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Speech emotion recognition is challenging due to the subjectivity and ambiguity

of emotion. In recent years, multimodal methods for speech emotion recognition

have achieved promising results. However, due to the heterogeneity of data from

di�erent modalities, e�ectively integrating di�erent modal information remains

a di�culty and breakthrough point of the research. Moreover, in view of the

limitations of feature-level fusion and decision-level fusion methods, capturing

fine-grained modal interactions has often been neglected in previous studies. We

propose a method named multimodal transformer augmented fusion that uses

a hybrid fusion strategy, combing feature-level fusion and model-level fusion

methods, to perform fine-grained information interaction within and between

modalities. A Model-fusion module composed of three Cross-Transformer

Encoders is proposed to generatemultimodal emotional representation for modal

guidance and information fusion. Specifically, the multimodal features obtained

by feature-level fusion and text features are used to enhance speech features.

Our proposed method outperforms existing state-of-the-art approaches on the

IEMOCAP and MELD dataset.

KEYWORDS

speech emotion recognition, multimodal enhancement, hybrid fusion, modal interaction,

transformer

1. Introduction

Speech emotion recognition (SER) is a branch of affective computing that aims to

determine a person’s emotional state from their speech (Ayadi et al., 2011). With the

increasing demand for human-computer interaction and emotional interaction, research

into SER has practical significance and broad application prospects. A SER system can be

used in a vehicle system to determine the driver’s psychological state and ensure the safe

operation of the vehicle in real-time (Wani et al., 2021). In hospitals and other medical

facilities, SER system can help doctors analyze the patient’s emotions so as to enhance

communication between doctors and patients and help doctors carry out disease diagnosis

(Tao and Tan, 2005). SER has also been applied in customer service centers, such as train

stations to detect the emotional state of customers in real time, which can help customer

service personnel provide more efficient and higher-quality services (Schuller, 2018). SER

is also used to help children with autistic who may encounter difficulties in identifying and

expressing emotions, thereby improving their socioemotional communication skills (Marchi

et al., 2012). However, due to the complexity, subjectivity and ambiguity of emotions, it is still

a challenge to accurately recognize emotions from speech.
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In recent years, the introduction of multimodal methods

for SER has attracted the attention of researchers (Sebe et al.,

2005). Emotion is a form of multi-channel expression and people

generally use multimodal information such as speech, text, and

facial expressions to express emotions (Shimojo and Shams, 2001).

Moreover, when noise occurs in one modality, the complementary

information of different modalities can increase the robustness of

the system. SER based on multimodal fusion information is can

therefore be expected to outperform SER based on speech only

(Wang et al., 2022).

This paper focuses on using the fusion of speech and text

modalities to improve the performance of SER. First, the text

modality provides the semantic content. The semantic information

is rich and direct, but it is easily affected by the speech recognition

task so as to contain ambiguity and bias (Wu J. et al., 2021). The

speech modality provides information about the tone, speed, and

volume of the speech delivery. Its advantage is that it can help one

perceive the speaker ’s emotions, but it is difficult to obtain semantic

information directly from speech. Second, text can be transcribed

from speech, and the text features are part of the speech features.

Text and speech can complement each other well (Atmaja et al.,

2022). In the event of ambiguity and bias in the text, the emotional

information based on the speaker in the speech can be used as a

reference. If it is difficult to obtain semantic information from the

speech, the text can provide supplementary information.

In view of the limitations of feature-level fusion and decision-

level fusion methods, capturing comprehensive and fine-grained

modal interaction has often been neglected in previous studies.

Compared with decision-level and feature-level fusion methods,

model-level fusion can better use the advantages of deep neural

networks, better integrate the features of different modalities, and

obtain more accurate emotional representations. In hybrid fusion,

the advantages of the different fusion strategies can be combined

to capture more fine-grained information on intra-modal and

inter-modal interaction.

Furthermore, inspired by the attention mechanism, researchers

have proposed the transformer (Vaswani et al., 2017), which

has achieved promising results in the field of natural language

processing (NLP). Transformer has an excellent ability in modeling

long-term dependencies in sequences. Although the original

Transformer was proposed to solve machine translation problems

in the field of NLP, researchers are studying its adaptability to

the field of speech signal processing. The multi-head self-attention

mechanism can learn long-term time dependence; the multi-

head cross-attention mechanism can realize the fusion of different

modal features from the model level, and generate intermediate

multimodal emotional representations from the common semantic

feature space, thereby improving the accuracy of SER.

Therefore, we propose a method named multimodal

transformer augmented fusion (MTAF) that uses a hybrid fusion

strategy, combining feature-level fusion and model-level fusion

methods. The feature-level fusion method is used to fuse the speech

and text features to obtain multimodal features. Self-Transformer

Encoders are then used to model the long-term time dependence

of different modal features. A Model-fusion module is proposed

to generate multimodal emotional intermediate representations

for modal guidance and information fusion by Cross-Transformer

Encoders. Specifically, the multimodal features are used to enhance

the speech and text features. The enhanced text features are then

used to further enhance the speech features. Finally, the enhanced

speech features are used for sentiment classification. The superior

performance of MTAF over recent state-of-the-art methods is

demonstrated through a variety of experiments conducted on the

IEMOCAP and MELD dataset.

2. Related work

Although multimodal methods have achieved significant

success in the field of SER, there are great differences between

modalities, both in their relative independence and in their

synchronous or asynchronous information interaction. Hence,

effectively integrating the information from different modalities

remains a difficulty and breakthrough point of the research (Poria

et al., 2017a). In the field of multimodal emotion recognition,

researchers have mainly sought to determine at what stage the

model could perform the fusion of different modal features.

Fusion methods can be divided into feature-level fusion (early

fusion), decision-level fusion (late fusion), model-level fusion,

and hybrid-level fusion. Feature-level fusion fuses the features of

various modalities (such as visual features, text features, audio

features) into general feature vectors, and uses the combined

features for analysis. Wu et al. proposed a new deep learning

architecture Parallel Inception Convolutional Neural Network

(PICNN). They performed convolution in parallel to process sEMG

signals from six channels and then used the concatenation method

to combine features of different scales directly before entering

them into the remainder of the common convolutional neural

network (Wu J. et al., 2021; Wu et al., 2022). Joshi et al. combined

audio, video, and text features by adding them and sent them to

Transformer Encoder (Joshi et al., 2022). The advantage of feature-

level fusion is that the low-level features of the data are used in the

early stage. More information from the original data is used, and

the task is completed based on the correlation between multimodal

features (Lian et al., 2020). However, the features obtained by

this fusion method belong to different modalities and may vary

greatly in many respects. The features must therefore be converted

to the same format before the fusion process. Moreover, this

fusion method lacks information interaction within the modality,

and the high-dimensional feature set may be susceptible to data

sparsity problems (Lian et al., 2021), making the method prone to

modal information redundancy and leading to data overfitting. The

advantages of feature-level fusion are therefore limited.

To overcome this limitation, decision-level fusion uses

unimodal decision values and fuses them by ensemble learning

(Chen and Zhao, 2020), tensor fusion (Zadeh et al., 2017), or

multiplication layer fusion (Mittal et al., 2020). In the decision-level

or late fusion process, the features of each modality are examined

and classified independently, and the results are fused into decision

vectors to obtain the final decision. The advantage of decision-level

fusion is that, compared with feature-level fusion, the fusion of

decisions obtained from various modalities becomes easier, because

decisions generated by multiple modalities often have the same

data form (Poria et al., 2016). Another advantage of this fusion

process is that each modality can use its most appropriate classifier

or model to learn its features (Sun et al., 2021). However, due
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to the use of different classifiers or models in the analysis task,

the learning process in the decision-level fusion phase becomes

cumbersome and time-consuming. Moreover, this method must

solve the problem of the inability to capture more fine-grained

modal dynamics, without taking into account the interaction and

correlation between different modalities.

Model-level fusion, in contrast, fuses intermediate

representations of different modalities by using various models

of deep learning, such as Long Short Term Memory (LSTM),

attention, and transformer. In model-level fusion, previous

work has used kernel-based methods (Nen et al., 2011) to fuse

multimodal features, and showing performance improvements.

Subsequently, Charles achieved good results by combining the

ability of the graph model (Sutton and McCallum, 2010) to

compactly model diverse data with the ability of classification

methods to make predictions using a large number of input

features. Recently, more advanced methods use attention-based

neural networks for model-level fusion. Chen and Jin (2016)

proposed a multi-modal conditional attention fusion method to

accomplish a continuous multimodal emotion prediction task.

Their method can use the temporal information of video combined

the historical information and the different levels of features of

different modalities, and dynamically give different weights to

the visual and auditory modalities input by LSTM at each time

step. Poria et al. (2017c) introduced an attention-based fusion

mechanism called AT-Fusion that uses the attention score of

each modality to fuse multimodal features. It amplifies higher-

quality and more informative modalities in the fusion process of

multimodal classification, and has achieved promising results in

emotion recognition. Wang et al. (2021) proposed a multimodal

transformer with shared weights for SER. The proposed network

shares cross-modal weights in each Transformer layer to learn

the correlation between multiple modalities. However, the

effect of the model-level fusion method mainly depends on the

fusion model used. This method lacks fine-grained interactions

within and between modalities, and cannot make full use of the

complementary information between modalities.

Hybrid-level fusion (Poria et al., 2017a) is a combination of

the first three fusion methods and is therefore more complex.

Sebastian and Pierucci (2019) proposed a combination of early

and late fusion techniques, using complementary information from

speech and text modalities. Wu W. et al. (2021) proposed a

dual-branch structure combining time synchronization and time

asynchronous features for multimodal emotion recognition. A time

synchronous branch (TSB) captures the correlation between each

word in each time step and its acoustic implementation, while

time asynchronous branch (TAB) integrates sentence embedding

from context sentences. Shen et al. (2020) designed a hierarchical

representation of audio at the word, phoneme and frame levels

to form more emotionally relevant word-level acoustic features.

Xu et al. (2020) established a hierarchical granularity and feature

model, which helps to capture more subtle clues and obtain a more

complete representation from the original acoustic data. The hybrid

fusionmethod varies depending on the combination of the different

fusion methods and is the best and most comprehensive fusion

method at present. However, although the hybrid-level fusion

method combines the advantages of different fusion methods and

makes different modalities interact well, it increases the complexity

and training difficulty.

Most of the methods above use a single fusion strategy or a

single fusion model and lack fine-grained modal interactions. In

contrast to the methods above, our proposed method uses a variety

of fusion strategies and multi-level fusion models to capture fine-

grained intra-modal and inter-modal information interactions,

and achieve high recognition accuracy. This paper presents the

multimodal transformer augmented fusion (MTAF) method for

emotion recognition, focusing on speech and text domains. The

novelty of the work lies in the combination of feature-level and

model-level fusionmethods and the introduction of aModel-fusion

module to facilitate fine-grained interactions between and within

modalities. We first use feature-level fusion to perform early modal

interactions between the speech and text modalities. Then, we

construct the three independent models using Self-Cransformer

Encoders to capture the intra-modality dynamics. Finally, a Model-

fusion module composed of three Cross-Transformer Encoders to

perform late modal interactions. By using a joint model, Fine-

grained intermodal dynamic interactions are captured for the

speech and text modalities.

3. Proposed method

As shown in Figure 1, we propose a method that uses both

speech and text modalities for emotion recognition. The extracted

low-level features are fed in sequence to the transformer encoder.

The model consists of five parts: Speech, Text, Feature-fusion,

Model-fusion modules, and a classification layer.

3.1. Feature-level fusion

The input speech feature sequence of an utterance is

represented as xa. The text feature sequence of an utterance is

represented as xl.

The multimodal feature sequence of an utterance is as follows:

xe = [xa; xl] (1)

where [ ; ] is the concatenation operator.

3.2. Multimodal transformer

Wefirst map the speech, text, andmultimodal features obtained

in the previous step to the same dimension through a linear layer.

The features are then sent to the Self-Transformer Encoder to

capture the time dependence. Finally, the Model-fusion module,

which is composed of three Cross-Transformer Encoders is used

to generate multimodal emotional intermediate representations

for modal guidance and information fusion. Specifically, the

multimodal features are used to enhance the speech and text

features. The enhanced text features are then used to further

enhance the speech features.

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1181598
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2023.1181598

FIGURE 1

Architecture of the MTAF model.

The core components of the Self-Transformer Encoder

and the Cross-Transformer Encoder are a multihead self-

attention mechanism and multihead cross-attention mechanism,

respectively. Each transformer encoder has m layers and n

attention heads.

3.2.1. Scaled dot-product attention
The query Q, key K, and value V of the multi-head self-

attention mechanism come from the same modality. However, for

the multi-head cross-attention mechanism, the source modality

feature is transformed to the pair of K and V while the target
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modality feature is transformed into Q. We compute the matrix of

outputs as follows:

Attention (Q,K,V) = softmax

(

QKT

√

dk

)

V (2)

where dk is the dimension of Q.

3.2.2. Multihead attention
Multihead Attention allows the model to focus on information

from different presentation subspaces in different locations.

Multihead (Q,K,V) = Concat
(

head1, ..., headn
)

WO (3)

where headi = Attention
(

QWQ
i ,KW

K
i ,VW

V
i

)

(4)

where n is the number of attention heads; WO, WQ
i , W

K
i , and WV

i

are learned model parameters.

3.3. Classification layer

After theModel-fusionmodule, the final multimodal emotional

intermediate representation H is passed through a fully-connected

network and a softmax layer to predict the emotion class with the

cross-entropy loss as the cost function:

∼
y = softmax(wH + b) (5)

Loss = −
1

N

N
∑

i=1

yilog
(

∼
yi

)

(6)

where yi is the true label,
∼
yi is the predicted probability distribution

from the softmax layer, w and b are learned model parameters, and

N is the total number of samples used in training.

4. Experiment set-up

4.1. Datasets

4.1.1. IEMOCAP
The IEMOCAP (Busso et al., 2008) contains approximately 12

h of audiovisual data. We used the speech and text transcription

data which include 7,487 utterances conveying seven emotions:

frustration (1,849), neutral (1,708), anger (1,103), sadness (1,084),

excitement (1,041), happiness (595), and surprise (107). Excitement

is incorporated into happiness. We randomly split the dataset into

a training (80%) and a test (20%) set.

4.1.2. MELD
The MELD (Poria et al., 2018) is a new multimodal dataset for

emotion recognition. It consists of 13,708 utterances with seven

emotions (anger, disgust, fear, joy, neutral, sadness, and surprise)

taken from 1,433 dialogues from the classic TV-series Friends. The

whole dataset is divided into training, validation, and test sets. In

this work, we only use the training and test sets.

4.2. Speech and text features

4.2.1. Speech features
Librosa (McFee et al., 2015), a Python package, was used to

extract utterance-level speech features. Features with a total of

199 dimensions were extracted, including Mel-Frequency Ceptral

Coefficients (MFCC), chroma, pitch, zero-crossing rate, spectral

and their statistical measures (HSDs) such as mean, standard

deviation, minimum, and maximum.

4.2.2. Text features
The transcripts in the IEMOCAP and MELD dataset were used

to extract a 1,890-dimensional Term Frequency-Inverse Document

Frequency (TFIDF) feature vector. TFIDF is a numerical statistic

that shows the correlation between a word and a document in a

collection or corpus (Sahu, 2019).

4.3. Implementation details

Through a linear layer, we obtain 256-dimensional speech, text

and multimodal features. We feed them into Self-Transformer

Encoder, which has 2 Transformer Encoder layers and 4 multi-

head attention heads. Next, three newly generated 256-dimensional

vectors are sent to the Model-fusion module, which is composed of

three Cross-Transformer Encoders. Q is the first residual part of the

Cross-Transformer Encoder to perform deep interactions between

modalities. Cross-Transformer Encoder and Self-Transformer

Encoder have the same number of layers and attention heads. After

the Model-fusion module, a 256-dimensional emotional feature

vector is finally obtained for sentiment classification.

The training procedure was implemented using PyTorch on a

GTX3090. We used the Adam (Kingma and Ba, 2014) optimizer,

setting the learning rate to 0.0001. The batch size was 200. To

alleviate overfitting, we used the dropout method with a rate of 0.4.

We trained the model for at most 50,000 epochs until the accuracy

did not change.Weighted accuracy (WA) and unweighted accuracy

(UA) were used as the evaluation metrics.

5. Experiment results

5.1. Comparison with state-of-the-art
approaches

To verify the effectiveness of our proposed method, we

compared our MTAF with the following thirteen state-of-the-

art approaches, all of which use multiple modalities for emotion
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recognition. These methods can be divided into four groups

according to the fusion level.

(1) Feature-level fusion: (a) Audio + Text_LSTM (Sahu, 2019)

directly sends the concatenated features to the bidirectional LSTM

network. (b) COGMEN (Joshi et al., 2022) propose COntextualized

Graph Neural Network based Multimodal Emotion recognitioN

(COGMEN) system that leverages local information (inter/intra

dependency between speakers) and global information (context).

(2) Decision-level fusion: (a) In Kumar et al. (2021), the audio

and textual features were extracted separately using attention-

based Gated Recurrent Unit (GRU) and pre-trained Bidirectional

Encoder Representations from Transformers (BERT), respectively.

Then they were concatenated and used to predict the final emotion

class. (b) In MDNN (Zhou et al., 2018), the proposed framework

train raw features by groups in local classifiers to avoid high

dimensional. Then high-level features of each local classifiers are

concatenated as input of a global classifier. (c) bcLSTM (Poria et al.,

2017b) propose a LSTM network that takes as input the sequence

of utterances in a video and extracts contextual unimodal and

multimodal features by modeling the dependencies.

(3) Model-level fusion: (a) Xu et al. (2019) utilized an attention

network to learn the alignment between speech and text. (b)

MCSAN (Sun et al., 2021) employed the parallel cross- and

self attention modules to explicitly model both inter- and intra-

modal interactions of audio and text. (c) CAN (Yoonhyung

et al., 2020) applied the attention weights of each modality

to the other modality in a crossed way so that the CAN

gathers the audio and text information from the same time steps

based on each modality. (d) CMA + Raw waveform (Krishna

and Patil, 2020) applied Cross-modal attention to the output

sequences from the audio encoder and text encoder, which helps

in finding the interactive information between the audio and

text sequences and thus helps improve the performance. (e)

CTNet (Lian et al., 2021) proposed to use the transformer-

based structure to model intra-modal and cross-modal interactions

among multimodal features.

(4) Hybrid-level fusion: (a) Late Fusion-III (Sebastian

and Pierucci, 2019) employed various fusion techniques to

provide relevance to intermodality dynamics, while keeping

the separate models to capture the intra-modality dynamics.

(b) HGFM (Xu et al., 2020) took the output of frame-

level structure as the input of utterance-level structure and

extract the acoustic features of these two levels respectively

for effective and complementary fusion. (c) STSER (Chen

and Zhao, 2020) applied a multi-scale fusion strategy,

including feature fusion and ensemble learning to improve

the overall performance.

All the results are listed in Tables 1, 2. On the IEMOCAP

dataset, as we can see, our proposed method achieves 72.31% WA

and 75.08% UA. Compared with other state-of-the-art approaches,

the WA of our method is 0.61 to 14.41% higher and the UA is 0.08

to 26.38% higher. On the MELD dataset, our proposed method

achieves 48.12% WA. A 5.82 to 14.12% improvement on other

approaches. Although our method is superior to other algorithms,

the overall performance on the MELD dataset is not ideal. We

speculate that this is because, compared with the IEMOCAP

dataset, the MELD dataset should be a relatively large dataset in

the field of emotion recognition. Its data comes from the TV

TABLE 1 Model performance comparisons on the IEMOCAP dataset.

Model WA (%) UA (%)

Audio+Text_LSTM 64.20 —

COGMEN 68.2 —

Kumar et al. 71.70 75.00

Xu et al. 70.40 69.50

MCSAN 61.20 56.00

CAN 57.90 48.70

CMA+Raw waveform — 72.82

CTNet — 67.60

Late Fusion-III 61.20 59.30

STSER 71.06 72.05

MTAF 72.31 75.08

The bold values indicate the model with the best results, WA and UA with the highest

results, respectively.

program Friends, which is not closer to real life than the data in

IEMOCAP. Moreover, the data collection conditions are not as

standardized as those of IEMOCAP. The recognition accuracy for

MELD is therefore not as high as IEMOCAP. But we do believe that

MELD is a good platform to compare and validate our method,

because compared with other models, the experimental results of

our method improves a lot although the overall results are low.

On the surface it seems there is limited improvement in

both WA and UA, compared to Kumar’s work. Actually, our

experimental results were obtained by averaging the results of

10 experiments. Each experiment is carried out under the same

experimental conditions, including datasets, model parameters,

training and testing processes. The purpose is to reduce the

influence of random errors and increase the reliability and stability

of the results. The highest experimental results of WA was 73.18%

and UA was 75.49% on the IEMOCAP dataset. Compared to

Kumar’s work, our method achieves 1.48% higher WA and 0.49%

higher UA. In addition, the training speed of our proposed model

is very fast, so that it can process large amounts of data quickly. The

memory occupied by the model is also very small, which is achieved

by optimizing and streamlining themodel tominimize unnecessary

computing and storage operations. We therefore believe that the

experimental results show the superiority of our method.

Based on the above experimental results, we analyze the

performance enhancements of the model. (1) Though a

hybrid fusion strategy, our model combines the advantages

of feature-level and decision-level fusion methods to better

integrate the two modalities of speech and text. It uses the

complementary information of the two modalities to better

generate emotional representation. The improvement of the

accuracy in the experimental results effectively verifies this point.

(2) The multimodal Transformer Encoders achieve fine-grained

inter-modal and intra-modal interactions between speech and

text modalities well. The Model-fusion module composed of

three Cross-Transformer Encoders can generate multimodal

emotional intermediate representations for modal guidance and

information fusion.
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5.2. Confusion matrix of experiment

Figure 2 shows the confusion matrices of models using speech

only and text only and the confusion matrix for our proposed

model MTAF on the IEMOCAP dataset. The Speech-Only and

TABLE 2 Model performance comparisons on the MELD dataset.

Model WA (%)

MDNN 34.00

bcLSTM 39.10

HGFM 42.30

MTAF 48.12

The bold values indicate the model with the best results, WA with the highest

results, respectively.

Text-Only models have a Speech module and Text module,

respectively, but not a Model-fusion module.

For the two emotional categories of frustration and neutral

from Figure 2, the recognition accuracy of the multimodal model is

close to those of the single-modality models. For other emotional

categories, the recognition accuracy of the multimodal model is

much higher than those of the single-modality models. We also

observe a significant improvement of 10–27% recognition accuracy

for the happiness category after combining speech and text for

emotion recognition. Furthermore, the recognition accuracy of

the anger category is significantly improved by 15–18%, and that

of the sad category is significantly improved by 9–14%. These

experiment results confirm the effectiveness of emotion recognition

that combines speech and text modalities. Multimodal methods

combine the advantages of different modalities to obtain richer

FIGURE 2

Confusion matrices of each model on the IEMOCAP dataset. (A) Speech-only confusion matrix. (B) Text-only confusion matrix. (C) MTAF confusion

matrix.
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TABLE 3 Ablation study of our proposed method.

Model WA (%) UA (%)

Feature fusion 67.15 68.30

Model fusion 63.66 64.95

Without self-transformer encoder 70.09 73.48

Without cross-transformer encoder 69.65 72.24

MTAF 72.31 75.08

The bold values indicate the model with the best results, WA and UA with the highest

results, respectively.

emotional representation. Moreover, complementary information

of different modalities can also increase the robustness of the

system when noise occurs in one modality.

It is notable that the anger, happiness, and neutral categories

are misclassified as sadness with a relatively large probability.

Additionally, the happiness and sadness categories are also often

classified as neutral. 55% of interpersonal relationships rely on

facial expressions or body movements, 38% rely on speech, and

only 7% rely on text (Mehrabian, 1971). Facial expressions therefore

give very important clues to human emotions (Kim et al., 2017;

Dai et al., 2021; Lee et al., 2021). On the basis of speech and text

modalities, increasing facial expressions can improve recognition

accuracy (Yoon et al., 2019; Kumar et al., 2022). Thus, we infer

that humans express these emotions more in facial expressions

than in speech and semantic content. These are interesting findings

requiring more research and may lead to further improvement in

the recognition accuracy.

5.3. Ablation study

A variety of ablation experiments were conducted on the

IEMOCAP dataset to evaluate the fusion methods, transformer

encoders, and model parameters in our proposed method. Tables 3,

4 present the results.

Table 3 shows the ablation study results for : Feature Fusion,

Model Fusion, Without Self-Transformer Encoder, and Without

Cross-Transformer Encoder. The Feature Fusion model includes

the Feature-fusion module in the middle of Figure 1, but not

the Model-fusion module. The Model Fusion model does not

include the Feature-fusionmodule branch and uses only one Cross-

Transformer Encoder for multimodal fusion. Then, the Without

Self-Transformer Encoder model directly sends extracted low-level

speech, text and concatenated multimodal features into the Model-

fusion module. Finally, The Without Cross-Transformer Encoder

model removes the Model-fusion module and concatenates the

outputs of the three branches directly into a fully-connected layer.

In comparison to the Feature Fusion and Model Fusion

models, our proposed model, MTAF, achieves 5.16 to 8.65%

higher WA and 6.78 to 10.13% higher UA. The experimental

results confirm the effectiveness of our proposed hybrid fusion

strategy. It combines the advantages of feature-level and model-

level fusion methods, captures more fine-grained intra-modal and

inter-model interactions, and makes full use of the complementary

TABLE 4 Ablation study of transformer encoder.

n m WA (%) UA (%)

1 3 70.89 73.47

2 4 72.31 75.08

3 5 71.57 73.86

5 8 70.95 73.64

6 10 70.69 73.17

The bold values indicate the Transformer Encoder layers andmulti-head attention heads with

the best results, WA and UA with the highest results, respectively.

information of speech and text modalities to obtain richer

emotional representation.

When the Self-Transformer Encoder is removed, the

model’s performance decreases by 2.22% in terms of WA

and 1.60% in terms of UA. This finding highlights the

importance of using multi-head self-attention mechanisms

for intra-modal interaction to capture contextual time

dependence. Furthermore, the model’s performance

decreases when the Cross-Transformer Encoder is removed,

which indicates that the multi-head cross-attention

mechanisms can integrate features of different modalities for

information exchange and generate multimodal emotional

intermediate representations.

Table 4 shows the results of using n Transformer Encoder layers

and m multi-head attention heads. Through comparison of the

results, we found that n = 2, and m = 4 achieves the best results.

This finding shows that deep-level models are not suitable for SER

tasks.

6. Conclusion

We propose a method named multimodal transformer

augmented fusion that uses a hybrid fusion of both speech

and text features, combining feature-level fusion and model-

level fusion methods, to effectively integrate different

modal information. A Model-fusion module composed of

three Cross-Transformer Encoders is proposed to generate

multimodal emotional representation for modal guidance

and information fusion. Specifically, the Transformer

Encoders are used to perform fine-grained dynamic intra-

and inter-modality interactions. Moreover, experimental

results demonstrate the effectiveness of our proposed method

on the IEMOCAP and MELD dataset. In future work, we

will try to add facial expressions for multimodal emotion

recognition and further improve the accuracy of speech

emotion recognition.
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