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Adaptive visual–tactile fusion
recognition for robotic operation
of multi-material system

Zihao Ding, Guodong Chen*, Zhenhua Wang and Lining Sun

The Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou, China

The use of robots in various industries is evolving from mechanization to

intelligence and precision. These systems often comprise parts made of di�erent

materials and thus require accurate and comprehensive target identification.While

humans perceive the world through a highly diverse perceptual system and can

rapidly identify deformable objects through vision and touch to prevent slipping or

excessive deformation during grasping, robot recognition technologymainly relies

on visual sensors, which lack critical information such as object material, leading

to incomplete cognition. Therefore, multimodal information fusion is believed to

be key to the development of robot recognition. Firstly, a method of converting

tactile sequences to images is proposed to deal with the obstacles of information

exchange between di�erent modalities for vision and touch, which overcomes the

problems of the noise and instability of tactile data. Subsequently, a visual-tactile

fusion network framework based on an adaptive dropout algorithm is constructed,

together with an optimal joint mechanism between visual information and tactile

information established, to solve the problem of mutual exclusion or unbalanced

fusion in traditional fusion methods. Finally, experiments show that the proposed

method e�ectively improves robot recognition ability, and the classification

accuracy is as high as 99.3%.
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1. Introduction

The growing individualization of products demands facilities that canmanufacture small

batch sizes with little effort. Autonomous robots can help increase the required flexibility.

The reliable task execution is required for similar but different product variants. The Institute

of Robotics and Mechatronics of the German Aerospace Center (DLR) has developed an

autonomous robot assembly system for flexible manufacturing (Nottensteiner et al., 2021).

Take the gyroscope as an example, it is an instrument that can accurately determine the

orientation of moving objects, which is of great strategic importance to industry, defense,

and other high-tech development. For the high-precision gyroscope gluing process, it is

necessary to consider the bonding strength between the parts and the reliability of the

bonding seal (Yan et al., 2023). The bonding strength is related to the material properties,

and there is a significant difference between metal and non-metal parts. The gyroscope is a

combination of metal parts and non-metal parts. We call this a multi-material system, which

requires us to correctly identify the material properties of different parts when assembling.

The vision sensor can only acquire the appearance characteristics of the object but cannot

perceive the material properties of the object. Moreover, vision is susceptible to the influence

of light and background, and the recognition rate is not high in industrial scenes (Haibo

et al., 2023). Therefore, we need to combine vision and touch together to recognize objects.
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The integration of visual and tactile information is challenging,

and there is no standard framework for doing this work. In

addition, the difficulty with integrating tactile force feedback

without leading to potentially disrupting oscillations in the robotic

system. Additionally, humans can process and integrate a large

amount of sensory information simultaneously. Thus, it is also

expected that robots can perceive the attributes of objects as

accurately as humans (Dunin-Barkowski and Gorban, 2023). The

object recognition algorithm based on visual images has been

developed in many fields (De Vries et al., 2019; Qi et al., 2021;

Grimaldi et al., 2022). However, the scenes with similar objects and

object occlusion pose significant challenges to the visual algorithm.

In this regard, the tactile sensor can be installed on the dexterous

hand (Sundaralingam et al., 2019; Wang et al., 2019, 2022) to sense

the material attributes of the object, such as texture (Tsuji and

Kohama, 2019; Park et al., 2021) and roughness (Işleyen et al.,

2019), to make up for the shortcomings of the visual sensor.

Although great progress has been made in object recognition

using visual or tactile information alone, the attributes of objects

are diverse and a single sensor alone cannot fully recognize

objects. Shah et al. (2021) reviewed the design and development

of the vision-based tactile sensors (VBTSs). Yuan et al. (2017)

compared the recognition performance on a single modality when

joint trained on one or two modalities and found that the extra

information from another modality would boost the performance

on a single-modality match. Li et al. (2019) adopted a generative

adversarial learning-based prediction model and proved that visual

modality and tactile modality could be converted to each other.

As the two perceptual modalities can provide complementary

information, visual-tactile fusion learning contributes to robot

target recognition (Wang et al., 2018). How to fuse the information

from the two different modalities is challenging (Gao et al.,

2022). Sun et al. (2016) proposed a systematic system for target

identification and manipulation via visual and tactile data. Liu

et al. (2016, 2018a,b) proposed a joint group kernel sparse coding

(JGKSC) method to tackle the intrinsically weak pairing problem

in visual-tactile data samples and subsequently developed a visual

cross-modal matching algorithm designed a shared dictionary

learning model. Yang et al. (2017) and Xiong et al. (2021) used

the above coding approach to recognize visually similar objects.

Zheng et al. (2020) addressed visual-tactile cross-modal learning

in the lifelong learning setting by establishing a knowledge-

forgetting mechanism. The above studies validated the effectiveness

of the proposed visual-tactile cross-modal matching framework

and method through extensive experiments.

The deep learning techniques (LeCun et al., 2015) provide

additional fusion models for visual-tactile fusion. He et al. (2022)

first reviewed the physiological basis of biological vision and tactile

systems and the biological vision-tactile fusion mechanism. Zheng

et al. (2016) presented a novel deep learning method dealing

with the surface material classification problem based on a Fully

Convolutional Network (FCN). Gao et al. (2016) established a deep

learning model that could simultaneously input visual data and

tactile data for training, and the experiment showed that the fusion

effect was superior to the model that only uses visual data or tactile

data for training. Calandra et al. (2018) used deep reinforcement

learning and combined data from tactile sensors and image

acquisition as network inputs to grasp objects, improving their

success rate in grasping experiments. Cui et al. (2020) proposed

a novel 3D convolution-based visual-tactile fusion deep neural

network (C3D-VTFN) to evaluate the grasp state. Lee et al. (2019)

built a multi-modal representation learning model to effectively

use tactile and visual feedback for hole search. Zhang et al. (2020,

2021a,b) proposed a framework for object clustering based on

visual-tactile fusion and graph learning. Chaudhury et al. (2022)

fused vision and touch for pose estimation and found that tactile

imaging was used to further refine contact point and object pose

estimation. Shi et al. (2023) designed a visual-tactile fusion road

recognition system for autonomous vehicles. Babadian et al. (2023)

proposed four efficient models based on dynamic neural network

architectures for unimodal and multimodal object recognition.

The research on the fusion of visual and tactile features is still

in its early stages, and there is still much room for improvement

in the design of visual and tactile feature fusion (Zhang et al.,

2020; Ruan et al., 2023). The modal differences between vision

and touch remain the biggest obstacle to the direct application

of these methods, such as the big differences in receiving fields

and signal types and the frequency of visual and tactile data. The

existing methods often process the visual and tactile information

separately and fuse them at the decision-making level, which will

weaken the intrinsic connection between them. Moreover, these

methods usually assume that each sample’s visual and tactile data

are available. However, there are incomplete scenes, missing visual

or tactile data, or the role of visual and tactile information in the

recognition results is not analyzed by some methods even if the

information is complete. In addition, in tactile data acquisition,

the robot collects tactile data through continuous contact, which

is easily disturbed or interrupted by the external environment due

to noise. However, the existing methods do not filter the tactile

data, and there is no practical way to deal with the influence
of noise and information loss. Based on the development of

existing research algorithms, we explore a new framework and put
forward improvements, as shown in Figure 1. Firstly, a method

of converting tactile sequences to images is proposed to deal

with the obstacles of information exchange between different
modalities for vision and touch. Then, with visual images and
tactile images as input, the quality assessment network and target

recognition network are trained, respectively. The output of the
quality assessment network is used as the dropout parameter of

the network fusion layer to adjust the proportion of the two kinds

of information in the recognition to improve the performance of

the network.

Our contribution can be summarized into the following

three parts.

(1) First, tactile time sequences are encoded into images so

that tactile and visual information are unified into the same

modality. And a tactile image filtering algorithm based on

the sample entropy is proposed to improve the reliability of

tactile data.

(2) A visual-tactile fusion framework is constructed, which takes

both visual and tactile data as input, integrates the advantages

of both, and has a simple structure.

(3) The adaptive dropout algorithm is added to the fusion

framework, which can adjust the neuron connection strength

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1181383
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Ding et al. 10.3389/fnbot.2023.1181383

FIGURE 1

The process of object identification in this paper. The proposed VTN model outputs the class and material information by fusing visual-tactile

information to help robots perform more elaborate manipulation tasks.

of the fusion layer network according to the quality of the

visual and tactile samples, and control the effect of the two

in the model, greatly improving the recognition effect and

anti-interference ability of the model.

2. 2D tactile image based on the
sample entropy filtering

The development of neural networks in image recognition

has made great strides, whereas progress has been slow in time

sequence recognition scenes. This is due to the uncertainty

regarding the length of time sequences, along with the indistinct

characteristics that follow after visualization. As a result, the current

recognition algorithm for time sequence data remains immature,

with no unified framework for processing them. In this section,

we propose a model that can transform one-dimensional data into

two-dimensional images, as well as introduce the process of image

denoising based on sample entropy. The model transformation lays

the foundation for subsequent information fusion.

2.1. 2D tactile image model

Our tactile data consists of a 1D time sequence that is

composed of feedback force continuously collected by the sensor,

as demonstrated in Formula (1). Here, n refers to the number of

tactile sensors, while F refers to the force received by the sensors.

F = [F1, F2, . . . , Fn] (1)

Representative time sequence recognition networks such as

RNN and LSTM mainly focus on natural language processing

and speech recognition, but there is no common 1D recognition

network framework for object recognition. Therefore, we propose

a method to convert the 1D tactile sequences from the tactile sensor

array on a multi-fingered dexterous hand into a 2D image model.

An image is typically represented as a matrix in a computer,

with the pixel being themost basic unit for digital image processing.

Therefore, the elements that constitute an image are its size and

pixel values. By considering the number of sensors in the tactile

sensor array as the image’s width, the number of consecutive

acquisitions as its height, and the feedback value collected from

each sensor as the pixel value, the tactile image can be expressed

using Formula (2).

I =









F11 · · · F1n
...

. . .
...

Fm1 · · · Fmn









(2)

Where, m refers to the acquisition frequency, while n refers to the

number of tactile sensors. The tactile sensor array we have built

consists of 10 tactile sensors, which means the width of the tactile

image is ten. The acquisition frequency of the tactile sensor is 20ms.

Taking 50 consecutive groups of tactile sensor data and treating

them as a group, the image height is set to 50. The processed image

is visualized as shown in Figure 2.

2.2. Sample entropy filtering

We have collected pressure feedback values from the tactile

sensors on the fingers while grasping an object with the dexterous
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FIGURE 2

Example of the tactile images. Tactile images are acquired by a tactile sensor array attached to a multi-fingered hand and have undergone image

conversion. The image width of 10 represents the number of tactile sensors, and the image height of 50 represents the length of the acquired

tactile sequence.

hand. For a given object, the variation of tactile data should

ideally lie within a specific range. However, external factors such as

unstable finger output force and object sliding can introduce noise

into the tactile data. To mitigate the effects of such noise on the

data, it is necessary to apply a filtering technique.

While conventional median filters use a fixed window size, they

are often unable to balance between preserving image details and

denoising efficiently. To address this limitation, we propose an

adaptive median filter that utilizes the sample entropy factor, as

illustrated in Figure 3. During the filtering process, the adaptive

median filter adjusts the filtering window size according to the

calculated sample entropy.

The sample entropy is a method for measuring the complexity

of time sequences first proposed by Richman et al. (2004). It can

evaluate the repeatability of the waveform, that is, the frequency.

The larger the entropy, the higher frequencies in the waveform

and the more the noise (Delgado-Bonal and Marshak, 2019). To

address the issue of noise within tactile images, we propose an

image filteringmethod based on the sample entropymethod, which

operates as follows.

The image matrix is divided into columns to obtain n column

vectors, as shown in formula (3).

M = [S0, S1, . . . , Sn−1] (3)

Each column vector corresponds to the time sequences

collected by a single sensor, as shown in formula (4).

Si = [F1i, F2i, . . . , Fmi]
T , i = 0 ∼ n− 1 (4)

Next, the sample entropy is calculated for each column vector.

For any column vector, a threshold r representing the similarity

comparison is specified, and a metric m for dividing the length

of the subsequences is determined. (N–m+1) subsequences can be

obtained by reconstructing the original sequences, as shown in (5).

Smi = [Smi (1), S
m
i (2), . . . , S

m
i (N −m+ 1)] (5)

Each subsequence is represented by Smi (u), as shown in

formula (6).

Smi (u) = [Fui, F(u+1)i, . . . , F(u+m−1)i]
T (6)

The distance Duv between any two reconstructed vectors Smi (u)

and Smi (v) is calculated, where/is themaximum value in the absolute

value of the difference between the corresponding elements of the

two vectors. The formula is shown in (7).

Duv = D[Smi (u), S
m
i (v)] = max

[
∣

∣Fiu+w − Fiv+w

∣

∣

]

,

w = 0 ∼ m− 1 (7)

Then, formula (8) is used to count the number of vectors that

meet the following conditions.

Nd<r = count[Duv < r], u = 0 ∼ N −m+ 1,

v = 0 ∼ N −m+ 1, u 6= v (8)

Formula (9) is used to calculate the ratio (the number of

satisfied conditions to the total number), representing the similarity

between the subsequences and the original sequences.

SDr
m =

Nd<r

(N −m+ 1)(N −m)
(9)
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FIGURE 3

The process of the adaptive median filter. The adaptive median filter changes the filtering window size according to the calculated sample entropy to

denoise the tactile data.

The similarity at m+1 is calculated according to steps

(5–9) above, and the sample entropy is calculated according to

formula (10).

En(Si) = − ln

[

SDr
m+1

SDr
m

]

(10)

Repeating steps (5–10) above to calculate the sample entropy

of the time sequences for all column vectors, we finally obtain the

sample entropy vector shown in (11).

En(M) = [En(Si), En(S2), . . . ,En(Sp)] (11)

The above is the calculation progress of sample entropy, in

which m is usually set as 2; r is usually set as 0.25× std, where

std refers to the standard deviation of the original time sequences

(Nixon and Aguado, 2019). Next, the filtering process is performed.

The collected tactile datamay contain a certain amount of noise due

to the instability of the fingermotor and fluctuations in the grasping

process, but the noise is small and discontinuous. For such noise,

the median filtering is adopted for denoising. The basic formula of

the median filtering is shown in (12).

Fji = Med
{

F(j−z)i, . . . , F(j−1)i, Fji, F(j+1)i, . . . , F(j+z)i
}

; j ≤ m,

z =

⌈

T − 1

2

⌉

(12)

Where, Fji represents the data collected by the i-th sensor for

the j-th time, m is the number of a tactile sample, and ⌈⌉ is

the ceil function, representing the smallest integer not less than

this value. The noise distributions of the sensors are various for

different samples or gripper positions. The higher the noise, the

more complex the samples. In this paper, the filtering template

is updated based on the sample entropy size, and the calculation

formula of the update template size T (the initial value is set to 3) is

shown in (13).

TEn
i =

⌈

Ti × En(Si)
⌉

(13)

The final denoised time sequences are shown in (14). The

processing of the data filtering canmore accurately reflect the object

characteristics and improve the recognition accuracy.

Si = [F1i, F2i, . . . , Fmi]
T
Med (14)

3. The visual-tactile fusion network

In this section, we discuss our visual and tactile fusion

framework in detail. While visual images are useful for representing

global information such as object shape, size, and contour,

touch provides local information related to properties such as

softness, hardness, and material. To ensure that both global

and local details are taken into consideration when performing

feature expression, we propose a comprehensive visual-tactile

fusion network model based on the adaptive dropout algorithm.

This approach helps to preserve the structural information of

visual images while effectively capturing fine-grained features with

discrimination and adjusting the weight of visual and tactile

information based on sample quality, leading to significantly

enhanced object recognition accuracy.

3.1. The VTN model

To achieve feature fusion, we propose a visual-tactile feature

fusion network, as illustrated in Figure 4. This network combines

visual and tactile feature vectors extracted from the input data to
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FIGURE 4

The framework of the VTN model. The model consists of a multi-branch CNN feature extraction module, a dropout module, and a feature fusion

module. The input is the image acquired by the visual sensor and tactile sensor corresponding to the same object, and the output is the

object attributes.

calculate and learn feature vectors. The visual input component

is an image acquired using a camera, while the tactile input is

generated by the multi-finger hand and the tactile sensor from

Section 2. We design separate feature extraction networks for each

source of information, which fuse at the final connection layer. The

model comprises a multi-branch CNN feature extraction module,

a dropout module, and a feature fusion module. It takes as input

images obtained from both the visual and tactile sensors, which

are processed through their respective CNN feature extraction

modules. Since visual and tactile images differ significantly in size

and composition, it is not possible to extract features from both

sources of images simultaneously using the same network. To

address this, branch CNN modules are used to design network

structures specific to the different image features, producing

two feature blocks: global features and fine-grained features

containing local details. Once the visual-tactile fusion feature (VT)

is obtained by splicing the visual and tactile feature blocks, it

is processed through the fully connected module to produce the

classification result.

The multi-branch CNN feature extraction module consists

of two different sub-modules. The first sub-module is the visual

feature network, which takes visual images collected by the camera

as input. This sub-module has a network structure consisting

of three convolutional layers and three pooling layers. The

second sub-module is the tactile feature network, which has a

simpler network structure due to the small size of the tactile

image. It comprises two convolutional layers and two pooling

layers, with network composition and parameters shown in the

accompanying table. The output layer features of the two sub-

modules are then concatenated to obtain visual-tactile fusion

features, which are processed through the Softmax layer to produce

the classification results.

The dropout layer is included as part of the fusion layer, which

is described in the next section. A fusion algorithm is designed

to combine visual features and tactile features in the fusion layer,

resulting in the VT features. The fusion formula is shown in (15).

VT (Iv, It , V , T) =
V(Iv)

∥

∥V(Iv)
∥

∥

2

⊕
T(It)

∥

∥T(It)
∥

∥

2

=

































v1
v2
...

vm
t1
t2
...

tn

































(15)

Where Iv refers to the input visual image, and It refers to the

input tactile image. V refers to the visual neural network mapping

function, and the visual features are obtained by feature extraction

from the visual image. T refers to the visual neural network

mapping function, and the tactile features are obtained by feature

extraction from the tactile image. ⊕ refers to the feature splicing

operation, and the fused VT feature is obtained by splicing the
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visual and tactile features. The visual and tactile features need to

be regularized separately before fusion.

3.2. Improved model based on the dropout
optimization algorithm

Under the influence of factors such as the quality of the

collected data and the object material, visual data and tactile data

reflect the true attributes of the object differently. For instance,

visual samples can more effectively express the characteristics

of objects with prominent colors, while tactile data is more

representative of deformable objects. Additionally, visual data

reliability decreases when objects are partially occluded, and

tactile data is susceptible to noise when grasping is unstable.

Therefore, it is essential to control the degree to which visual

and tactile data impact the recognition results during the process

of visual-tactile fusion. To achieve this, we propose an adaptive

dropout model based on sample quality, illustrated in Figure 5.

The adaptive dropout model consists of two image quality judger

models, one for visual images and one for tactile images. Based

on the quality scores assigned by these models, the dropout

algorithm updates the dropout parameters of the fully connected

layer prior to visual and tactile feature fusion. The better the

image quality, the lower the dropout probability, and the greater

the contribution of the image to recognition. The visual and

tactile image discrimination networks are trained before the fusion

network to enable discrimination of the output in the object

recognition network, representing the reliability of visual and

tactile inputs in recognition. This output is then directly applied

to the fully connected layer before fusion as the dropout parameter

to adjust the relative proportion of visual and tactile images in the

recognition algorithm. This ensures that the negative impact of

visual occlusion or tactile noise is avoided.

The dropout parameter p is determined by discriminating

network output and neuron connection strength with the formula

(16). Where, λ
V(T)
item refers to the image quality score output by

the visual discrimination network or the tactile discrimination

network, and Zi(t) refers to the connection strength of a single

neuron in the network, with the calculation formula shown in

(17). wij(t) refers to the weight between neurons i and j in the t-

th iteration, and πij(t) refers to the activation state of any neuron

connected to neuron i in the network, with the value set as 0 or 1, 1

for active, and 0 for not active.

p = (1− λVitem) · e
−Zi(t) (16)

Zi(t) =

∑

j6=i

wij(t)πij(t)

∑

i

∑

j6=i

wij(t)πij(t)
(17)

The Bernoulli method (Gal and Ghahramani, 2016) is utilized

to randomly exclude some neurons in the hidden layer from the

calculation with a probability of p. The dropout algorithm flow is

depicted in Table 1. This approach has two significant advantages.

Firstly, it makes model parameter training less dependent on the

interaction of hidden nodes with fixed relationships, preventing

certain features from only being effective in the presence of specific

FIGURE 5

The dropout model. The visual image discrimination network and

the tactile image discrimination network will be trained first before

the training of the fusion network. This output represents the visual

or tactile image’s reliability in this recognition.

features. Secondly, as it acts on the fusion layer, it establishes a more

stable connection between visual and tactile features. Moreover,

deactivating some neurons reduces the mutual exclusion between

visual and tactile data for the same object and can adjust the

weight of both data types in recognition based on the inactivation

ratio to enhance the recognition rate. The specific functioning

mode of the dropout model is to adjust the probability of its

activation state based on two factors: the connection strength of the

neuron and the quality of the input image, enhancing the model’s

generalization capability.

Where, z(l+1)
i , y(l+1)

i , w(l+1)
i , and b

(l+1)
i respectively represent

the input vector, output vector, weight vector and bias vector of the

i-th neuron in the l + 1 hidden layer. r(l) is the vector of neuron

obeying Bernoulli distribution with probability p. Bernoulli is the

Bernoulli distribution function. The activation function f is the

Sigmoid function.

3.3. Training

The fused features map the (m+n)-dimensional vector to a

C-dimensional vector through three fully connected layers. The C-

dimensional vector outputs the probability of the corresponding

category by the Softmax classification layer. The entire network

is a complete end-to-end system with all parameters jointly

trained by backpropagation, and our network is trained by

standard backpropagation.

The Xavier (Kumar, 2017) initialization is adopted to initialize

the network weights. We use SGD (Gao et al., 2016) with a constant

learning rate of 0.01, the momentum of 0.9, and cross-entropy (De

Boer et al., 2005) as the loss function. The model is implemented on

the PyTorch platform and trained on the NVIDIA 2080Ti server.

This paper sets the batch size to 8 and trains for 1,000 rounds.
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TABLE 1 The flow of the adaptive dropout algorithm.

Algorithm 1. The adaptive dropout algorithm

1 Input: Maxitem (number of training epochs), Layer (fusion layer)

2 Output: p (probability of dropout)

3 Training:

4 For iter ≤ Maxitem do:

5 Update λV
item by the neural network

6 For i ≤ Length(Layer) do:

7 Zi(t) =

∑

j 6=i
wij(t)πij(t)

∑

i

∑

j 6=i
wij(t)πij(t)

8 p = (1− λV
item) · e

-Zi(t)

9 r
(l)
j ∼ Bernoulli(p)

10 ỹ(l) = r(l) × y(l)

11 z
(l+1)
i = w

(l+1)
i y+ b

(l+1)
i

12 y
(l+1)
i = f

(

z
(l+1)
i

)

13 End for

14 End for

15 Testing:

16 Zi(t)=1

17 Repeating steps 5–13

The training process is as follows:

(1) First, the visual sample evaluation network and the tactile

sample evaluation network are trained.

(2) The CNN network weights trained in step (1) are shared and

the fusion network is trained on this basis.

4. Experiments

The experimental platform consists of a three-fingered

dexterous hand, an array of tactile sensor, a Kinect2 camera, and

a robot arm of the UR5 robot. The UR5 robot arm is placed on

the left side of the table, on which we have assembled the three-

fingered dexterous hand with 10 tactile sensors. The dexterous

hand is JODELL’s JQ3-5, and tactile sensors are the thick-film

piezoresistive sensors. There is a Kinect2 camera on the right

side of the table to capture the object images. The recognition

procedure of the robot is as follows: Firstly, the visual sensor

detects the grasping posture (Chu et al., 2018) of the object,

then the robot moves to the grasping position and performs the

grasping action to acquire tactile data. If the current grasping

method fails to pick up the object, posture detection will be

performed again until the object is smoothly grasped and stable

tactile data can be obtained. The current posture detection has

an average success rate of 92.3%, and the grasping success rate is

97.4%. We only collected tactile data after successful grasping for

recognition testing.

4.1. Data set introduction

To construct the visual-tactile dataset, cylindrical, square, and

spherical shapes were selected from common objects found in daily

life. Each shape included three different levels of material: soft (H

= −1), medium (H = 0), and hard (H = 1). There are 27 different

types of objects. Extensive experiments were conducted to collect

visual and tactile data on each object, with 50 images captured for

each object under varying shooting conditions, including different

occlusion areas. The tactile sensor sequences obtained during the

stable grasping stage were chosen as the tactile data. Each object

was recorded 50 times, and each tactile sequence was divided into

50 sample points. Then, 40 visual images and 40 tactile sequences

were randomly selected from each object for training, with the

remaining samples reserved for testing. All samples were obtained

under successful grasping conditions. In addition to conventional

category labels, the image qualities of visual and tactile samples

were classified into three levels: good (Q = 1), medium (Q = 0),

and poor (Q = −1). The tactile data was also divided into three

levels based on time entropy: good (Q = 1), medium (Q = 0), and

poor (Q=−1).

Some visual and tactile samples are shown in Figures 6, 7.

It is worth emphasizing that we include some components of

the gyroscope in the sample to verify the algorithm’s ability to

recognize them.

4.2. Performance test experiments

4.2.1. Performance comparison between tactile
images and tactile sequences

The first challenge in achieving the fusion of visual and tactile

data is the inconsistency between the modalities of these two

types of data. To tackle this issue, this paper proposes a modality

conversion method that converts tactile data into tactile images. To

verify the feasibility of this approach, we compared the recognition

results of an LSTM network that used the original tactile data and

a CNN network that used the modality-converted tactile images.

The CNN network comprises the tactile CNN part and the fully

connected layer (excluding the VT layer) shown in Figure 4.

Although the network frameworks of the two groups of

experiments were quite different, the purpose was not to verify

network quality but to evaluate the effectiveness of tactile images.

According to the experimental results in Figures 8, 9, the success

rate of CNN recognition using tactile images reaches 78.167%,

which was slightly lower than the 81.997% accuracy achieved by

LSTM. This result was due to LSTM being a long short-term

memory network and a time recurrent neural network that is

suitable for processing and predicting time sequences. However,

it was discovered from the change curve of the training loss and

test loss that the CNN network can converge faster in the training

process. The CNN network has a stronger feature extraction

ability than the LSTM network, and once an effective feature is

extracted, the positional relationship between it and other features

is determined with strong stability. This group of experiments

shows that converting tactile data into tactile images maintains data

authenticity, and object attributes can be reflected.
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FIGURE 6

Example of the visual samples.

FIGURE 7

Examples of the tactile samples. (A) Magic hand, (B) tactile labels, which contain the tactile sensor feedback value F as well as the quality label (Q),

material label (H), and category label (C), and (C) sensors distribution. There are 10 tactile sensors in the hand: the left fingertip, the middle fingertip,

the right fingertip, the left finger center, the middle finger center, the right finger center, the left finger bottom, the middle finger bottom, the right

finger bottom, and the palm.

It was also found that both networks fluctuated during training

due to considerable interference in the tactile data acquisition

process and noise in the data. To verify the denoising ability of

the filtering algorithm proposed in this paper for tactile data, we

conducted a comparative experiment on two different modality

frameworks after filtering the original tactile data, as shown in

Figure 10.

It is evident from the data in Figure 7 that the performance

of the two different frameworks improved significantly after

filtering, and the CNN network showed a better improvement than

LSTM. Although the LSTM network is better at processing

sequence data, the input sequences are too long, which

significantly impacts the operational efficiency of LSTM.

Therefore, LSTM network has a certain bottleneck that only

extracts local information. However, CNN can efficiently

run on longer inputs, obtain more stable hidden features

in the sequences and enjoy more room for improvement.

The construction of the tactile image and the CNN network
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FIGURE 8

The results of the CNN Network. The x-axis represents the number

of training rounds, the y-axis on the left represents the loss value,

and the smaller the loss value, the better the network performance.

The y-axis on the right represents the accuracy of recognition

testing. The values marked in the figure is the last stable values.

of tactile image recognition provides a foundation for

visual-tactile fusion.

4.2.2. Comparative experiment of recognition
e�ects of di�erent models

Once the feasibility of the tactile modality conversion was

verified, experiments on visual-tactile fusion were conducted to

evaluate the performance of our visual-tactile fusion network.

Three groups of comparative experiments were conducted,

including visual recognition, tactile recognition, and visual-tactile

fusion recognition. The visual network comprises the visual CNN

part and the last three layers of the fully connected layer of

the fusion network. Similarly, the tactile network refers to the

tactile CNN part and the last three layers of the fully connected

layer. Three indicators, including class accuracy, material property

accuracy, and model size, were used to evaluate the performance

of different algorithms. For example, the class of a ripe banana

is “banana,” and the material property is “soft.” The data used

in the three network models were all from our visual and tactile

data sets. It was expected that the recognition algorithm could

recognize more detailed material attributes of objects (and whether

the material category is soft, medium, or hard) simultaneously as it

recognizes the object category.

The experimental results in Table 2 show that the class

accuracy and material category accuracy of the visual-tactile fusion

perception are better than any single model recognition. The class

accuracy of the visual-tactile fusion was as high as 99.3%, followed

by visual class accuracy of 93.0%, and tactile class accuracy was

the lowest. A comparison between the material property accuracy

and class accuracy indicated that visual recognition was much

better than tactile recognition in class accuracy. This was because

FIGURE 9

The results of the LSTM Network. The x-axis represents the number

of training rounds, the y-axis on the left represents the loss value,

and the smaller the loss value, the better the network performance.

The y-axis on the right represents the accuracy of recognition

testing. The values marked in the figure is the last stable values.

visual images contain more object feature information, and visual

recognition algorithms can identify most objects by extracting

these features. However, visual material property accuracy declined

with similar appearances but different materials. Tactile could

address this issue. The tactile network’s material property accuracy

reached 95.2%, higher than the visual material property accuracy

of 70.4%, demonstrating the difference between vision and touch.

For rigid objects, the grasping force reaches its peak at the moment

of grasping. For flexible objects, the grasping force increases

gradually with the deformation of the object and reaches a peak

eventually. Our visual-tactile fusion network integrates data from

both modalities, enabling us to combine the advantages of both

types of data and significantly improve the recognition effect.

It was also found that tactile data had the advantage of simple

information, few model parameters, and fast calculation speed,

which led to no significant increase in model size after visual-tactile

fusion compared to the visual network model.

To further demonstrate the advantages of visual-tactile fusion,

experiments were conducted to test the recognition ability of

different algorithms in different object visibility scenarios by

occluding water bottles. A total of 300 groups of experimental data

were collected and tested, and the recognition rate of the object

material attributes was evaluated with different algorithms using

the samples shown in Figure 11. The water bottle attributes were

divided into three levels of hardness (low, medium, and high) based

on the water quantity in the bottle, and 80% of the collected data

were used for training, with the remaining 20% used for testing.

The test results are shown in Table 3.

The occlusion experiments showed that object occlusion had

the most significant impact on the visual recognition algorithm,

and the recognition accuracy of the visual algorithm dropped to

86.7 and 61.7%, respectively. It was challenging for the visual

algorithms to extract complete and effective object features when
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FIGURE 10

The results of di�erent networks before and after filtering. There are four sets of experiments. The CNN-T and the LSTM-T indicate that the data is

filtered before being input into the network.

TABLE 2 The recognition results of di�erent models.

Algorithms Class
accuracy

Material
property
accuracy

Model
size (M)

Tactile-only 0.826 0.952 5.3

Visual-only 0.930 0.704 26.5

Visual-Tactile
fusion

0.993 0.978 29.8

the object was occluded, leading to recognition failures. However,

the tactile algorithm only relied on the force feedback after

contact between the finger and the object to identify the object,

so occlusion did not affect the tactile algorithm’s performance.

Notably, occlusion had no noticeable impact on the visual-tactile

fusion algorithm. There was no sharp drop in the accuracy of

the visual-tactile fusion algorithm as observed with the visual

algorithm. The visual-tactile fusion algorithm was equipped with

a dropout mechanism, which allocated weights of the two types

of data during fusion. When there was an occlusion in the visual

image, the visual image quality discrimination network in the

fusion algorithm could detect the image’s low quality. The dropout

probability of the fully connected layer of the visual part in the

fusion layer was relatively high, which reduced the weight in the

recognition, thus maintaining the recognition algorithm’s accuracy

at a high level.

In the water quantity attribute recognition experiment,

the performance of the visual detection algorithm was found

to be inadequate, with poor accuracy. However, the tactile

detection algorithm demonstrated an impressive accuracy of 96.7%.

Moreover, our visual-tactile fusion algorithm achieved an accuracy

FIGURE 11

Examples of the water bottle samples. (A) No occlusion, (B)

occlusion with 1/3, (C) occlusion with 2/3, (D) high level, (E) mediun

level, (F) low level.

of 95.0%, which was not significantly affected by incomplete or

unreliable visual data. These results demonstrate that our fusion

algorithm is capable of effectively integrating visual and tactile

features, leveraging the strengths of each modality and surpassing

the performance of any standalone model. When faced with

incomplete or unreliable feature information, the fusion algorithm

adapts intelligently by adjusting the weights of the features and

optimizing the classifier.
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TABLE 3 The recognition results of the water bottle.

Algorithms Class accuracy Water quantity
accuracy

No occlusion Occlusion with 1/3
of areas

Occlusion with 2/3
of areas

Tactile-only 0.833 0.850 0.833 0.967

Visual-only 0.967 0.867 0.617 0.483

Visual-Tactile fusion 1.000 0.933 0.883 0.950

TABLE 4 The results of model performance under di�erent parameters.

Variables Class
accuracy

Material property
accuracy

Filtering Dropout

× × 0.959 0.915

X × 0.963 0.948

× X 0.985 0.956

X X 0.993 0.978

4.2.3. Comparative experiment of model
performance under di�erent conditions

In order to validate the effectiveness of the proposed tactile

image filtering algorithm and dropout algorithm in improving

algorithm performance, we conducted four groups of comparative

experiments by introducing each algorithm sequentially into the

fusion algorithm with variable controls. The results of the tests are

presented in Table 4.

From the experimental results, it is evident that both the tactile

image filtering algorithm and the dropout algorithm positively

impact the model’s recognition performance. Comparison between

the first and second groups of experiments shows that the filtering

algorithm improves the model’s material recognition performance.

This is because the filtering algorithm enhances the quality

of the tactile data, which is crucial for recognizing material

properties that rely heavily on tactile features. In contrast, the

experiments comparing the first and third groups demonstrate that

the dropout algorithm significantly improves the model’s overall

performance, with amore pronounced improvement effect than the

filtering algorithm.

Overall, the results of the comparative experiments confirm

the effectiveness of the proposed visual-tactile fusion algorithm in

robot object recognition tasks. Additionally, comparing the visual

class accuracy rate of 93.0%, visual material property accuracy rate

of 70.4%, and tactile class accuracy rate of 82.6% in Table 2, it is

evident that even without optimization, the visual-tactile fusion

network developed in this paper outperforms recognition by a

single sensor. This further highlights the significant advantages of

multi-information fusion over relying on single information at both

the data and decision-making levels.

However, the material property accuracy rate of 91.5% is

lower than the tactile accuracy rate of 94.8%, demonstrating the

potential for two different information types to impact each other

during the fusion process. The proposed dropout mechanism

effectively reduces the negative impact of poor-quality samples on

recognition results.

5. Conclusion

This paper proposes a visual-tactile fusion perception object

recognition network VTN for robot recognition and grasping.

The establishment of the filtering tactile images and the adaptive

dropout algorithm provides a new optimization scheme for visual-

tactile fusion perception tasks. Furthermore, it is demonstrated

that tactile and visual signals are complementary, and combining

data from two modalities can improve performance. The

proposed model realizes the correlation between different modality

information of vision and touch and provides an intelligent fusion

mechanism for the fusion network. This paper has established data

sets for training and testing with many recognition experiments,

and the experimental results demonstrate the effectiveness and

high accuracy of the proposed model. In the future, our

model can be improved with more diverse data sets, and

richer data will allow our network to identify more refined

object attributes.
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