization model based on a

combination of feature selection and hyperparameter optimization

techniques applied to various classification methods, including not

only classical machine learning models such as Support Vector

Machines and Decision Trees but also deep learning models such
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FIGURE 4

Distribution of arousal and valence features per emotional state. Scatterplots are made using pairs of arousal and valence values obtained from

Equations (A) (1–2), (B) (3–4), (C) (5–6), (D) (7–8), respectively.

as the Multi-Layer Perceptron. The results validated neuroscience

theories about the involvement of the FBA including the alpha

and beta brain waves in the detection of emotional responses (Al-

Nafjan et al., 2017; Alimardani et al., 2020; Kuijt and Alimardani,

2020; Wang and Wang, 2021). This was further supported by

Figure 4, where FBA-based neuromarkers of arousal and valence

demonstrated a clear separation of the user’s negative and positive

mental states. Moreover, a significant contribution of the gamma

band activity was observed (Figure 3), which corroborates past

research indicating the involvement of this frequency band in

emotional processing (Hu et al., 2020).

One explanation for the high accuracy achieved by the

classification models employed in this study, particularly SVMs,

could be the binary nature of the classification task (i.e., positive vs.

negative). In affective computing literature, emotion classification

tasks are often defined as the prediction of discrete emotion labels

(e.g., joy, anger, sadness, fear, etc.) (Liu et al., 2017) or continuous

mapping of affect within the arousal-valence bi-dimensional space

(Nicolaou et al., 2011; Garg and Verma, 2020), whereas, in

this study, we simplified the classification problem to a binary

prediction with two valence classes; positive vs. negative. While

a simple binary classification might be sufficient for application

domains that do not require extensive awareness of the user’s

affective states, this approach bears the specificity limitation in

that it does not give an insight into the nuances of the emotional

state, for instance, the difference between a sad or angry experience

induced by the robot. Additionally, this approach does not allow

for capturing the individual differences in emotional experiences.

Particularly that the sample of the current study was limited in

size (only 10 people) and hence the obtained results can only be

discussed in the context of subject-dependent classification across

the recruited sample.

7.1. Limitations and future perspectives

While the proposed method in this study yielded promising

results in the estimate of users’ emotional states from EEG brain

activity during HRI, it comes with several limitations that should

be considered.

The first limitation is the choice of the EEG hardware employed

in this study. The flexible structure of the Emotiv Epoc+ EEG

headset can lead to movement on the subject’s head during

experiments, introducing noise during data collection. The headset
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has a limited number of electrodes (i.e., 14 channels) which gives

a low spatial resolution and requires precise electrode placement

for accurate readings. The electrodes’ short hydration duration

affects signal quality throughout the experiment, contributing

further noise. Moreover, electrode oxidation due to manufacturing

material can lower conductive capacities and signal cleanliness,

leading to potential interruptions in data acquisition.

Additionally, subject-dependent factors pose challenges in EEG

and HRI studies, as some subjects may respond randomly or

put forth minimal effort during the task, making it difficult to

determine their actual involvement in the task and subsequently

their affective responses. Individuals’ physiological responses to the

task can vary, limiting the model’s adaptability to diverse subjects.

Moreover, external factors such as stress or anxiety can overlap with

targeted emotional states, potentially impacting the results.

To address these limitations, certain improvements can be

implemented in future research. Firstly, using higher-quality

instrumentation, such as research-fidelity EEG devices with

more electrodes and stable fastenings, would result in more

accurate and consistent measurements. With the advancement

of neurotechnology, new EEG hardware with dry electrodes has

been introduced and validated for research (Mullen et al., 2015;

Pontifex and Coffman, 2023) that can be alternatively used in HRI

experiments. Additionally, employing electrodes with extended

hydration capabilities (such as those requiring conductivity gel)

would improve data quality.

To enhance the classification capacity of predictive models, a

larger and more diverse sample size of experimental subjects (e.g.,

100 or more) should be considered. Future research should attempt

the collection of larger EEG datasets from various affective HRI

settings that would enable the validation of neuromarkers that

could robustly differentiate emotions across users and contexts.

Such neuromarkers can then be employed in subject-independent

classification models for plug-and-play integration of BCIs in real-

time human-robot interaction. In addition to EEG, future research

could benefit from the integration of other (neuro)physiological

sensors (e.g., heart rate, galvanic skin response, respiration,

etc.) for multi-modal classification of emotions (Zhang et al.,

2020).

An interesting direction for future research could be

focused on the use of various tasks and emotion induction

techniques via robot behavior design in order to verify the

validity of the measured affective responses toward the robot.

Consequently, customizing tasks based on each subject’s

interests and abilities would promote active engagement

and improve the overall quality of the collected data.

Furthermore, conducting a preliminary assessment of the

subject’s basic emotional state through a specific self-completed

questionnaire would aid in excluding individuals with strong

perennial emotional states that could significantly influence the

data.

In conclusion, the current study demonstrated a successful

implementation of a global optimization model for the

classification of a user’s emotional states from EEG brain activity

during positive and negative interactions with a social robot. By

addressing the aforementioned limitations and implementing

the suggested improvements, the proposed method can achieve

higher accuracy and reliability in various HRI scenarios. Future

development of this work consists of carrying out closed-loop

experiments involving adaptive behavior and/or implicit feedback

from the robot based on the user’s affective states. Additionally, by

designing various interaction tasks, we intend to collect EEG data

in a broader affective context and probe the impact of the robot’s

feedback on the user experience and task performance.
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