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Stroke is a significant cause of disability worldwide, and stroke survivors often

experience severe motor impairments. Lower limb rehabilitation exoskeleton

robots provide support and balance for stroke survivors and assist them

in performing rehabilitation training tasks, which can e�ectively improve

their quality of life during the later stages of stroke recovery. Lower limb

rehabilitation exoskeleton robots have become a hot topic in rehabilitation

therapy research. This review introduces traditional rehabilitation assessment

methods, explores the possibility of lower limb exoskeleton robots combining

sensors and electrophysiological signals to assess stroke survivors’ rehabilitation

objectively, summarizes standard human-robot coupling models of lower limb

rehabilitation exoskeleton robots in recent years, and critically introduces adaptive

control models based on motion intent recognition for lower limb exoskeleton

robots. This provides new design ideas for the future combination of lower

limb rehabilitation exoskeleton robots with rehabilitation assessment, motion

assistance, rehabilitation treatment, and adaptive control,making the rehabilitation

assessment process more objective and addressing the shortage of rehabilitation

therapists to some extent. Finally, the article discusses the current limitations

of adaptive control of lower limb rehabilitation exoskeleton robots for stroke

survivors and proposes new research directions.

KEYWORDS

stroke, lower limb exoskeleton, rehabilitation, motion intention recognition, adaptive

control

1. Introduction

Stroke is a major cause of disability and mortality globally (Feigin et al., 2022), often

leading to motor impairments such as muscle spasms and movement disorders that can

severely impact the quality of life of stroke survivors (Bansil et al., 2012). Rehabilitation

therapy can aid in restoring motor function, improving mobility, and enhancing

independence in performing daily activities (Wagenaar et al., 1990). However, to effectively

design personalized rehabilitation plans andmonitor progress, rehabilitation therapists need

to assess the survivor’s motor impairment at various stages (Wagenaar et al., 1990).

Lower limb rehabilitation exoskeleton robots are mechanical devices that can augment

human movement or replace lost activity (Bogue, 2015). These robots have been designed

to assist patients with impaired lower limb motor ability, including stroke survivors, in
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relearning to walk and restoring lower limb muscle strength (Shi

D. et al., 2019). Exoskeleton robots for lower limb rehabilitation

have become a research hotspot in the field of stroke rehabilitation

due to their ability to support and maintain balance for stroke

survivors while assisting them in completing rehabilitation training

tasks (Li et al., 2015). However, to fully harness the benefits of lower

limb rehabilitation exoskeleton robots, adaptive control algorithms

that can adapt to different situations in survivors’ daily lives or

rehabilitation training are necessary (Bansil et al., 2012).

In recent years, there has been growing interest in using

motion intention recognition algorithms to improve the adaptive

control of lower limb exoskeleton robots in stroke rehabilitation

(Masengo et al., 2023). These algorithms obtain stroke survivors’

movement expectations through various Kinematic parameters

or electrophysiological signals and adjust the exoskeleton robot’s

motion in real-time to provide motion intention (Liu et al.,

2023). This adaptive control approach has shown promising

results in improving the effectiveness of lower limb exoskeleton

rehabilitation robots for stroke survivors (Li et al., 2020; Peng et al.,

2020; Chen et al., 2023).

The present review aims to provide a comprehensive overview

of the current state of adaptively controlled lower limb exoskeleton

rehabilitation for stroke treatment. A fundamental prerequisite for

realizing an adaptive rehabilitation robot is that the exoskeleton

can adaptively perform rehabilitation assessment. Without this

premise, the exoskeleton can only be a general rehabilitation

device (Tejima, 2001). Therefore, this review systematically

surveys the relevant literature on rehabilitation assessment, as

well as the human-machine coupling model of exoskeletons in

recent decades, and the advances in adaptive control based on

motion intention recognition in recent years. Ultimately, the

aim of this review is to identify future research directions in

this field.

2. Rehabilitation assessment

The rehabilitation assessment of stroke survivors is essential

throughout treatment (Langhorne et al., 2011). Notably, research

conducted by H. J. Appell highlights the need to prevent repetitive

mechanical loads on injured skeletal muscles during rehabilitation

training, as it can effectively mitigate the risk of secondary damage

(Appell, 1990; Appel, 1997). To circumvent adverse effects in the

rehabilitation training process, it becomes crucial to modulate the

training intensity based on the present condition of the affected

muscles. So, The assessment of rehabilitation holds paramount

importance in achieving the adaptive control of stroke lower limb

exoskeleton rehabilitation robots. Furthermore, the rehabilitation

stage following a stroke is intricate, characterized by distinct focal

points in different stages (Watson and Quinn, 1998). As a result,

the emphasis on rehabilitation training tasks varies in different

rehabilitation stages. The reliance on rehabilitation assessment

becomes pivotal for adaptive control rehabilitation robots due

to the dynamic nature of stroke rehabilitation. Consequently,

implementing autonomous rehabilitation assessments within

rehabilitation robots becomes imperative to enable real-time

adjustments to rehabilitation training tasks (Tejima, 2001).

A variety of rehabilitation assessment methods exist for

stroke survivors, including functional assessment scales frequently

employed in clinical treatment. Additionally, the advancement

of technology has led to the emergence of more objective

rehabilitation evaluation methods, such as combining kinematic

parameters and electrophysiological signals, as depicted in

Figure 1.

2.1. Traditional methods of rehabilitation
assessment

In traditional stroke rehabilitation treatment, rehabilitation

physicians need to conduct a rehabilitation assessment on the

degree of motor dysfunction of stroke survivors, formulate

corresponding rehabilitation treatment plans, or compare recovery

conditions later (Colombo et al., 2005). The traditional assessment

methods for lower limb rehabilitation in stroke survivors mainly

rely on various functional or gait assessment scales (Gonçalves

et al., 2022). For example, These standard scales can be scored by

judging how well stroke patients complete various tasks so as to

achieve rehabilitation assessment. TheWisconsin Gait Scale (WGS)

(Rodriquez et al., 1996) uses the Falls Efficacy Scale (FES) (Tinetti

et al., 1990) to allow stroke survivors to self-evaluate before and

after training and then conduct the Health Status Questionnaire

(HSQ) (Radosevich and Pruitt, 1995) test to assess their mental

state. This method mainly relies on subjective evaluation. The

Brunnstrom Approach (BA) proposed by Brunnstrom (1966),

divides the scale into six grades for the limb muscle strength of

patients with voluntary movements. Similarly, some rehabilitation

physicians also use the LOVETT Scale (LS) to judge muscle

strength, which divides stroke survivors into five levels of muscle

strength. According to the functional walking ability of stroke

survivors, Hughes and Bell (1994) proposed The Hemiplegic

Gait Analysis Form (HGAF). And gait parameters divide stroke

survivors’ standing ability, walking ability, and speed into five

levels. There is also a similar scale, Functional Ambulation

Classification (FAC), which divides the walking power of stroke

survivors and the need for monitoring into 0–6 levels. The Berg

balance scale (BBS) evaluates the patient’s ability to stand in

balance to judge the possibility of falling in stroke survivors

(Ganz et al., 2007). The Rivermead Visual Gait Assessment

(RVGA) describes 20 kinematic features on a four-point scale

and, combined with the subjective evaluation of rehabilitation

physicians, is used to evaluate adults with various neurological

disorders (Lord et al., 1998). Edinburgh visual gait score (EVGS)

uses a 3-point scale to describe 17 kinematic features, combined

with the subjective evaluation of rehabilitation physicians to

evaluate the recovery of cerebral palsy (Read et al., 2003). The

Stroke Mobility Score (SMS) uses a four-point scale to describe

six gait characteristics, combined with the subjective evaluation

of rehabilitation physicians to explain the recovery of stroke

survivors (Raab et al., 2020).

In addition, there is the Fugl-Meyer Assessment (FMA),

which is now widely used in the clinical assessment of motor

function in stroke survivors, covering five aspects of movement,

balance, joint mobility, and pain, and the specific evaluation

items reach 113 items. Although many standard scales are used
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FIGURE 1

(A) Rehabilitation physicians combined with standard evaluation scales to obtain rehabilitation evaluation results, (B) Rehabilitation evaluation results

are obtained by combining kinematic, kinetic, and electrophysiological signal with standard evaluation scales or other quantitative methods (such as

machine learning).

for clinical diagnosis and evaluation, their functions are very

similar. The specific selection mainly depends on the subjective

wishes of rehabilitation physicians. Moreover, these standard

scales are easy for physicians to operate, and the cost of

obtaining the rehabilitation status of patients’ lower limbs is

low. Therefore, it is widely used in clinical practice (Eastlack

et al., 1991; Toro et al., 2003). Rehabilitation physicians select

the above traditional rehabilitation assessment scales based on

comprehensive factors such as the patient’s condition, economic

conditions, and rehabilitation purposes (for work or life). The

schemes adopted can vary from person to person. Often,

rehabilitation physicians will choose more than one assessment

method for rehabilitation evaluation.

For this reason, more and more kinematic, kinetic and

electrophysiological signals, etc. Methods are used to evaluate

the rehabilitation of lower limb motor dysfunction. Combined

with traditional rehabilitation assessment methods, these methods

can realize the adaptive rehabilitation assessment of lower limb

exoskeleton robots. Eichler et al. (2018) combined kinematic

methods to achieve the same goal by combining a motion

capture system with Fugl-Meyer to assess the motor capacity

of stroke survivors. Similarly, Wang et al. (2022d) automated

assessment of Brunnstrom staging in stroke survivors by surface

electromyography. This study demonstrates that subjective

assessments by physicians combined with standard scales

can be translated into objective rehabilitation assessments of

electrophysiological signals. However, in terms of these methods

using optical and acoustic sensors, these devices are generally

expensive, and the use of space is limited. Such as, when using a

visual sensor for rehabilitation assessment, the patient’s range of

motion cannot exceed the monitoring range of the optical sensor;

when using an acoustic tracking system, the patient can only

move within the tracking area of the acoustic sensor. Considering

the cost of the equipment and the difficulty of the rehabilitation

assessment process, in recent years, most scholars have used IMU

sensors combined with gait analysis equipment to conduct related

research on rehabilitation assessment.

2.2. Objective methods of rehabilitation
assessment

The main objective rehabilitation assessment methods are

based on kinematic, kinetic and electrophysiological signals, etc.

(Ferrarello et al., 2013; Mohan et al., 2021; Arheix-Parras et al.,

2023). It is necessary to apply accurate rehabilitation assessment

methods to lower limb rehabilitation exoskeletons. Lower limb

Exoskeletons rehabilitation has excellent application prospects due

to the scarcity of professional rehabilitation physician resources

(Gupta et al., 2011). Taking China as an example, a rehabilitation

physician often needs to take care of several patients, and the

lower limb rehabilitation exoskeleton can significantly reduce

the unnecessary repetitive work of rehabilitation physicians.

The lower limb rehabilitation exoskeleton can perform various

rehabilitation training tasks and use multiple sensors on the

lower limb rehabilitation exoskeleton to assess the rehabilitation

of stroke survivors at a low cost. This not only reduces the

error caused by the combination of doctors’ artificial judgment

and various evaluation scales but also avoids the duplication

of labor of medical staff. This helps rehabilitation physicians

to focus more on the formulation of rehabilitation programs.

In addition, these relevant parameters used for rehabilitation

assessment can also be used for motion intention recognition

of exoskeleton rehabilitation robots. The obtained evaluation

results are conducive to constructing a better adaptive control

model for the lower limb rehabilitation exoskeleton combined

with the patient’s current recovery and exercise ability. The

objective rehabilitation assessment methods are overview in

Table 1.
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TABLE 1 Overview of objective rehabilitation assessment.

Paper Tools Limb Method Assessment objectives

Eichler et al. (2018) 3D cameras, FMA Whole body SVM1 , SDT2 and RF3 Distinguish between the three known

stroke severity.

Wang et al. (2022d) sEMG, Brunnstrom Forearms Ensemble Learning Brunnstrom stage automatic evaluation

for stroke survivor.

Postolache et al. (2015) Doppler radars, Gait sensors Legs, Feet Wavelet multiresolution analysis Assess the instantaneous velocity of the

leg swing.

Park et al. (2020) IMU, NIHSS and MRC Wrists, Ankles and Feet Ensemble algorithm, SVM Automatically assess stroke survivor’

NIHSS grades and MRC scores.

Zhao et al. (2017) IMU, Pressure sensors Knees, Ankles and Feet Inequality-constrained Zero

Velocity Updates-aided Inertial

Navigation System algorithm

Foot Angle for Assessing

Extension-Flexion Movement in Stroke

survivors.

Guo et al. (2019) sEMG, A State-Space EMG

Model (Han et al., 2015)

Upper limbs Bayesian classifier Distinguishing stages of stroke

rehabilitation.

Zeng et al. (2017) EEG Corresponding brain area

of the lesion

Mean-NLSD4 , PSD5 Assess stroke recovery.

Wang et al. (2022b) sEMG, EEG Corresponding brain area

of the lesion, Dorsal

interosseous

PTE6 Using brain network features and

cortical muscle coupling values to

distinguish rehabilitation stages.

Bervet et al. (2013) EMG, Cameras and

Pressure sensors

Feet, Legs and Heels KeR-EGI7 Gait recognition on healthy subjects.

Meng et al. (2021) sEMG, IMU Weist, Forearms, Legs

and Ankles

LOSOCV8 Mobility capacity in a stroke survivor.

Spanos et al. (2023) Cameras, G.A.I.T Hip, Legs and Ankles KNN9 Gait recognition on healthy subjects.

Wang et al. (2020) Cameras, IMU Legs and Ankles, Feet INI10 judge the recovery of each leg.

1 SVM, Support Vector Machines; 2 SDT, Single Decision Tree; 3 RF, Random Forest; 4 Mean-NLSD, Mean-Nonlinearly Separable Degree; 5 PSD, power Spectral Density; 6 PTE, Phase Transfer

Entropy; 7 KeR-EGI, Kerpape-Rennes EMG-based Gait Index; 8 LOSOCV, Leave-One-Subject-Out Cross-Validation; 9 KNN, K Nearest Neighbor; 10 INI, IMU-based gait normalcy index.

2.2.1. Kinematic, kinetic-based objective
rehabilitation assessment method

In recent decades, with the development of technology,

more and more studies have evaluated lower limb functional

rehabilitation through kinematicmethods. For example, Postolache

et al. (2015) assessed the gait ability of patients using a wheeled

walker by microwave Doppler radar. The Inertial Measurement

Unit (IMU), which can detect the patient’s speed, acceleration,

joint angle, and other motion parameters, can be used for

rehabilitation evaluation (Ahmad et al., 2013). The IMU sensor

has two significant advantages: First, the sensor is cheap and

can be widely used in hospitals (Maetzler et al., 2013). Second,

it is easy to wear, can be used in various scenarios by patients,

and the detection process is simple (Del Din et al., 2016). Park

et al. (2020) collected the kinematic parameters of the subject’s

limbs through the IMU. They automatically evaluated the NIH

Stroke Scale/Score (NIHSS) (Williams et al., 2000) grade and

Medical Research Council (MRC) (Paternostro-Sluga et al., 2008)

score of stroke survivors through machine learning. However,

IMU also has limitations. The IMU can only detect the patient’s

motion state, not the patient’s posture. When the human body

joints move, the joint vibration angiography is relatively large,

interfering with the results (Wang et al., 2022a). Therefore, in

recent years, some scholars have combined IMU sensors with gait

recognition equipment. Zhao et al. (2017) used the IMU-based

gait analysis method to evaluate the rehabilitation of lower limb

dysfunction. The Gait Assessment and Intervention Tool (G.A.I.T)

combines motion capture equipment to conduct rehabilitation

assessments of stroke survivors from 45 independent gait poses

combined with rehabilitation physicians’ experience (Daly et al.,

2009; Ferrarello et al., 2013) Some scholars also use optical sensors

to conduct rehabilitation assessments through motion capture

methods (Eichler et al., 2018). Wang et al. (2020) improved the

above method, using IMU, gait recognition, and motion capture

system, and other equipment to judge the recovery of each leg from

three spatiotemporal parameters and six kinematic features, and

proposed an IMU-based gait normalcy index (INI) rehabilitation

assessment method. Or use an acoustic tracking system, such as

Maki et al. (2012) developed an ultrasonic stride measurement

system, which uses ultrasound to locate the position of the sensors

of the left and right feet to achieve step distance measurement.

The evaluation process of these kinematic methods is simple, and

the rehabilitation evaluation can be completed only by the patient

walking on the experimental site relying on the corresponding

sensors. Based on objective rehabilitation assessment methods, this

can effectively reduce the burden of repetitive motion in stroke

survivors.

2.2.2. Electrophysiological signals-based
objective rehabilitation assessment method

Standard electrophysiological signals used in evaluating

movement disorder rehabilitation include surface
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electromyographic (sEMG) signals and electroencephalogram

(EEG) signals (Frigo and Crenna, 2009; Cohen, 2017). For

example, Guo et al. (2019) collected sEMG of patients in different

rehabilitation stages, classified and identified sEMG through

machine learning methods, and verified that sEMG could identify

different rehabilitation stages. However, there are still many

problems with this method. For ordinary people, the period of

coordinated muscle movement in normal gait is fixed (Huang

et al., 2012). In contrast, the regularity of muscle activation in

stroke survivors is poor (Dai et al., 2004), and even specific

muscles cannot be activated so the evaluation results will differ. In

addition, with the increase in exercise in lower limb rehabilitation

training, muscle fatigue will occur, resulting in decreased muscle

strength (Riley and Bilodeau, 2002). All of the above reasons make

rehabilitation assessment using sEMG difficult.

Therefore, in recent years, people have increased research

on EEG. EEG records the activity of neurons in the cerebral

cortex. Stroke causes brain lesions in patients, which directly

drives the EEG of stroke survivors to be different from ordinary

people (Finnigan and van Putten, 2013). This difference is used

for a rehabilitation assessment. Zeng et al. (2017) evaluation of

stroke rehabilitation by detecting non-linear EEG of patients.

Due to the complexity of the recording process of EEG signals,

the acquisition requires a high degree of concentration. It is

susceptible to interference, which restricts the wide application of

EEG signal rehabilitation assessment. And Wang et al. (2022b)

collected EEG and sEMG to construct a brain function network

and corticomuscular PTE, using brain network features and

cortical muscle coupling values to distinguish rehabilitation stages.

This study provides a basis for the internal mechanism of

stroke hemiplegic patients’ rehabilitation from the perspective

of physiological signals. Still, the recovery period of selected

stroke survivors is only four weeks, which is not comprehensive

for the entire rehabilitation period. Physiological electrical

signals are collected directly from the human body and are

not affected by subjective factors. Rehabilitation assessments

can be performed by combining signal processing and related

algorithms. There are also deficiencies in electrophysiological

signals. Due to the characteristics of electrophysiological signals

and the relatively complicated acquisition process, they impact

rehabilitation assessment.

2.2.3. Multimodality-based objective
rehabilitation assessment method

According to the advantages and disadvantages of kinematic

methods and electrophysiological signals, more and more

scholars combine them for stroke rehabilitation assessment.

For example, Bervet et al. (2013) uses the fusion of EMG and

gait detection to judge the overall gait performance of stroke

survivors through 7 kinds of EMG gait patterns. Meng et al.

(2021) used sEMG and IMU to assess stroke survivors’ mobility by

adopting the Leave-One-Subject-Out Cross-Validation (LOSOCV)

technique, but with a small sample size for stroke survivors.

These related studies can be applied to the adaptive lower limb

rehabilitation exoskeleton robot to better build an adaptive control

model according to the patient’s current recovery situation and

exercise ability.

2.3. Development of rehabilitation
assessment methods

As indicated above, the rehabilitation assessment of stroke

survivors has evolved from the previous traditional approach,

which solely relied on rehabilitation assessment scales combined

with subjective evaluations by rehabilitation physicians, to

the current integration of various kinematic parameters,

kinetic parameters, electrophysiological parameters, or novel

rehabilitation assessment scales. It is the transition from

complete observation to instrumental measurement. We have

gathered and summarized the literature about rehabilitation

assessments conducted over the past three decades. The methods

employed in these assessments encompass observational,

instrumental, kinematic, kinetic, electrophysiological parameters,

and integrative approaches.

Between 1993 and 2009, rehabilitation assessments were mainly

implemented with standard scales and observational methods.

For instance, the Physician’s Rating Scale (PRS) (Koman et al.,

1993) assesses the severity of cerebral palsy by recording six

gait characteristics using a multi-point scale by rehabilitation

physicians. The PRS-Based Observational Gait Scale (RPS-OGS)

(Boyd and Graham, 1999; Boyd et al., 1999) builds upon this

method by expanding the assessment to eight gait characteristics

for each leg. Another scale, The Wisconsin Gait Scale (WGS)

(Rodriquez et al., 1996), employs a weighted multi-point scale to

record 14 gait characteristics for each leg, reflecting the recovery

progress of hemiparesis. Additionally, previously mentioned scales

like RVAG and EVGS are utilized. Observational Gait Analysis

(OGA) (Kawamura et al., 2007) employs a three-point scale to

score and describe ten kinematic features, assessing the degree

of cerebral palsy. The Salford Gait Tool (SF-GT) (Toro et al.,

2007) utilizes a five-point scale to achieve and describe 18

kinematic features, evaluating the degree of cerebral palsy. The

Observational Gait Scale (OGS) (Araújo et al., 2009) further

expands the evaluation content by incorporating 24 kinematic

features and the observational assessment by rehabilitation

physicians to assess the severity of cerebral palsy. These methods

are mainly based on observational methods or weak alternatives to

instruments with a certain degree of subjectivity. In the following

research, the rehabilitation assessment method gradually became

instrumentalized, making the rehabilitation assessment results

more objective and accurate.

More and more researchers use instruments to collect the

patient’s kinematics, kinematic and electrophysiological features

and combine computer and statistical methods to evaluate the

patient’s rehabilitation rather than pure observation. As introduced

in Section 2.2. In recent years, multimodality rehabilitation

assessment methods have become a hot topic. The development

trend of rehabilitation assessment instrumentation also makes the

adaptation assessment of exoskeleton robots possible (Shi B. et al.,

2019).

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1186175
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Su et al. 10.3389/fnbot.2023.1186175

Despite the inherent subjectivity of observational methods based

on standardized assessment scales, they are still widely used in

clinical practice due to their simplicity, cost-effectiveness, and

other advantages (Toro et al., 2003; Rathinam et al., 2014).

Simultaneously, with the continuous advancement of technology,

there is an increasing demand for the application of exoskeleton

robots, which has led to rapid development in instrument-based

gait analysis methods. Due to their accuracy and reliability, these

methods have now become the preferred gold standard for clinical

decision-making and rehabilitation instrument researchers (Wren

et al., 2020).

3. Human-machine coupling model of
lower limb exoskeleton

The lower limb rehabilitation exoskeleton robot is a wearable

bionic robot that can be coupled with man-machine (Zhou

J. et al., 2021). Combined with various sensors, a kinematic

model is established through kinematic analysis to realize

impedance/admittance/compliance control (Scherzinger et al.,

2017; da Silva et al., 2020). Finally, the high-efficiency actuators

apply external force to the patient’s lower limbs to assist the patient’s

movement so that the patient can move independently (Windrich

et al., 2016). Such as, assist stroke survivors in going up and down

the stairs independently or walking on flat ground, etc, to achieve

the purpose of rehabilitation training (Alcobendas-Maestro et al.,

2012; Guizzo andDeyle, 2012; Chen et al., 2016;Wang et al., 2022c).

In this section, the human-machine couplingmode of the lower

limb exoskeleton robot that has been put into production and the

control model of the lower limb exoskeleton based on efficient

actuators will be introduced.

3.1. Existing human-machine coupling
models of lower limb exoskeletons

Currently, more and more studies use lower limb exoskeleton

rehabilitation robots to assist patients in rehabilitation training and

reconstruct the patient’s motor function (Zhou X. et al., 2021).

Due to the limited mobility and balance ability of stroke survivors,

it is necessary to pay special attention to the safety of stroke

survivors during rehabilitation training to prevent them from

falling during exercise and causing secondary trauma (Zhou J. et al.,

2021). Therefore, different lower limb rehabilitation exoskeleton

robots can be selected according to the patient’s exercise balance

ability (Wang et al., 2022c).

At present, the standard lower limb rehabilitation exoskeleton

robots on the market are:

1) LOKOMAT, Stroke survivors wear lower limb exoskeleton

robots and protective straps and perform autonomous

movements on the platform treadmill. LOKOMAT can also

provide adaptive support for stroke survivors according to their

leg strength (Duschau-Wicke et al., 2008).

2) REX, It is a lower limb exoskeleton rehabilitation robot with

self-balancing ability, which provides external support for stroke

survivors and assists them in standing. The stroke survivor

joystick controls REX movement. Nathan et al. (2021) combine

brain-computer interface technology with REX and use EEG to

control REX movement.

3) ReWalk, The wearable lower limb exoskeleton device

incorporates crutches and therefore requires the patient

to have some mobility and balance (Zeilig et al., 2012). When

in use, the patient’s hands are supported by crutches, and then

they try to take a step, and the sensor detection data at ReWalk’s

hip joints and joints drive the exoskeleton’s movement through

actuators, simulating the natural movement of human legs,

thereby driving stroke survivors to move (Nathan et al., 2021).

These three types of lower limb exoskeletons are shown in

Figure 2. The LOKOMAT provides enhanced safety for stroke

survivors through protective straps. It incorporates multiple IMU

sensor units to recognize the movement intentions of stroke

survivors, enabling them to participate actively in training rather

than being passive recipients, which is beneficial in motivating

stroke survivors to engage actively in rehabilitation exercises

(Marchal-Crespo and Riener, 2022). The LOKOMAT therapy is

currently regarded as a promising method for restoring functional

walking and improving motor abilities in stroke survivors

(Alashram et al., 2021). In addition, lower limb exoskeletons that

can be used for rehabilitation also rely on efficient actuators and

control algorithms.

3.2. The lower limb exoskeleton model is
based on actuators

The actuator is an essential part of the automatic control

system (Hussain et al., 2021). It receives the control signal of

the controller and completes the corresponding functional output.

Actuators are divided into active and passive actuators according

to whether they consume energy. Active actuators consume energy,

such as hydraulic, electric, and pneumatic, and passive actuators,

such as springs and dampers, do not consume power (Ham et al.,

2009). When performing lower limb movements, more torque is

generated than other body parts. Each joint has multiple Degrees

of Freedom (DoF), and the joints of the lower limbs of the human

body mainly include hip joints, knees, and ankles (Gholap et al.,

2022). The specific movement modes and DoF of the lower limb

joints are shown in Table 2. Therefore, the combination of lower

limb exoskeleton actuators that rely on joint motion has hip-knee,

knee-ankle, and hip-knee-ankle (Sun et al., 2020, 2021).

Generally, a lower limb rehabilitation exoskeleton robot

requires multiple DoF actuators to cooperate, and actuator

combinations will be used according to lower limb exoskeleton

kinematic models (Pamungkas et al., 2019). This section is

illustrated in terms of several actuator-specific models.

3.2.1. Exoskeleton model based on pneumatic
actuators

Głowiński and Ptak (2022), based on the relevant measurement

parameters of the human body, the geometric model of the

pneumatic exoskeleton was established, and the dynamic gait

parameters were analyzed. The designed pneumatic exoskeleton
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FIGURE 2

Three types of lower limb exoskeletons, (A) LOKOMAT, (B) REX, (C) ReWalk.

TABLE 2 The specific movement modes and DoF of the lower limb joints.

Joints DoF Movement

Hips 3 Internal-external rotaion;

Abduction-adduction; Flexion-extension.

Knees 2 Flexion-extension;

Rotaion.

Ankles 3 Plantar flexion-dorsiflexion;

Abduction-adduction; Eversion-inversion.

actuator combination includes hip joints, knees, and ankles, which

can generate the physiological torque required for human joint

movement. The lower limb rehabilitation exoskeleton is a human-

machine coupling device, so the device’s safety is paramount. For

pneumatic actuators, the pressure limit of each actuator needs to

be strictly determined before use, which can effectively ensure the

safety and comfort of humans and exoskeletons (Moreno et al.,

2018). Therefore, the lower limb exoskeleton rehabilitation robot

based on pneumatic actuators has been one of the popular choices

for research in recent years. The pneumatic exoskeleton model

also has limitations. First, it is not absolutely safe. The elastic

potential energy stored in the pneumatic actuator may be released

suddenly, and the resulting reaction force may hurt the human

body (Grosu et al., 2017). Moreover, this model did not further

study the compensation mechanism of the axis misalignment of the

exoskeleton and the patient’s knee joint (Bessler-Etten et al., 2022).

3.2.2. Exoskeleton model based on hydraulic
actuators

Chen et al. (2021) proposed a 3-DOF precise interactive

controller model for an underactuated hydraulic exoskeleton

driven by hydraulic actuators. This model transforms the 3-DOF

underactuated system in the joint space into a 2-DOF full-actuated

system in the Cartesian coordinate system and solves the related

problems of high-order nonlinearity, parameter uncertainty, and

modeling errors in the hydraulic actuator system. The three-level

interactive force controller can realize motion intention inference,

human body motion tracking, and hydraulic output capability

tracking. Hydraulic-type actuators can provide mighty power

and adequate human body support (Zhu et al., 2017). However,

hydraulic actuator models require various pumps and valves, which

increase the volume and weight of the exoskeleton, which is

inconvenient for stroke survivors to use in their daily lives (Scheidl,

2017).

3.2.3. Exoskeleton model based on motor
actuators

Compared with the models built with the above two actuators,

the exoskeleton robot based on the motor drive is more popular

because of its convenient control process (Gholap et al., 2022).

Feigin et al. (2022) designed the exoskeleton motion model based

on the position control of direct current (DC) servo motors. The

exoskeleton actuator combination includes a hip-knee-ankle, and 6

DCmotors are used. The model adjusts and guarantees the angular

position of the motor shaft through a closed-loop feedback control

system, obtains the joint dynamics parameters of human cyclic

gait through the IMU sensor, and uses PID (Process Identification)

control (Vanchinathan and Selvaganesan, 2021) to realize the stable

control of the exoskeleton.

3.2.4. Exoskeleton model based on other
actuators

In addition to the basic actuator exoskeletonmodels mentioned

above, there are linear elastic actuator exoskeleton models, parallel

elastic actuator exoskeleton models, etc (Zhu et al., 2014; Beil et al.,

2015). Models based on different actuator structures are the most

basic exoskeleton models, which can complete specific mechanical

actions. Lower limb rehabilitation exoskeletons need to adapt to

multiple complex situations to meet the requirements of stroke
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survivors for various rehabilitation tasks and assist them in daily

life (Mohammed et al., 2012).

Aljarah et al. (2023) have introduced a Variable Stiffness

Actuator (VSA) for Knee Exoskeletons. It comprises a torsion

spring, a motor, a linear actuator, and a force contact roller (FCR).

The stiffness of the brake is determined by the spring’s stiffness,

the diameter of the spring base, and the diameter of the FCR.

The researchers employed the actuator using the Pareto grid-

searching method. This method optimizes the weighted objective

function and avoids restrictive standardization techniques. Finally,

the operating parameters of the knee exoskeleton were optimized

and verified.

Nunes et al. (2020) designed a bio-inspired controller via elastic

actuators based on the concept of motor primitives. Momentum-

based disturbance observer with extended Kalman filter to extract

motor primitives. A control algorithm then analyzes the gait cycle

to test the actuator’s performance in motion. The results show that

the exoskeleton’s auxiliary compensation force to the knee joint is

insufficient when the motion torque is too small.

In the early days of related research on exoskeleton adaptive

control, Jatsun et al. (2015) used the current information of

the motor iron core to evaluate the load of the exoskeleton

and then adaptively change the action of the exoskeleton, which

realized the adaptive control of exoskeleton. However, Jatsun

et al. (2015) follow-up research found that for the application

of the rehabilitation exoskeleton, this exoskeleton’s movement is

blunt, which is not conducive to the rehabilitation training of

stroke survivors. Therefore, the adaptive lower limb rehabilitation

exoskeleton robot based on motion intention recognition has

become the research focus (Long et al., 2023). To cooperate with the

related algorithms of motion intention recognition, multi-source

information are also needed for motion intention detection (Zhang

et al., 2022).

4. Motion intention recognition and
modeling of adaptive lower Limb
exoskeleton

With the development of science and technology, Artificial

Intelligence (AI)-related technologies have become more research

hotspots today. AI-based lower limb exoskeleton control models

are no exception (Vélez-Guerrero et al., 2021; Halder and Kumar,

2023), such as artificial neural networks, adaptive algorithms, and

other mixed AI techniques.

Among them, The adaptive lower limb rehabilitation

exoskeleton robot based on motion intention recognition uses

different method to obtain relevant signals of the current motion

and through the identification and extraction of the present motion

state (Long et al., 2023). In this way, the next movement to be

completed can be predicted, and the motion intention of stroke

survivors can be decoded (Zhang et al., 2022). Finally, an adaptive

control model is constructed to control the exoskeleton actuator.

The following introduces the methods based on motion

intention recognition combined with artificial neural networks,

adaptive control algorithms and other fusion AI methods in recent

years. Currently, the lower limb exoskeleton rehabilitation robot

mainly builds an adaptive control model through kinematics,

kinetics, electrophysiological signal, and multimodal fusion (Sun

et al., 2022; Masengo et al., 2023).

The overview of the adaptive exoskeleton control model based

on motion intention recognition introduced in this paper is shown

in the Table 3. Scheme of common lower limb exoskeleton human-

machine cooperative control is shown in Figure 3. The Human-

exoskeleton coordinated control strategy mentioned in this chapter

are shown in Table 4.

4.1. Adaptive model of lower limb
exoskeleton for motion intention
recognition based on kinematic and
kinetics

The kinematic signals for motion intention recognition include

the acceleration of the current motion of the human body, motion

speed, limb motion trajectory, joint angle, joint torque, and plantar

pressure. The IMU can collect human kinematics parameters such

as acceleration, velocity, and angular velocity signals for lower limb

motion state recognition (Hamdi et al., 2015). Amiri et al. (2019),

Using a traditional cybernetics approach, by kinematic, initialized

Model Reference Adaptive Control (IMRAC) is used to tune a

Proportional-Integral-Derivative (PID) controller of a lower limb

exoskeleton. The model performs well in real-time but was not

tested in a test environment with disturbances. Scheme of IMRAC

is shown in Figure 4.

Lou et al. (2019) relied on the FAC to classify the patient’s

exercise capacity into 0-6 grades, and patients with grades 3–4 were

selected for the trial. That study mainly identified stroke survivors’

standing and gait phase state in the gait cycle through the relevant

data collected by IMU. They also concluded that the more severely

disabled, the lower extremities of the stroke survivors, the more

significant the proportion of the total gait cycle that the stance

phase occupies. Although this study did not further construct the

adaptive control model of the lower limb exoskeleton, it still has a

specific role in promoting the research on the exoskeleton robot for

stroke lower limb rehabilitation.

Zhu et al. (2020) have introduced a motion intent recognition

method for soft exoskeletons based on inertial sensors. This

method exhibits exceptional performance in diverse and intricate

scenarios. By leveraging an Inertial Measurement Unit (IMU)

to gather kinematics, they utilize a deep Convolutional Neural

Network (CNN) to accurately identify distinct strategies, including

level walking, stair ascent/descent, and uphill/downhill walking.

The recognition accuracy achieves 97.64%. Moreover, the latency

associated with switching between different recognition modes

accounts for a mere 23.97% of the gait cycle duration.

Liang et al. (2018) proposed a novel control method. They

explained the synergy between human limbs through LSTM,

expecting to collect a large amount of gait data of ordinary people

through wearable motion capture devices. Then use LSTM to

analyze the motion data of one side of the healthy person’s limb,

and then compare the motion data of the other side of the stem,

extract synergy from the data, build an adaptive control model

of the exoskeleton, and finally adapt online to stroke survivors at
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TABLE 3 Overview of the adaptive exoskeleton control model based on motion intention recognition.

Paper Tools Main research Method Pourpose

Zhu et al. (2020) IMU Perception Deep CNN Accurately identify distinct strategies,

including level walking, stair ascent/descent,

and uphill/downhill walking, and accuracy

achieves 97.64%.

Ding et al. (2018) iIMU Perception Local search windows, Fixed

thresholds

Achieved a minimal time delay and small

computational burden.

Chen et al. (2022) Kinematic Perception, Control NFO Improves the precision and speed of intent

recognition, enhancing adaptive control

performance for the exoskeleton.

Zhang et al. (2019) Kinematic Control Hierarchical Lyapunov The model is satisfactory in tracking

performance and interaction torque

reduction.

Sánchez Manchola et al.

(2019)

IMU, Plantar pressure Perception TB, HMM HMM has better performance in terms of

time error and goodness index.

Ma et al. (2020) VICON Perception, Control DMP Constructed a gait parameter model.

Hua et al. (2019) Kinematic, Plantar pressure Perception, Control DNNs, GA_PSO and ANFIS Achieved intent recognition accuracy of

99.7% and achieved adaptive control.

Wang et al. (2022d) Tension sensors, Photoelectric

sensors and IMU

Perception PNN1 , SVM-RBF2 Classify and identify the behavioral state of

the user during rehabilitation training.

Liu et al. (2022) sEMG Perception ML-TCN, ML-LSTM Gait cycle phase recognition; Compared the

effect of the TCN model and the LSTM

model.

Guo et al. (2020) sEMG Perception, Control Lw-CNN, SVM Recognize upper-limb motion intents;

Comparing the recognition effect of the

Lw-CNNmodel and SVM.

Choi and Kim (2019) EEG Perception CSP3 ; LDA4 ; MTM-TSC Gait detection.

Lou et al. (2019) FAC, IMU Perception Sliding Window Algorithm5 ;

QDA6

Recognizing the gait phase.

Liang et al. (2018) Motion capture devices Perception, Control LSTM The motion intention of the healthy side of

the stroke survivors is used to plan the

trajectory of the exoskeleton on the

hemiplegic side.

Novak et al. (2013) IMU, Plantar pressurer Perception supervised machine learning Have high accuracy in detecting patterns of

gait initiation and gait termination.

Song et al. (2020) IMU, Plantar pressurer;

VICON

Perception Multi-layer BP neural

network

15 common lower limb exoskeleton gait

patterns and postures identified.

Du et al. (2018) sEMG, Plantar pressurer Perception, Control SMILC The model can effectively reduce chattering

in sliding mode control and excellently

achieve the tracking of the rehabilitation

robot’s reference trajectory.

Gui et al. (2019) sEMG, Joint torque Perception RBFNNs Joint motion prediction.

Zheng et al. (2020) EEG, Kinematic and Plantar

pressure

Perception CCA Motion intention recognition through

multimodal models.

Al-Quraishi et al. (2021) EEG, sEMG Perception DCA A multi-modal control model is constructed

to recognize lower limb movement intention.

Amiri et al. (2019) Kinematic Control IMRAC This modle can be used in lower limb

exoskeleton as a gait training robot for

rehabilitation purpose.

1PNN, Probabilistic Neural Network; 2RBF, Radial Basis Kernel Function; 3CSP, Common Spatial Pattern; 4LDA, Linear Discriminant Analysis; 5SWA, Sliding Window Algorithm; 6QDA,

Quadratic Discriminant Analysis.

different rehabilitation stages, and achieve through The motion

intention of the healthy side of the stroke survivor is used to plan

the trajectory of the exoskeleton on the hemiplegic side. This study

has successfully achieved cooperative control on a small amount

healthy subjects. Still, there is a lack of relevant experimental data

for stroke survivors, which is one of the relevant research issues of

the exoskeleton adaptive control model based on motion intention

recognition. When building a control model, healthy people are
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FIGURE 3

Scheme of common lower limb exoskeleton human-machine cooperative control. (A) Lower limb, provides kinematics, kinetics, and

electrophysiology information. (B) Exoskeleton system, the movement trajectory is planned through functions; the controller drives the actuator to

generate corresponding torque; and human-machine cooperation (the power generated by the actuator assists the movement of the lower limbs).

TABLE 4 Comparison of Human-exoskeleton coordinated control strategy.

Paper Control approach Advantages Challenges

Amiri et al. (2019) IMRAC The comparison between the results of the

IMRAC and conventional MRAC, shows the

IMRAC converged faster and consumed less

computational time than MRAC.

Lack of testing under disturbing conditions

or in different environments.

Liang et al. (2018) Based on LSTM. Comparison with statistical regression methods

based on LSTM, is stable, disturbed only by

missing data and outliers, and has better

inter-individual adaption.

Adaptability to a large number of subjects

was not tested.

Zhang et al. (2019) Based on hierarchical Lyapunov. Compared with PD control, the moment of

human-computer interaction can be minimized by

setting appropriate controls.

There will be a delay in lower layer mode

switching.

Chen et al. (2022) Based on NFO. It has faster calculation speed and recognition

accuracy than GA and PSO algorithms.

The stability is easily affected by the

parameters of the PD controller.

Ma et al. (2020) Based on DMPs. Trajectory features are extracted from sample

trajectories, and new trajectories are constructed.

It is impossible to construct a general model,

and information such as the subject’s height

and weight needs to be considered.

Guo et al. (2020) Based on Lw-CNN. Compared with SVM, the intent recognition speed

is faster, and the real-time control is better.

The recognition accuracy is affected by the

window size, and the accuracy decreases

significantly when the sliding rate decreases.

Hua et al. (2019) GA_PSO algorithm. Compared with the sensitivity amplification

control (SAC), the human-robot interaction is

reduced by 0.6%, which reduces the burden of

human-robot collaborative motion.

Gait conversion and label categories are not

subdivided, and the recognition conversion

efficiency is not high.

Du et al. (2018) Variable impedance controller

and SMILC.

Compared with PD iterative learning control

algorithm (PDILC), the tracking error of SMILC is

more minor, and the control system is more stable.

SMILC is prone to jitter when the state

trajectory reaches the sliding mode surface.
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often used as subjects.While themodel is verified, it is also tested by

healthy people wearing exoskeletons. LSTM-based control scheme

is shown in Figure 5. Therefore, whether the adaptive control

model established in the study applies to stroke survivors has

not been verified, nor can the problems of stroke survivors using

exoskeletons for rehabilitation training be found.

Novak et al. (2013) obtained kinematic parameters through

IMU and pressure-sensitive sensors, constructed an adaptive

control model based on kinematic parameter identification, and

verified the exoskeleton model through healthy subjects, which

high accuracy in detecting patterns of gait initiation and gait

termination, but also lack specific clinical trials.

Zhang et al. (2019) constructed a cascaded adaptive control

model based on hierarchical Lyapunov for joint angle position

tracking objective. First, a Lyapunov-based backstepping regulator

was designed to adaptively estimate the parameters and friction in

the higher-level structure. Then in the lower layer, The hydraulic

actuator is controlled by a Lyapunov-based neural network to

realize lower limb exoskeleton adaptive control. These control

models have not been tested for different rehabilitation tasks, and

clinical trials for specific conditions are lacking. Scheme of adaptive

control model based on hierarchical Lyapunov is shown in Figure 6.

Ding et al. (2018) collected kinematic parameters through

an intelligent Inertial Measurement Unit (iIMU) and carried out

movement intention recognition based on local search windows

and fixed thresholds. This method responded quickly and realized

the detection of human-machine synchronous walking gait events.

However, the kinematic obtained by the IMU should be based

on the characteristics of the inertia itself, and the range that can

be predicted is limited. Chen et al. (2022) have made further

advancements in intended recognition speed based kinematics.

They have employed an AI algorithm known as Neighborhood

Field Optimization (NFO) to address this challenge (Wu et al.,

2012; Wu and Chow, 2013). Initially, they constructed the dynamic

model of the exoskeleton using the Lagrangianmodeling technique.

Subsequently, they perform excitation experiments utilizing a

Proportional-Derivative (PD) controller to acquire the kinematic

parameters. These kinematic parameters are then used within

the NFO framework to identify the model parameters. At this

point, the desired trajectory of the exoskeleton corresponds to

the actual motion trajectory, and the joint angles and velocities

are incorporated into the feedback control mechanism. This

approach significantly improves the precision and speed of intent

recognition, enhancing adaptive control performance for the

exoskeleton. NFO-based control scheme is shown in Figure 7.

Some studies have introduced plantar pressure to improve the

accuracy of motion posture recognition. Sánchez Manchola et al.

(2019) combined the IMUwith the plantar pressure sensors to carry

out movement intention recognition based on the collected signals.

Comparing the training results found on the Threshold-based

(TB) detection algorithm and Hidden Markov Model (HMM), the

performance of the HMM-based is better, and it can realize the

motion intention recognition of the gait cycle well and realize the

adaptive control of exoskeleton. However, when this study was

applied to stroke survivors, the effect of HMM was not satisfactory

due to the weakness of the lower limbs of stroke survivors and the

strong randomness in exercise. Moreover, using the IMU sensor,

the joint vibration error generated will also affect the accuracy of

motion intention recognition (Lee et al., 2014).

With the deepening of research in recent years, some scholars

have also used optical, ultrasonic, and magnetic sensors to identify

lower limb movement intentions (Roetenberg, 2006; Zhou and

Hu, 2008; Maki et al., 2012). Among them, the optical method

is the most widely used because, with the development of related

research on NDI and Kinect in recent years, it has had a good effect

on motion capture. Moreover, the somatosensory game developed

by Microsoft’s Xbox combined with Kinect for body recognition

has been applied in the hospital’s stroke rehabilitation training

and has achieved specific results (Xavier-Rocha et al., 2020). More

and more researchers have begun to try to recognize the lower

limb movement intention based on the optical three-dimensional

motion capture system. Ma et al. (2020) used VICON to measure

different people’s lower limb joint angle curves at different speeds,

constructed a gait parameter model, and completed the exoskeleton

adaptive control model through the gait prediction of the entire

gait cycle planning throughDynamicmovement primitives (DMP).

The limitation of the optical sensor is that the detection angle of

the sensor is fixed, the space range of the recognition is restricted,

and stroke survivors need various safety protection during exercise,

so the optical positioning mark is easily blocked, which affects the

motion capture. These questions have led some scholars to use

optical, IMU, and pressure sensors to collect relevant signals and

realize adaptive control of lower limb rehabilitation exoskeletons

based on multimodal information fusion and motion intention

recognition as Section 4.3. Scheme of DMPs-based control is shown

in Figure 8.

Nevertheless, the kinematic and kinetics can only be collected

after the movement has occurred, and the signal’s appearance lags

behind the action’s onset (small delay) (Pizzolato et al., 2017).

Therefore, the model only estimates the following motion state and

has limitations for adaptive control of the exoskeleton. To solve

these problems, some scholars have also begun to try to realize

motion intention recognition based on electrophysiological signals.

4.2. Adaptive model of lower limb
exoskeleton for motion intention
recognition based on electrophysiological
signals

According to their acquisition methods, electrophysiological

signals applied to motion intention recognition can be divided into

invasive and non-invasive. The invasive acquisition method is to

place electrodes into the human body. This acquisition method

can obtain better signal quality, but it will cause trauma to the

human body. The non-invasive acquisition method is to attach

electrodes to the skin’s surface. This acquisition method will not

cause trauma to the human body, but the quality of the acquired

signal is poor, and the signal needs to be pre-processed before the

signal is used (Lew et al., 2012). The effective frequency of sEMG

is 20–500 Hz. Considering the safety of signal acquisition and

the physical condition of stroke survivors, lower limb Exoskeleton

rehabilitation robots mostly use non-invasive sEMG for motion
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FIGURE 4

Scheme of IMRAC. IMRAC includes a plant, a lower limb exoskeleton adjustment mechanism controller parameters, and a model reference.

FIGURE 5

LSMT-based control scheme.

FIGURE 6

Scheme of adaptive control model based on hierarchical Lyapunov.
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FIGURE 7

NFO-based control scheme.

FIGURE 8

Scheme of DMPs-based control.

intention recognition. The sEMG is 10ms earlier than the muscle

action, and the collected sEMG can be used for pattern recognition

or deep learning to determine the movement intention (Huang

et al., 2008; Ha et al., 2010; Hargrove et al., 2011; Wu et al., 2011;

Hoover et al., 2012; Hardaker et al., 2013).

Liu et al. (2022) used a Metric-Learned Temporal

Convolutional Network (ML-TCN) to extract and recognize

sEMG features, thereby realizing gait phase recognition through

sEMG. The method divides the gait cycle into 4 phases (heel

strike, plantar strike, plantar lift, and foot swing). The study

also compared Long Short-Term Memory (LSTM) models with

those from standard Temporal Convolutional Networks (TCN).

The experimental results of this study show that the temporal

convolutional network test results of metric learning are better,

and the recognition accuracy can reach 96.22%.

Since the motion intention recognition model applied to the

lower limb exoskeleton has high requirements for real-time action,

an overly complex model will lead to too long a recognition

time, which cannot meet the real-time control of the exoskeleton.

Therefore, Guo et al. (2020) uses a lightweight deep learningmodel,

such as a light convolutional neural network (Lw-CNN), to classify

and identify the upper arm sEMG that controls the robotic arm,

and the robotic arm control accuracy can reach 88.75%. Scheme

of adaptive control model based on Lw-CNN is shown in Figure 9.

However, long-term muscle exercise will cause muscle fatigue,

which will cause the signal power spectrum to shift toward the

low-frequency direction. The subsequent acquisition of sEMG will

reduce the accuracy of model recognition and affect following

intention recognition. For sEMG, it isn’t easy to judge the starting

point of the movement occurrence. The EEG has an advantage

in recognition of action intentions, and the EEG is generated

before the action occurs. Therefore, some scholars began to study

EEG-based motion intention recognition.

For example, Choi and Kim (2019) performed feature

extraction and classification through Mu-band event-related

desynchronization (ERD) in EEG (Tariq et al., 2020). They also

use the Modified Threshold Method for Time Series Classification

(MTM-TSC) to reduce the classification error rate of gait detection

and then realize the adaptive control of the exoskeleton. However,

because the EEG signal is weak and susceptible to interference, and

the steps of collecting EEG are cumbersome, stroke survivors must

be highly concentrated during the collection. However, because the

EEG signal is weak and susceptible to interference, the steps to

collect EEG are cumbersome, and stroke survivors need to be highly

concentrated during the collection process, which also limits the
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FIGURE 9

Scheme of adaptive control model based on Lw-CNN.

broad application of EEG. Subsequently, some scholars began to

try to use a multi-source signal based on EEG and sEMG, integrate

their advantages, and identify an adaptive control model through

motion intention.

4.3. Adaptive model of lower limb
exoskeleton for motion intention
recognition based on multimodality

Today, lower limb exoskeleton rehabilitation robots tend to use

various sensors, such as combined with IMU, plantar pressure, and

others. At the same time, it can also collect sEMG and EEG and

recognize the movement intention of lower limbs through multi-

source signals. This improves the accuracy of motion intention

recognition and can also use these sensors to do more work, such as

rehabilitation assessment, fatigue monitoring, etc. (Ferrarello et al.,

2013; Chang et al., 2017).

Hua et al. (2019) have developed an innovativeWeight-Bearing

Lower Limb Exoskeleton. They have integrated motor actuators

to address the challenges of portability and flexibility under high

loads in the exoskeleton. In addition, they have utilized stacked

autoencoder deep neural networks (DNNs) based on multimodal

signals to modify the exoskeleton’s operation mode and control

parameters. Remarkably, they have achieved an intent recognition

accuracy of 99.7% through the utilization of a hybrid algorithm

that combines genetic algorithm and particle swarm optimization

(GA_PSO). Furthermore, they have successfully implemented the

transition of gait cycle phases using an adaptive neural-fuzzy

inference system (ANFIS). This innovative Weight-Bearing Lower

Limb Exoskeleton demonstrates effectivemotion intent recognition

and achieves adaptive control. Its control scheme is similar to

common lower limb exoskeleton human-machine cooperative

control as Figure 3.

Wang et al. (2022d) built an adaptive control model through

spatial position information and motion mechanics parameters.

The accuracy rate of motion intention recognition based on multi-

source information reached 97.78%. The kinematic is convenient

for obtaining parameters and does not affect the patient’s

rehabilitation training actions when collecting signals.

The kinematic provided by IMU and pressure-sensitive sensors

cannot accurately identify spatial position information of stroke

patients, so it is necessary to introduce motion capture to

make compensation. Song et al. (2020), built a motion state

recognition model based on feature evaluation and multi-layer

BP (BackPropagation) neural network, collected kinematic, plantar

pressure, and parameters collected by VICON, and performed

multi-source feature parameter fusion. Finally, the two sets of

multi-information source fusion models were verified, and the

average recognition accuracy rate for 15 motion patterns was

95.05%. This study provided a good reference for the multi-source

signal fusion intention recognition model in applying lower limb

rehabilitation exoskeleton adaptive control example.

To ensure real-time control of exoskeletons in stroke survivors,

it is necessary to incorporate electrophysiological signals with lower

latency than kinematic to recognize motion intentions. Du et al.

(2018) have developed a variable impedance controller for lower

limb exoskeletons based on sEMG and plantar pressure. Their

objective is to optimize the reference motion trajectory of the

exoskeleton. They use a sliding mode iterative learning controller

(SMILC) based on the variable boundary saturation function,

which enables accurate reference trajectory tracking and establishes

a dual-loop control system. Notably, the proposed model mitigates

undesired vibrations during the reference trajectory tracking

process. Furthermore, it continuously adapts and optimizes the

reference motion trajectory based on the recognition of motion

intent. Dual-loop control system scheme is shown in Figure 10.

Likewise, Gui et al. (2019) obtained joint motion state by

collecting sEMG and joint torque sensors’ kinematic. Then, the

radial basis function neural network (RBFNN) is used to train

and identify the joint torque model, which can adaptively predict

the joint motion state in the swing phase of the gait cycle in real

time. And the study also showed that EEG signals generated by

non-target muscles would interfere with the EEG of target muscles.

So Zheng et al. (2020) introduced EEG for intent recognition.

They collected information such as EEG, joint position, and

plantar pressure of the subjects, used Classical Correlation Analysis

(CCA) (Liu et al., 2020) to identify the Steady-State Visual Evoked

Potential (SSVEP) (Wang et al., 2010), combined with kinematic

as the input of the machine learning model, constructed a multiple

Modal machine learning model, which has an average accuracy rate

of more than 90% in identifying SSVEP signals.

Some scholars also try to recognize motion intention based

only on electrophysiological signals to realize adaptive control

of exoskeletons in stroke survivors, but this method also has

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1186175
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Su et al. 10.3389/fnbot.2023.1186175

FIGURE 10

Dual-loop control system scheme.

FIGURE 11

Hierarchical architecture of lower limb rehabilitation exoskeleton.

limitations (Net’uková et al., 2022). For example, to solve the

problem of inaccurate recognition of subsequent sEMG acquisition

due to muscle fatigue during long-term exercise, Al-Quraishi

et al. (2021), Discriminant Correlation Analysis (DCA)-Based

Modal Fusion of EEG and sEMG to identify lower limbs

Movements.

Although motion intention recognition based on EEG and

sEMGmulti-source information can effectively improve the control

precision of the model and the accuracy of intention recognition,

the response time of different physiological signal sources is

different, and there is an unavoidable delay (Zhang et al., 2021).

This model has a specific difficulty in the construction of the model.

This problem is also the main challenge of multi-source signal

fusion at present. For example, the response of kinematic collected

by IMU occurs later than that of electrophysiological signals,

and additional processing is required to match and fuse them

(Net’uková et al., 2022). Second, the adaptive control algorithm for

motion intention recognition based on multi-source information

requires a longer computation time than the general model. This

model also impacts the real-time application of the adaptive control

model on the lower limb exoskeleton rehabilitation robot; this

problem also affects the real-time application of the adaptive

control model on the lower limb exoskeleton rehabilitation robot

(Zhang et al., 2022).

Most adaptive control exoskeletons based on motion intention

recognition now use a layered architecture to achieve control.

The upper-level high-level controller is used for motion intention

recognition, and the middle-level controller converts the motion

pattern predicted by intention recognition into mechanical

impedance control parameters. The lower-level controller uses

traditional control algorithms to drive actuators to achieve closed-

loop control are shown in Figure 11.
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5. Related review comparison

This section collects the review of lower extremity exoskeletons

in the past three years, and their main work content is summarized

and compared.

Gholap et al. (2022) is a review of exoskeleton system

development. In the review, the biomechanical parameters of

the human body are also discussed to understand the various

degrees of freedom of the human body’s joints and to recognize

their significance in the gait cycle. In addition, different existing

exoskeletons and actuators used in exoskeletons are analyzed

comparatively.

The work of de Miguel-Fernández et al. (2023) is to evaluate

the rehabilitation effect of different control algorithms for the

lower extremity exoskeleton for gait rehabilitation after brain

injury. Includes: providing an updated structured framework of

current control strategies, analyzing clinically validated methods

used in robotic interventions, and reporting potential relationships

between control strategies and clinical outcomes. They find only

14% of the exoskeletons were found to implement adaptive control

strategies.

Masengo et al. (2023) discusses exoskeleton control methods,

including physiological-based control (sEMG and EEG) and

traditional-based cooperative control of lower extremity

exoskeleton control, which are reviewed and compared in

depth. And discuss the trend of multi-source fusion.

Jiyu et al. (2022) review focus on the portability, intelligent

control, and modular structure design of the lower extremity

exoskeleton. It pays more attention to the materials used, modular

design, human-computer interaction interface, cloud data, security,

and intelligence of the exoskeleton, energy efficiency, and cost-

effectiveness.

Lee et al. (2020) review focus on three classes of lower extremity

exoskeletons: assistive, rehabilitation, and augmented exoskeletons.

This review is introduced around its control actuator type.

Wang et al. (2022c) the review focuses on the overall design of

the exoskeleton, drive unit, intent perception, compliance control,

and efficiency verification. Also, it discusses the complexity and

coupling of the human-machine integrated system.

Al-Rahmani et al. (2022) summarize the design, working

principles, and applications of robotic devices for foot drop

assistance and rehabilitation over the past decade. The findings

describe the design aspects of 72 lower limb robotic assistive

devices, including 21 studies evaluating specific design aspects

through experimental trials, and discuss the future potential

of advanced robotic devices for foot drop assistance and

rehabilitation.

We can see that the current review research questions of lower

limb exoskeletons mainly focus on the following aspects.

5.1. Safety of lower limb exoskeleton
rehabilitation robot

The lower limb rehabilitation exoskeleton robots need human-

machine coupling to assist or strengthen humans to complete

required actions (Lee et al., 2020). Therefore, when using, the

user’s safety should be put first, and avoid causing trauma due to

an unstable control system or unreasonable mechanical structure

design during use. The control system of exoskeleton robots applied

to stroke survivors should be more stable and able to brake

in time. Stroke survivors have movement disorders, and coping

with sudden lower limb exoskeleton emergencies is even more

challenging. Therefore, safety indicators must be considered when

designing lower limb exoskeletons. For example, set the maximum

speed of movement, the upper limit of the maximum torque of

the actuator, etc. In addition, the lower limb exoskeleton needs

to provide adaptive weight support according to the patient’s

condition and muscle strength, which can prevent stroke survivors

from falling during exercise and can also adaptively adjust the

exercise load of stroke survivors. Wu et al. (2021), did related

research on this work and first eliminated random disturbances

through the linear quadratic exponential optimal control method.

Estimable system disturbances introduced by the user due to gravity

changes are then eliminated by a feed-forward control method

based on error inputs. Finally, the Body Suspension Model (BSM)

model was established, and the exoskeleton adaptively provided

weight support was successfully realized.

5.2. Objective rehabilitation assessment
based on multimodal information fusion

Traditional approaches to rehabilitation assessment have

been enumerated previously. As introduced in Section 2,

the rehabilitation assessment method combined with the

rehabilitation scale is still widely used in hospitals. It has crucial

diagnostic significance, but the instrumental assessment has

gradually become the new gold standard for rehabilitation

assessment (Toro et al., 2003; Rathinam et al., 2014). First,

the lower limb rehabilitation exoskeleton robots can help

physicians assist patients in rehabilitation training. In addition,

as mentioned before, it is feasible to combine various sensors

and electrophysiological parameters to evaluate the current

rehabilitation of patients, which is consistent with the movement

mechanics and electrophysiological parameters required for

motion intention recognition and will not increase high additional

research costs.

Therefore, in the future, the lower limb rehabilitation

exoskeleton robot based on motion intention recognition can

integrate multi-source information and construct a multimodal

rehabilitation evaluation model through machine learning or

other technologies. Realize an objective rehabilitation assessment

method based on multimodal information fusion. This can

enable stroke survivors to complete rehabilitation assessments

during rehabilitation training and save the assessment results.

Rehabilitation therapists can directly modify the follow-

up rehabilitation plan based on the evaluation opinions

given by the lower limb rehabilitation exoskeleton robot,

which reduces the workload of rehabilitation therapists and

allows rehabilitation physicians to perform more valuable

diagnostic work.

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1186175
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Su et al. 10.3389/fnbot.2023.1186175

5.3. Coping with complex tasks or
situations

Most adaptive lower limb rehabilitation exoskeleton robots

based on motion intention recognition are currently researched

on simple gait cycle motions, such as walking on flat ground or a

flatbed. More research still needs to be done on the movement of

various complex scenes. Winter et al.’s (2021) research shows that

stroke survivors can effectively increase exercise motivation and

improve therapeutic effects when using virtual reality to imitate

the outdoor environment for immersive training. This provides

us with a new way of thinking, which can extend the application

scenarios of the adaptive lower limb rehabilitation exoskeleton

robot based on motion intention recognition to the outdoors.

Alternatively, apply the virtual reality method to simulate the

outdoor environment and simultaneously increase the training

obstacles to simulate various problems encountered in the natural

environment.

For this reason, the adaptive lower limb rehabilitation

exoskeleton needs to cope with complex scenes and perform

some complex movements, such as going up and down stairs.

Laschowski et al. (2020), combined laser rangefinder and radar

detector, built an exoskeleton environment recognition system

through image classification recognition, machine learning, and

convolutional neural network, and successfully recognized complex

environments. Zhong et al. (2021) took this research a step

further. Collect environmental information through self-made

embedded hardware, and use IMU sensor for motion intention

recognition. Furthermore, the BNN (Bayesian neural network,

BNN) is used to predict the collected information parameters,

and the classification of six complex terrains is completed. This

model can also be extended to multi-modal fusion, and motion

intention recognition based on multi-modal fusion can realize

adaptive control of the complex environment of the lower limb

rehabilitation exoskeleton. The adaptive lower limb rehabilitation

exoskeleton robot based onmotion intention recognition integrates

the environment recognition function and can achieve more

complex tasks. In the follow-up research, related work can be

continued to make the application scenarios of the lower limb

rehabilitation exoskeleton more diverse, which can help stroke

survivors perform rehabilitation training in different scenarios,

strengthen the efficacy of training, and perform more complex

rehabilitation training tasks.

5.4. Lower limb exoskeleton cable or
non-cable

Currently, there are two common ways of the lower limb

rehabilitation exoskeleton: wired and wireless. Through a wired

connection, data transmission is more stable. The disadvantage is

that too many wires will interfere with the subject’s movement to a

certain extent and limit the subject’s range of activities, And there

are certain requirements on the ratio of cable length (Prasad et al.,

2022; Zuccon et al., 2022). The wireless connection method is more

portable and constitutes a wireless body area network. Generally,

it will not interfere with the activities of the subjects, but in

exceptional cases, the transmission of data may be interfered with,

resulting in inaccurate identification of intentions. Since stroke

survivors are not very athletic, wired sensor data transmission

can be used in combination with virtual reality technology to

simulate outdoor training to ensure the stability of data and the

accuracy of intention recognition. In addition, the adaptive control

model of multi-modal fusion also increases the computational

pressure of the model to a certain extent, so it is also very critical

to choose an appropriate algorithm to reduce the delay of the

exoskeleton response.

5.5. Combining lower limb exoskeleton
rehabilitation robots with other stroke
treatments

When stroke survivors undergo rehabilitation training, if they

rely entirely on exoskeleton rehabilitation robots for support,

exercise will lead to less active participation in their movement.

At this time, the muscles of the lower limbs and the knees receive

less reaction from the ground and are not significantly stimulated,

so the therapeutic effect is not apparent. The adaptive control

exoskeleton robot using electrophysiological signals for motion

intention recognition has more advantages in stimulating nerves

and muscles than the adaptive control exoskeleton robot using

sensors for motion intention recognition. Because the collected

electrophysiological signals are mainly generated by motor imagery

or muscle movement of stroke survivors, it is beneficial to the brain

function remodeling of stroke survivors.

To enhance the intensity of stimulation to the muscles

and nerves of stroke survivors, the lower limb rehabilitation

exoskeleton robot can be combined with other stroke treatment

methods. For example, by combining functional electrical

stimulation with the lower limb rehabilitation exoskeleton robot,

through the adaptive control strategy of the exoskeleton based on

functional electrical stimulation, the change of the joint angle of

the subject is recognized to adjust the electrical stimulation current

intensity and change the joint motion state. This not only realizes

the adaptive control of the exoskeleton but also corrects the user’s

gait and simultaneously enhances the stimulation of the lower limb

muscles to achieve better rehabilitation effects. Therefore, in the

future, when designing exoskeleton-related control methods, other

methods of stroke rehabilitation can be considered.

6. Conclusions

The main contribution of this review is the introduction

of today’s instrumented rehabilitation assessment methods,

emphasizing the necessity of adaptively controlled lower limb

exoskeleton robots with rehabilitation assessment functions, and

the study also introduces the lower limb exoskeleton based on

various actuators. The exoskeleton robot control model for lower

limb rehabilitation based on motion intention recognition based

on multiple AI methods is mainly reviewed.

In the future, in designing lower limb rehabilitation exoskeleton

robots for stroke survivors, it is necessary to focus on the safety

of the exoskeleton and adapt the weight reduction system to cope

with stroke survivors of different muscle strength levels. At the
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same time, to meet the application of stroke survivors throughout

the rehabilitation stage, the lower limb exoskeleton robot needs

to have the function of rehabilitation assessment. To achieve a

better rehabilitation effect, the training content that the exoskeleton

can perform should be expanded, and some complex tasks can

be performed or combined with virtual reality technology. The

adaptive control model based on motion intention recognition can

extract the motion intention of stroke survivors, adjust exoskeleton

parameters in real-time, control exoskeleton movement, and

promote brain function remodeling in stroke survivors. The multi-

modal motion intention recognition can make the predicted results

more accurate, so future research should focus on the multi-modal

motion intention recognition adaptive control model research. In

addition, the lower limb rehabilitation exoskeleton robot has a

limited role in the rehabilitation treatment process, so the limb

rehabilitation exoskeleton robot can be combined with other stroke

rehabilitation treatment methods to achieve better efficacy. Overall,

there is still much room for developing exoskeleton robots for lower

limb rehabilitation for stroke survivors.
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