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Multiagent systems face numerous challenges due to environmental uncertainty,

with scalability being a critical issue. To address this, we propose a novel

multi-agent cooperativemodel based on a graph attention network. Our approach

considers the relationship between agents and continuous action spaces, utilizing

graph convolution and recurrent neural networks to define these relationships.

Graph convolution is used to define the relationship between agents, while

recurrent neural networks define continuous action spaces. We optimize and

model the multiagent system by encoding the interaction weights among agents

using the graph neural network and the weights between continuous action

spaces using the recurrent neural network. We evaluate the performance of our

proposed model by conducting experimental simulations using a 3D wargame

engine that involves several unmanned air vehicles (UAVs) acting as attackers and

radar stations acting as defenders, where both sides have the ability to detect

each other. The results demonstrate that our proposed model outperforms the

current state-of-the-art methods in terms of scalability, robustness, and learning

e�ciency.
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1. Introduction

The traditional reinforcement learning technique works well in solving problems with
a small sample space. However, its efficacy is poor when it comes to addressing the
challenge of expanding the state space and action space. Following Silver’s implementation of
AlphaGo (Silver et al., 2016) to defeat the international chess champion, deep reinforcement
learning has gradually entered academic and industrial fields and has outstandingly achieved
milestones in various areas. Though numerous problems need to overcome for multi-agent
learning, deep reinforcement learning presents itself as an excellent solution. As far back as
2000, Stone and Veloso (2000) analyzed multi-agent systems through the machine learning
prism and mainly focused on four types of agents–whether agents are homogeneous or
heterogeneous, or they are communicative. On the other hand, early review articles (Gordon,
2007) analyzed multi-agent learning from different standpoints, leading to the identification
of four major issues of multi-agent learning, including problem description, distributed
artificial intelligence, game equilibrium, and agent modeling (Shoham et al., 2003). Tošić
and Vilalta (2010) proposed a framework for multi-agent reinforcement learning and meta-
learning. Similarly, Tuyls and Stone (2017) analyzed online reinforcement learning for
individual utility, social welfare, and co-evolution. Tuyls and Weiss (2012) emphasized that
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the integration of swarm intelligence, co-evolution, transfer
learning, and non-stationarity techniques should be considered
when developing multi-agent learning methods.

Deep reinforcement learning is the combination of
reinforcement learning and deep learning, and multiagent
reinforcement learning is clustered with multiple agents. The
value-based deep reinforcement learning algorithm can fit the
continuous state space, but the value-based method cannot solve
the problem of continuous action space. Therefore, to solve this
problem, many researchers have proposed a variety of policy
gradients based on the actor-critic (Konda, 2005) framework.
Policy gradient includes stochastic policy gradient methods and
deterministic policy gradient algorithms. The traditional policy
gradient algorithm is an on-policy method that cannot overcome
the problem of low sample utilization. A3C (Mnih et al., 2016),
TRPO (Schulman et al., 2015), and PPO (Schulman et al., 2017)
have greatly simplified the difficulty of understanding and have
ensured the effect of the algorithm. The deterministic policy
gradient (Silver et al., 2014) can directly obtain the gradient of
the policy through chain rule derivation. Then, the deterministic
policy gradient algorithm was combined with deep learning,
and a deep deterministic policy gradient (DDPG) was proposed
(Lillicrap et al., 2016). Heess et al. (2015) combined DDPG and
long short-term memory to propose RDPG, which optimized the
reinforcement learning process and the efficiency of consecutive
sequences. Due to the limitation of the Nash equilibrium, DDPG
does not perform well in the multiagent-enhanced environment.
Compared with the single-agent environment, the multiagent
environment is unstable. There are many uncertainties in the
training process. According to the literature on robots, which
includes the studies mentioned in references (Lowe et al., 2017;
Chen et al., 2021, 2022; Wang et al., 2021), traditional control
and deep reinforcement algorithms have been widely applied to
lots of areas, while recent research has increasingly focused on
the application of reinforcement learning techniques. MADDPG
(Lowe et al., 2017) is an extended method from DDPG that adds
centralized training distributed execution. Based on MADDPG,
many studies have made great contributions in recent years. Wang
et al. (2020) proposed RMADDPG by combining long short-term
memory and MADDPG. Iqbal and Sha (2019) proposed a method
by combining attention and MADDPG. Significant approaches
(Jiang and Lu, 2018; Yathartha and Enna Sachdeva, 2019; Wei
et al., 2022) have made great improvements in MADDPG. The
MADDPG (Mordatch and Abbeel, 2018) environment is based on
time series. The recurrent neural network (RNN; Zaremba et al.,
2014) is calculated from left to right or from right to left. This
mechanism is accompanied by the model mentioned (Vaswani
et al., 2017) parallel ability and long-term dependence. In the
context of deep reinforcement learning, the number of agents in
the environment is subject to change. The dimensions of the agent’s
observation state will change, the input of the neural network will
change, and the neural network cannot be reused. The change in
the number of agents of the environment will lead to a change
in the optimal policy. Therefore, most reinforcement learning
algorithms cannot be effectively expanded in multiagent systems,
their application range is extremely limited, and they can only be
applied to a fixed number of multiagent tasks.

Graph convolutional network (Gama et al., 2018; Zhou et al.,
2020) has appeared in recent years. Based on the assumptions of
high dimensional and partial information, Arbaaz constructed a
proposed graph policy gradient (GPG; Khan et al., 2019). GPG
solves the learning problem of controlling multiple agents and
effectively transfers the policy when the number of agents changes.
For the purpose of directly combining a graph neural network
(GNN) and label propagation algorithm (LPA), Shi et al. (2020)
proposed a graph transformer network. Transformers (Vaswani
et al., 2017) are widely used in many fields (Devlin et al., 2018;
Vaswani et al., 2018; Carion et al., 2020). Adopting multihead
attention (Bahdanau et al., 2014) into graph learning could take into
account the case of edge features. The multiagent reinforcement
learning method MADDPG does not consider the relationship
between multiple agents and continuous actions on the timeline.

This study proposes a novel solution to learning individual
control policies for multiple agents by leveraging their underlying
graph structure. In environments with N agents, each agent only
receives partial observations of the environment and must interact
with a subset of other agents to effectively learn a control policy.
Identifying the appropriate subset of neighbors is a challenging
problem, particularly as the number of agents increases, and it is
necessary to ensure that the cardinality of the subset remains fixed
or grows slowly to maintain scalability.

To address these challenges, we draw inspiration from GPG’s
approach of sequentially composed layers with linear filters to
extract local features and reduce dimensionality. However, GPG
has limitations as it is only suitable for symmetry problems and
not adaptable to more complex, changeable environments. To
overcome these limitations, we introduce graph convolutional
MADDPG with attention, which uses sequentially composed layers
that regularize the linear transform in each layer to become a graph
convolution with a bank of graph filters, with the filter weights
learned by minimizing a cost function.

Our approach exploits the underlying graph structure among
agents, facilitating effective learning of control policies with scalable
and efficient computation by leveraging attention mechanisms
to focus on relevant information for each agent and using
graph convolution to capture the graph structure among the
agents. Building on the success of RMADDPG, we propose
a novel multiagent collaboration model based on a graph
convolutional network with an attention mechanism. The graph
convolutional network defines the relationship function between
agents and can handle high-dimensional problems. Furthermore,
by integrating recurrent neural networks (RNNs) into our
approach, we can model continuous timeline actions, capture
temporal dependencies between actions, and ensure that the
agents’ policies remain consistent over time. Overall, our proposed
approach considerably advances the development of scalable
and efficient algorithms for learning individual control policies
for multiple agents. By utilizing attention mechanisms, graph
convolution, and RNNs, we effectively learn individual control
policies for multiple agents by exploiting their underlying
graph structure.

This study presents three major contributions. First, we
have developed a 3D environment for electronic warfare
simulations. Second, we introduce a novel method based on
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a graph convolutional network with an attention mechanism
to effectively define the relationship function between agents.
Third, we propose a new method based on recurrent neural
networks to model continuous actions. The related works,
such as POMDPs, MADDPG, recurrent MADDPG, and
transformer, are discussed in Section 2. Section 3 provides a
detailed description of our proposed method. The experimental
and computational results are presented in Section 4, which
confirm the effectiveness of our approach. Finally, Section
5 summarizes our main findings and suggests directions for
future research.

2. Background

2.1. POMDP

In reinforcement learning enrichment, decisions are made
according to the current actual state of the system, but in many
cases, the exact state of the system is difficult to obtain. The
partially observable Markov decision process (POMDP) is used to
describe the hidden system states and uncertain behavior effects.
The POMDP is a seven-tuple, S,A,T,�,R,O, and γ , where

1. S represents the state space and contains all the information we
need in the environment.

2. A represents the action space of the agent, including all potential
actions.

3. T represents the state transfer function of the environment.
4. � represents the observation function and maps the

environment state to the observation space of the agent.
5. R represents the reward function and evaluates the actions of the

agent.
6. O represents the observation space and is the observable space

for an agent.
7. γ is the discount factor.

When you take in information and act on the POMDP, the
current state changes accordingly. By anticipating the state and
reacting to your environment, an agent can better determine its
own state by the function τ = {o0, a0, r1, o1, a1, r2...} ∈ T . The
agent chooses appropriate actions according to the states, and the
actions taken by the agent will affect the environment. Thus, they
form a closed loop and constantly influence each other.

The deep deterministic policy gradient (DDPG; Lillicrap et al.,
2016) is a type of actor-critic (Konda, 2005) method. For DDPG,
the idea of DQN (Mnih et al., 2013) has not changed, but the
application has changed. Compared with DQN, DDPG mainly
solves the problem of continuous action prediction. It can be
seen that the implementation difference between continuous and
discrete actions is only in the choice of the final activation function.
Therefore, DDPG has made some improvements on the algorithm
inherited from DQN. To extend DDPG to multiagent systems, the
MADDPG (Lowe et al., 2017) based on DDPG is proposed. The
MADDPG algorithm is more efficient than DDPG for multiagent
systems. The optimal policy obtained through learning can give the
optimal action only by using local information during application.
There is no need to know the dynamic model of the environment
and special communication requirements. The MADDPG can be

used not only in cooperative environments but also in competitive
environments.

MADDPG, while a powerful deep reinforcement learning
framework for multi-agent scenarios, is not without its drawbacks.
Specifically, its computing mode and communication mechanisms
are limited, hampering its ability to perform optimally in
some cases. However, these challenges also create significant
opportunities for growth and enhancement in the field of deep
reinforcement learning, as researchers work to overcome these
obstacles and improve MADDPG’s overall performance. Angeliki
(Lazaridou et al., 2016) proposed a framework for language
learning that relies on multiagent communication. In MADDPG,
multiagents can only share their actions and observations in the
training stage through the critic, and there is no communication
in the execution stage, so the MADDPG algorithm cannot
be well qualified for some tasks that require communication.
MD-MADDPG (Pesce and Montana, 2020) was proposed as
a framework for multiagent training using DDPG, and MD-
MADDPG can learn the explicit communication protocol through
a memory device. Based on Dropout (Srivastava et al., 2014), to
reduce the dimensions, the Message-Dropout MADDPG (Kim
et al., 2019) was proposed. For sharing the globe parameter, BiCNet
(Peng et al., 2017) was proposed with a bidirectional recursive
neural network. Iqbal and Sha (2019), Liu Y. et al. (2020), and ATT-
MADDPG (Mao et al., 2018) improved theMADDPG performance
by an attention mechanism.

2.2. Graph convolutional networks

Inspired by graph policy gradient (GPG; Khan et al., 2019),
we use the convolution operation proposed by Gama et al.
(2020) in GPG (Khan et al., 2019), which is different from
the traditional convolutional neural network (CNN) in that the
signal x is transferred to the spectral domain, and then, the data
of multiple neighborhoods are added. Among them, S is the
Laplacian matrix of the graph, and hk is the filter weight. In the
process of creating the network, the convolution operation in the
fully connected layer is first replaced by the graph convolution
operation. The linear transformation outputs the result of the
next layer. Graph convolutional network applies deep learning to
the structure of Euclidean space R

n to construct the relationship
between vertices and edges representing objects G = (V ,E),
where V is a node set and E is an edge set, which shows good
robustness and interpretability. Therefore, it is an effective way
to model the interaction mode between multiple agents through
graph topology. Here, we define each agent as a node. If the
distance between the agents is less than ǫ, there is an edge
between the two agents. This graph is used as a data vector
X = [x1, ...xN]T ratio, where xn is the state representation
of agent n. The vector X is used as the input of the graph
convolutional network. After multiple convolutional layers, the
graph convolutional network can learn the features between nodes.
The output of the graph convolutional network is π = [π1, ...,πN],
which is the policy of the ith agent. Finally, reinforcement learning
uses the policy gradient (Sutton et al., 2000) to update the weight of
the policy network.
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The problem stated by the above theorem is that as long as the
topology of the graph remains unchanged, the output of the graph
convolution will not change under the reordering of the graph
nodes. Intuitively, in the graph, several nodes with the same graph
neighborhood can share the same set of filters. When learning the
control of a large number of agents, this feature helps reduce the
conditionality of the problem.

Input: Input tensor xti , t ∈ [0,M], i ∈ [0,N], M is the length of
episodes, N is the number of agents, and St is adjacency matrix.

Output: ati is expect action.

1: for episode = 1 to M do

2: Initialize a random process N for action

exploration

3: Receive initial state s initialize empty history

h

4: for t = 1 to max-episode-length do

5: for each agent i select action:

6: obtain input tensor xti and adjacency matrix St

7: ai = µθi (oi, hi)+Ni

8: Execute actions a = (ai, ..., aN )

9: Get reward r, new state s′, new history h′

10: store (s, h, a, r, s′, h′) in replay buffer D

11: for agent i = 1 to N do

12: Sample a random mini-batch of S samples

13: for t = 1 to hierarchical-layers do

14: x′ = Attention(L(H(x′)))

15: end for

16: Y i = r
j
i + γQ

µ′

i (x′) |
a′
k
=µ′

k
(s
j

k
,h
j

k
)

17: Update critic by minimizing the loss:

18: L(θi) =
i
S

(

∑

j y
i − Q

µ
i (x)

)2

19: Update actor:

20: ∇θi J ≈
i
S

∑

j
∇θiµi(s

j
i, h

j
i)∇aiQ

µ
i (x)|ak=µk(s

j

k
,h
j

k
)

21: end for

22: Update target network parameters

23: for each agent i

24: θ ′i ← τθi + (1− τ )θ ′i
25: end for

26: end for

Algorithm 1. Graph deep deterministic policy gradient based on RNN for

N agents.

3. Methods

3.1. Multihead attention

Attention (Bahdanau et al., 2014) was proposed by Bengio
in 2014 and has been widely used in various fields of deep
learning in recent years. For example, it was used in the
field of computer vision to capture the receptive field on
the image or to locate key tokens or features in NLP. The
BERT (Devlin et al., 2018) method for generating word vectors
recently proposed by the Google team has achieved significant
improvements in NLP tasks. The most important part of the

BERT algorithm is a milestone for the transformer concept. The
transformer with self-attention as the basic unit proposed by
Vaswani enables attention to be successfully applied. Traditional
CNNs and RNNs are abandoned in transformers, and the entire
network structure is entirely composed of an attention mechanism.
More precisely, a transformer consists of self-attention and a
feedforward neural network. In the studies mentioned in references
(Iqbal and Sha, 2019; Wei et al., 2021), many contributions
to MADDPG and the attention mechanism were made, which
achieved remarkable results.

To better learn the relationship between agents in the graph
convolutional network, inspired by graph transformers (Shi
et al., 2020), we introduced attention to graph convolutional
networks. Transformers have been proven to have unprecedented
value in natural language processing (NLP) and image signal
processing. The graph attention network algorithm (Veličković
et al., 2018) was proposed by combining an attention machine and
a graph convolutional network. Graph attention network solves the
problems of graph convolutional network and has achieved state-
of-the-art effects on many tasks. Shi et al. (2020) proposed the
graph transformer algorithm for the first time and applied it to the
semisupervised classification task to achieve state-of-the-art effects.
Based on previous studies, we applied its multihead attention to
graph learning and combined the transformer and graph policy
gradient (GPG) algorithm. Here, we define the given node asH(l) =

{h
(l)
1 , h(l)2 , ..., h(l)n }. We define the multihead attention for each edge

from j to i as follows:

q
(l)
c,i =W(l)

c,qh
(l)
i + b(l)c,q

k
(l)
c,j =W

(l)
c,kh

(l)
j + b

(l)
c,k

ec,ij =Wc,eeij + bc,e

(1)

where q
(l)
c,i , k

(l)
c,j , ec,ij ∈ R

ds×ds are the weight metrics, and the
attention is computed as follows:

a
(l)
c,ij =

〈q
(l)
c,i , k

(l)
c,j + ec,ij〉

∑

u∈N(i)
〈q

(l)
c,i , k

(l)
c,u + ec,iu〉

(2)

Multihead attention is applied to multiagent reinforcement
learning: {Dk}. The calculation is a combination of hidden state h(l)n :

MultiHead = Concat
(

h
(l)
1 , h(l)2 , ..., h(l)n

)

WO (3)

For the query, the key and edge matrices are q
(l)
c,i , k

(l)
c,j , ec,ij ∈

R
M×ds . The weightmatrix is expressed asWO ∈ R

dsh×ds . The graph
transformer is proposed for the semisupervised classification task
to achieve state-of-the-art effects. Similar to the graph attention
network, the graph transformer adds attention after the output
layer, calculates the average value of the multihead, and removes
the non-linear transformation.

3.2. RNN position embedding

The transformer embodies each word but does not contain
relative position information. Recurrent neural network (RNN)

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1185169
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wei et al. 10.3389/fnbot.2023.1185169

processes the sentences in order. In the transformer, all the words
of the input sentence are processed at the same time, without
considering the ordering and position information of the words.
In this regard, the author of the transformer proposed a method
of adding “positional encoding” to solve this problem. Positional
encoding allows transformers to measure information related to
word position. As shown in Equation (4), ep is the positional
encoding for the transformer, where p refers to the position of the
word in this sentence, and i refers to the embedding dimension.

ep[i] = sin(p/100002i/d)

ep[2i+ 1] = cos(p/100002i/d)
(4)

The self-attention model represented by the transformer has
positional permutation invariance. Disrupting the word model in
the sentence will obtain the same characteristics. For this reason,
this type of model needs to add “location coding” so that the
model can recognize what words are in any location. For NLP,
we can use Equation (4) to encode the position of the word, but
in the reinforcement learning environment, the spatial dimension
will have much uncertainty compared with the word. For any
language, the number of words will be approximate. Although it
can theoretically handle long sentences, because it is designed by
humans rather than automatically learning from data, it may not
be effective. In the reinforcement learning environment, the state
and action of each step are special and independent, they are also
uncertain, and the state space is infinite. To this end, we need to
find a learnable model. Liu X. et al. (2020) proposed FLOATER
which uses neural ordinary differential equations (ODEs) to model
positional coding. The position coding based on the recursive
model also has better extrapolation. At the same time, it has
better flexibility than the position coding of the trigonometric
function. Liu proved that the position coding of the trigonometric
function is a certain FLOATER, i.e., a special solution. Here, we
define {pi}i∈{1,2,...N} as a position in each episode. where the hi is
the hidden state, and pi is the hierarchical connection between
adjacency layers.

pi+1 = RNN(hi, pi) (5)

In the reinforcement learning environment, each time sequence
corresponds to an RNN memory block. RNN accumulates context
information step-by-step in each episode. The low level contains
N − th RNN encoders, and N − th RNNs correspond to the state of
N− th time points with the current time as the end point. Based on
the RNN to obtain i− th, the corresponding hidden state hi can be
obtained, and then, the step-level attention mechanism is adopted
to obtain the sequence representation ri through the weighted sum
of the hidden states of all steps in the sequence.

3.3. Graph MADDPG with RNN and
attention

As show in the Figure 1, we propose a framework for graph
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) with
transformers. In this framework, graph convolutional networks

are utilized to aggregate information between nodes and their
y-hop neighbors. We then combine the current state and the
previous state’s output as inputs for graph convolutional network
and transformer embedding layers.

Learning the critic and actor for each agent by selectively paying
attention to information from other agents underlies much of this
study. Figure 2 illustrates the main components of our approach.
The proposed method uses G = (V ,E) to compute the graph and
the embedding vectors pi of each agent to compute the RNNs. We
define the A as a series of actions a1, a2, ...aN . The Q-value function
Qi(x, pi, ai) and the action ai = µi(oi, pi) are determined based
on this information. During the process, all critics are updated
simultaneously to minimize the joint regression loss function. The
critic network generates input and output as defined below. The
proposed method is an effective tool for improving accuracy and
efficiency while enhancing the overall performance.

L (θi) = Ex,a,r,x′

[

(

Q
µ

i

(

x, pi, a1, . . . , aN
)

− y
)2

]

(6)

where

y = ri + γQ
µ
′

i

(

x′, p′i, a
′
1, . . . , a

′
N

)

|a′j=µ
′
j(oj ,pi)

(7)

Where yi is the Q generated by the intelligent agent choosing
the path planning behavior according to the policy and µ under
observation o. Algorithm training is carried out with the goal
of maximizing the reward value while minimizing the L(θi)
function. The individual policies are updated by ascent with the
following gradient:

D = ∇θiµi

(

ai | oi, pi
)

∇aiQ
µ

i

(

x, pi, a1 . . . aN
)

(8)

∇θi J(µi) = Ex,a∼D[D|ai=µi(oi ,pi)] (9)

Here, Qµ

i

(

x, pi, a1 . . . aN
)

is a centralized action-value function
that takes as input the actions of all agents, µi is the set of
policies with delayed parameters, a1 . . . aN , in addition to some
state information x, and outputs the Q-value for agent i. In the
simplest case, x could consist of the observations of all agents,
x = (o1, . . . , oN); however we could also include additional
state information if available. Agents can have arbitrary reward
structures, including conflicting rewards in a competitive setting.
Unlike in the MADDPG, the other agents’ observations are
sampled from the linear data. The method that we propose
magnifies information likely to contain relationships between
agents, making the use of RNNs and graphs with transformers
learned from correlations between agents and time-associated
sequences.

In reinforcement learning, the complexity of the environment
often leads to an increase in both the state space and action
space. To deal with high-dimensional, continuous, or partially
observable state spaces, specific reinforcement learning algorithms,
and techniques, such as value function approximation and policy
gradient, are necessary. The complexity of the action space also
affects the algorithm’s feasibility and efficiency. Therefore, selecting
appropriate algorithms and techniques is crucial to handle high-
dimensional state and action spaces in complex reinforcement
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FIGURE 1

The motion trajectory of the agent, where (A) is the MADDPG, (B) is the GPG, and (C) is the method proposed.

FIGURE 2

The input of the neural network is n× (x, y), where the n equals to the number of agents, the output can be obtained after two graph convolutional

network layers and two fully connected layers in sequence.

learning problems, improving the algorithm’s feasibility and
efficiency. As for the details of the model, the state space and action
space are not explicitly described in the provided information.
However, the model’s architecture includes two hidden layers of
graph convolution with a channel size of 16 each and an input layer
with three nodes, the channel size of action is 5. The loss function
used is MSEloss, with an update factor of 0.001 and a learning rate
of 0.01. The batch size is set to 1,024, and the buffer size is 5 ∗ 105.

4. Experiments

4.1. War game platform

To verify the effectiveness and generalizability of our
hierarchical RNN-based graph MADDPG method, we use the
multiagent particle environment simulator All Domain Simulation
(ACS) developed by China Aerospace System Simulation
Technology Co., Ltd., which supports land, sea, and air scenarios,
to simulate the war game.

The ACS system is developed based on C++ standard library
and Qt, and the three-bit geographic information map is developed
by qgis and osg earth. There are certain hardware requirements
for the running environment of the computer. In addition to CPU
memory and other requirements, the loading of 3D geographic
information requires certain video memory space, and a GPU
with at least 4GB RAM is also required. This means that we
need a relatively powerful computer to run the ACS. One of the
systems used in this article has the following hardware and software
specifications. CPU is on the Intel Core I7-8700K, RAM size is 32
GB, GPU is NVidia GTX 1070TI, and SDK includes Visual Studio
2013, QT5.9, OSG, Unity3D, and OSG.

The reward function is a crucial component in reinforcement
learning, and it usually consists of two parts. As shown in Equation
(10), the first part is related to the agent’s navigation goal, where
the agent receives a higher reward value as it approaches the target
position. This incentivizes the agent to reach the goal faster and
with higher accuracy. The second part involves the avoidance of
collisions between agents. In this case, a negative reward value is
assigned to the agents when they collide, which encourages them
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FIGURE 3

Illustrations of cooperative navigation in combat tasks. There are four radar stations, four UAVs, and four targets. The UAVs need to reach the

destination without being cooperatively detected by the radar detectors.

to adopt safe and collision-free behaviors. Overall, the design of the
reward function plays a vital role in shaping the behavior of agents
and achieving the desired objectives in reinforcement learning.

r(t) =

{

−β , if any collisions

−
∑N

i Ec
(

pit , gi
)

otherwise
(10)

As shown in Figure 3, in this study, wemainly consider the ACS
cooperative environment, compare the reward values for different
approaches and compare different hierarchies’ effect results.
This study conducts experiments on MADDPG, RMADDPG,
hierarchical RNN-based graph transformer MADDPG, and graph
MADDPG with transformers of different levels in four different
test environments. A total of 25,000 rounds of training and 5,000
rounds of testing are used, and each round has 25 steps in length.

This study designs the MADDPG algorithm model combined
with a graph and transformer and uses a deterministic action policy,
namely, a = πθ(s). The network structure is divided into two parts:
actor and critic. According to the distance between the two agents,
it is judged whether there is a graph connection between the agents.
Therefore, as shown in Figure 2, the input of the neural network is
3×2. After two layers of the graph convolutional network, it passes
through two subfully connected layers, and the output is obtained.
The mini-batch size during training is 1,024, the maximum round
is 25,000, the update rate of the auxiliary network is 0.01, the
learning rate of the value network is 0.01, and the learning rate of
the policy network is 0.001. Both networks use the Adam optimizer
for learning. The size of the experience pool is 1 × 106. Once the
data in the experience pool exceed the maximum value, the original
experience data will be lost.

Through the establishment of the RNN, graph-only, graph
transformer on the actor and critic, graph transformer on the
actor, and graph transformer on the critic, several MADDPGmodel
structures for training are obtained. The final reward function
is shown in Figure 4. The reward change graph of the three
agents during each episode of training is shown. The x-coordinate
represents the training number of episodes, and the y-coordinate

represents the cumulative rewards of the three agents during each
round of training. As the number of training sessions increases, the

absolute value of the reward decreases, but the reward gradually
increases. Due to the random noise in the training process, there
is oscillation at any moment during the training. As shown in

Figure 4, the number of training rounds reaches 10,000 rounds,
the reward curves of several algorithms tend to be flat, and the

overall trend is converging. Figure 4 and Table 1 show that in the

experimental environment of cooperative navigation, the average

reward value of the transformer change for the actor and critic
networks at the same time is compared with that of RNN and

transformer transformation for the actor or critic alone. The effect
is better. The result of the comparison is that the effect of RNN is
better than the case of only using the graph convolution operation.

We also found that the effect of transformer transformation on

the actor and critic alone tends to be the same. This also effectively

shows that the graph convolutional network has an effect on the
multiagent environment, but the neural network is difficult to
concentrate, the convergence speed is slow, and the effect is average,
and it is slightly inferior to the RNN. In a multiagent environment,
the RNN has more difficulty in expressing the relationship between
multiple agents. To verify that the graph convolutional network
can indeed express the relationship characteristics between agents,
we added a transformer on the basis of the graph convolutional
network. The results also show that the graph MADDPG with a
transformer on the critic and actor algorithm has stronger stability
and faster convergence.

Our previous results (Wei et al., 2021) proposed a hierarchical
transformerMADDPG based on the RNNmethod, which inherited
the idea of the RNN and added transformer at the same time.
To verify that the graph convolution with a transformer can
indeed express more features of the agent, we compared the
reward values of the three sets in the experiments. They are RNN-
based MADDPG, transformer-based R-MADDPG, and graph-
based transformer-MADDPG. As shown in Figure 5, with the
addition of a transformer, the graph-based method we proposed is
significantly better than the RNN method.
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FIGURE 4

The comparison of the MARDPG, RMADDPG, graph MADDPG, and graph MADDPG with a transformer. The Y axis is the average reward of all agents

for a simple navigation task. On the left, we compared the RNN, graph MADDPG, and graph MADDPG with a transformer on the actor and critic; on

the right, we compared the graph MADDPG with a transformer on the actor, graph MADDPG with a transformer on the critic, and graph MADDPG

with a transformer on the actor and critic.

TABLE 1 The proposed deep reinforcement learning framework demonstrates various indicators for each agent in cooperative navigation.

Average reward of cooperative
navigation

Average number of steps needed
to reach the goal

Time (ms)

Agent1 Agent2 Agent3 3 agents 6 agents 9 agents

MADDPG −0.775036 −0.7598686 −0.77283 400± 1,000+ 1,000+ 0.225

RMADDPG 3.318712 3.316456 3.318392 300± 600± 900± 2.236

Graph −2.18555 −2.186014 −2.18629 500± 1,000+ 1,000+ 14.082

Graph transformer on critic −2.271803 −2.270067 −2.27163 170± 300± 650± 13.794

Graph transformer on actor −1.543637 −1.544357 −1.54212 120± 250± 500\pm 14.463

Graph transformer on critic and actor 6.628632 6.62872 6.630488 15± 25± 55± 14.557

The table shows that the algorithm with the highest average reward value is represented by black bold lines. Notably, the framework performs best when the graph transformer is applied to both

the critic and actor.

As shown in Figure 6, we compare the results with R-MADDPG
on the critic and actor. Based on the idea of R-MADDPG, we take
RNNs as the first input layer; after the RNNs, the graph convolution
layer follows. It can be seen from the results that with the training
process, the agent can find the optimal value efficiently and quickly.

Through the establishment of the RNN, graph-only, graph
transformer on the actor and critic, graph transformer on the
actor, and graph transformer on the critic, several MADDPGmodel
structures for training are obtained. The final reward function is
shown in Figure 4. The reward change graph of the three agents
during each episode of training is shown. The abscissa represents
the training number of episodes, and the ordinate represents the

cumulative rewards of the three agents during each round of
training. As the number of training sessions increases, the absolute
value of the reward decreases, but the reward gradually increases.
Due to the random noise in the training process, there is oscillation
at any moment during the training. From Figure 4, it can still
be seen that after the number of training rounds reaches 10,000
rounds, the reward curves of several algorithms tend to be flat, but
in the case of the graph transformer on the actor and critic, the
average reward value increases faster. The average reward value of
performing transformer changes on the actor and critic networks
is comparable to that of R-MADDPG, performing transformer
transformation on the actor or critic alone. This also effectively
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shows that graph convolution has an effect on the multiagent
environment, but the neural network is difficult to concentrate,
the convergence speed is slow and the effect is average, and it is
slightly inferior to the RNN. In amultiagent environment, the RNN
has more difficulty expressing the relationship between multiple
agents. To verify that graph convolution can indeed express the
relationship characteristics between agents, we added a transformer
on the basis of graph convolution. The results also show that
the graph MADDPG with a transformer on the critic and actor
algorithm has stronger stability and faster convergence.

4.2. Results analysis

Figure 4 and Table 1 illustrate the results in ACS
environments. We analyze the results in detail below. In
the cooperative navigation environment, for our proposed
approach, the rewards are shared across neighboring
steps; thus, an agent’s critic does not need to focus
on the information from specific steps to calculate its
expected rewards. On the other hand, for rewards in
the competitive environment, the agents are tied to

FIGURE 5

The comparison of the graph MARDPG with a transformer, RMADDPG, and RMADDPG with a transformer. The Y axis is the average reward of all

agents for a simple navigation task.

FIGURE 6

Testing in collaborative navigation environment, the left figure presents the comparison among rnn, graph-only and graph-transformer on actor and

critic. The right one presents the comparison among graph-transformer on actor and critic, graph-transformer on actor and graph-transformer on

critic.
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understanding the neighboring step’s observations. This
explains why there is an obvious improvement and
the MADDPG completely breaks down, as knowing
information from another specific step is crucial in predicting
expected rewards.

In the experiment, we add the time duration by the agent to
reach the destination and the average number of steps cost in
each episode. As shown in the table, for the method MADDPG,
RMADDPG cost more steps for reaching the destination. We
recorded the trajectories of each agent, as shown in the figure
above, using the GPG method. When an agent gets stuck
in a corner, it ceases exploration and may become more
chaotic if further trapped. However, with the incorporation of
graph-transformers and RNNs in our method, the agent is
better equipped to navigate obstacles presented by critics and
actors.

5. Conclusion

In this study, we focus on the problem of multiagent in
a 3D situation environment for electronic warfare. Graph
convolution is introduced to establish the relation function
between agents. Furthermore, in order to highlight the
relationship between graph nodes, attention mechanism
is introduced. To give consideration to the continuity of
the agent in the dimension of time, the recurrent neural
network is introduced. The proposed method with RNNs
and a graph transformer network are highly efficient for
multiagent reinforcement learning. To verify this, the experiments
showed that the graph transformer with RNNs is capable of
enabling MADDPG to reduce the cost of exploration and
multiagent exploration.
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