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A method for the estimation of a
motor unit innervation zone
center position evaluated with a
computational sEMG model

Malte Mechtenberg * and Axel Schneider

Biomechatronics and Embedded Systems Group, Bielefeld University of Applied Sciences and Arts,

Bielefeld, Germany

Motion predictions for limbs can be performed using commonly called Hill-based

muscle models. For this type of models, a surface electromyogram (sEMG) of the

muscle serves as an input signal for the activation of the muscle model. However,

the Hill model needs additional information about the mechanical system state of

the muscle (current length, velocity, etc.) for a reliable prediction of the muscle

force generation and, hence, the prediction of the joint motion. One feature that

contains potential information about the state of the muscle is the position of

the center of the innervation zone. This feature can be further extracted from the

sEMG. To find the center, a wavelet-based algorithm is proposed that localizes

motor unit potentials in the individual channels of a single-column sEMG array

and then identifies innervation point candidates. In the final step, these innervation

point candidates are clustered in a density-basedmanner. The center of the largest

cluster is the estimated center of the innervation zone. The algorithm has been

tested in a simulation. For this purpose, an sEMG simulator was developed and

implemented that can compute largemotor units (1,000’s of muscle fibers) quickly

(within seconds on a standard PC).

KEYWORDS

innervation point, motor endplate, sEMG simulation, concentrated current source, motor

unit (MU), conduction velocity (CV), exoskeleton, innervation zone

1. Introduction

For the control of exoskeletons and wearables, different strategies are used to adapt the

motion of the technical system to the motion of a limb. Often, the forces in the mechanical

interfaces between the body and the technical system (braces, straps, etc.) are measured and

are used to control the motion of the technical system (for a review on control strategies for

upper-limb exoskeletons, see, e.g., Dalla Gasperina et al., 2021). However, since the forces

arise at a moment when the technical system should already be responding to the movement,

the wearables inevitably lag behind. A movement prediction for the limb would therefore

be desirable. The measurements of surface electromyograms (sEMGs) of the muscles

involved in the limb movement are suitable for this prediction, since sEMGs can already

be measured a few tens of milliseconds before the muscles generate force [electromechanical

delay, see, e.g., ∼ 106ms for the human knee extensor (Vos et al., 1991) and ∼ 53ms for

human upper limb muscles (Cavanagh and Komi, 1979; Falk et al., 2009; Cè et al., 2013)].
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This time advantage could be exploited for an early movement

activation of the technical system to compensate for the mentioned

lag. An sEMG-based prediction of a limb movement requires

modeling of the muscles (Zajac, 1989; Buchanan et al., 2004;

Grimmelsmann et al., 2023), tendons (Mechtenberg et al., 2022),

and other biomechanical components of the joint involved.

Successful application of a muscle-tendon model requires precise

knowledge of themechanicalmuscle parameters, muscle length and

contraction speed as well as the distribution of the total length of the

muscle-tendon complex between its two subcomponents, namely

muscle and tendon. These are difficult to determine and track in

vivo (Grimmelsmann et al., 2023).

This is where the work at hand becomes relevant. An sEMG

is normally only used as an activation input for a classical Hill-

based muscle model (Zajac, 1989; Grimmelsmann et al., 2023).

The actual muscle length and velocity as additional inputs of

the modeled muscle are approximated from an estimated initial

length and the measured joint motion. In this study, a method

to track the center position of the innervation zone is proposed.

This method could be used in the future to track the center

positions of the innervation zone of a muscle’s motor units over

time, which provide information about the mechanical contraction

motion of the muscle itself and could therefore be used to improve

the estimation of the muscle length online, which in turn might

improve the prediction of limb motion, e.g., for exoskeleton and

wearable control systems.

Figure 1 shows the basic structure of a motor unit consisting

of a motor neuron (located in the spinal cord) and the muscle

fibers innervated by the motor neuron. The figure shows two

arbitrary motor units (A in yellow and B in green). Individual

innervation points (motor end plates) of a motor neuron distribute

themselves over larger areas (Masuda and Sadoyama, 1991; Amirali

et al., 2007) and thus form innervation zones. When all the

muscle fibers belonging to a motor unit (one color) are activated

by their respective motor neuron, their myoelectric potentials

run quasi-simultaneously from the innervation points along the

muscle fibers in both directions until they reach the tendon

tissue and disappear. This is shown schematically in Figure 2A

for a signal starting from a single innervation point. Here, the

respective time courses of trans-membrane current densities (or

current source densities, which are the basis for myoelectric

potentials) are shown at 11 positions along the muscle fiber.

It is illustrated how a signal originates from the center and

travels in both directions, i.e., it becomes visible at the other

positions at a later time. The local distribution in three sections

is shown in Figure 2B. On the surface of the skin above the

muscle, these potentials appear as sum potentials moving across

the muscle.

Various studies have already been presented for the

identification of the center position of the innervation zone

of those sum potentials that belong to the same motor unit. Mesin

et al. (2009) presented an automatic method for the estimation of

the position of the innervation zone based on a linear electrode

array. The position resolution of the innervation zone is bound

to the electrode positions; therefore, if an innervation zone was

located between electrodes, the algorithm by Mesin et al. (2009)

would assign the innervation zone position to the nearest electrode.

FIGURE 1

Sketch-like representation of a muscle fiber bundle. The muscle

fibers are di�erentiated by color to indicate their a�liation to

di�erent motor units. Highlighted are two motor neurons which,

together with their associated (i.e., controlled) muscle fibers, form

motor unit A (yellow) and motor unit B (green). Motor end plates

indicate individual innervation points. Since the innervation points of

a motor unit are spatially distributed over the associated muscle

fibers, one can also consider an innervation zone.

Their algorithm can identify multiple innervation zone positions

within the same time window.Marateb et al. (2016) also introduced

an automatic method for the estimation of the position of the

innervation zone based on a linear electrode array. In the case

of their algorithm, a single differential electrode array recording

is interpreted as an image which is then segmented using the

Graph-Cut image processing algorithm. After pruning, motor

unit potential regions are identified, and lines are fitted into these

regions. The fitted lines are then used to determine the action

potential conduction velocity and innervation zone center. The

algorithm can predict the position of the innervation zone between

electrodes but its accuracy is subject to inter electrode distance.

Beck et al. (2012) compared three algorithms which were based

on either cross-correlation, the detection of the lowest amplitude

channel, or the detection of the highest mean frequency. Of these

three, Beck et al. (2012) found that the cross-correlation-based

algorithm performed the best.

This study presents a computationally efficient algorithm for

fast estimation of the center position of the innervation zone

based on wavelets (see Section 2.3). Only two properties are

needed to parameterize the algorithm (robustness vs. accuracy, see

Section 3.2). Apart from this, the algorithm runs automatically.

Furthermore, a myoelectric simulation framework that is also

computationally efficient is being introduced to test such

algorithms (see Section 2.1 for the algorithm and Section 2.2 for

the experimental setup). This framework is capable of determining

surface sum potential curves (virtual sEMGs) based on myoelectric

signal simulations of hundreds of muscle fibers on a large scale and

almost in real time (details on the performance are given in Section

3.1).

The myoelectric simulation framework should be able to

simulate motor unit potentials based on a large number of muscle

fibers with configurable lengths, innervation point positions,

and conduction velocities. Here, the consideration of the signal

generation at the innervation point (source function) and the end

of the signal at the myotendinous junction (end effect) plays a
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FIGURE 2

In (A), the current source density of a finite muscle fiber is shown over the muscle fiber local coordinate x and time t. The muscle fiber parameters

are depicted in Figure 3. In (B), time sections are shown. The current source emerges at the innervation point (t = 6ms, section A), fully develops at

t = 24ms in section B, and travels along the muscle fiber. Finally, the current source is almost extinct at the muscle fiber ends (t = 45ms) in section

C. The center of each concentrated current source/sink is indicated by either ⊕ for the concentrated current source or by ⊖ for the concentrated

current sink. The origin of the local coordinate system ζ of current source is indicated in sections A and B. In the case of section C, the local

coordinate system of the current source is outside the plot and therefore not displayed.

crucial role. The newly introduced simulator uses concentrated

current sources that arise successively from the innervation

point, whose strength initially increases to full strength in the

vicinity of the innervation point. After their traveling across the

fiber, their strength decreases near the myotendinous junction

until they finally disappear. In terms of complexity, the new

simulator places itself in between models that use a continuous

source function (Farina et al., 2004; Petersen and Rostalski, 2019)

(more computationally expensive) and dipole-based models that

always treat the concentrated dipole current sources in pairs
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(Stegeman et al., 2000) and are thus further from the continuous

description of the current source. Another goal was to design a

muscle-independent simulator, since themethod presented here for

estimating the position of the center of the motor unit innervation

zone is not intended to be adapted to a specific muscle. In

contrast to the most accurate mapping of a muscle with its specific

physiological environment (e.g., bones, blood vessels, and tissue

layers), as proposed e.g., by Zhang et al. (2017), the simulator

introduced here places the motor unit in a purely resistive,

homogeneous, and isotropic medium.

The actual test of the algorithm using the myoelectric

simulation framework is carried out in Section 3.2. Here, the

simulated sEMG signals are subject to varying levels of noise, and

the recognition performance of the algorithm is assessed.

2. Methods

For reasons of clarity, the method section begins with

a description of the myoelectric simulation framework. An

implementation of the presented myoelectric simulation

framework is published on GitHub (Mechtenberg, 2023).

The next step describes the parameterization of the simulator for

an experiment that serves as the basis for testing the algorithm

for recognizing the center position of the innervation zone. The

algorithm for estimating the center position of the innervation

zone is described in the last step.

2.1. Myoelectric simulation
framework–sEMG simulation

Themuscle fiber is a complex single-cell structure withmultiple

nuclei (McCuller et al., 2022). Its membrane has embedded proteins

that allow passive and active ion fluxes through the membrane

(current source). Upon excitation, these membrane proteins allow

for an active ion flux and thus generate a myoelectric action

potential, which, in turn, excites the neighboring proteins. Due to

a refractory period after excitation, during which the respective

active protein cannot be excited, myoelectric action potentials

travel one way along the muscle fiber (moving sites of ion flux).

The resulting changes in the electrical properties of the muscle

fiber can therefore be represented as a traveling current source in

space with finite dimensions (Roberto Merletti, 2004). The initial

excitation of the muscle fiber membrane occurs at the motor

end plate. This is the place where the muscle fiber is innervated,

i.e., connected by the axon of a motor neuron. In vertebrates,

a single muscle fiber is always innervated by only one motor

neuron. This motor neuron in turn connects to multiple muscle

fibers and excites all connected muscle fibers at the same time.

The motor neuron and its connected muscle fibers are called

the motor unit. Motor units can be categorized into three types

(S = slow, FR = fast fatigue resistant, and FF = fast fatigable)

based on the metabolism of the muscle fiber and properties of

force generation (Pette and Staron, 2000; Heckman and Enoka,

2004). Different types of motor units are found to have different

physiological parameters such as the amount of muscle fibers

per motor unit, the velocity of the traveling myoelectric action

potential (conduction velocity), the rise time and duration of the

force twitch, and time to fatigue (Burke et al., 1973). This study

is mainly focused on the electrical potentials resulting from motor

unit excitation. Therefore, relevant motor unit parameters are the

number of muscle fibers in a motor unit and the conduction

velocity along a single muscle fiber. For the modeling of the

generated electrical field of all motor unit myoelectric action

potentials, a current source model for each myoeletric action

potential consisting of concentrated current sources is introduced

(Section 2.1.1). In addition, this also includes a description of

the resulting potential field in quasi-static conditions (Section

2.1.2) and the relevant physiological parameters (e.g. the two

myotendinous junction regions, the innervation zone region, the

number of muscle fibers in a motor unit, and the conduction

velocity of the myoelectric action potentials) of a motor unit

(Section 2.1.3).

2.1.1. Concentrated current source model of a
finite muscle fiber

Amyoelectric action potential is a perturbation of the potential

difference across the active membrane (resting potential). As

described earlier, this perturbation is caused by ion channels

that actively and passively transport electrical charges (ion flux)

and therefore act as current sources, which in general are called

myoelectric current sources. The myoelectric current source can be

described by measurement data, an approximation function, or by

a set of differential equations which model the dynamic behavior

of the ion channels. If the trans-membrane current is neither

measured directly nor taken from a systemmodel of the membrane

components, then it can be derived by fitting a mathematical

function to the shape of a membrane potential. The easiest and

most intuitive model in the latter context is the core conductor

model, which has its origin in cable theory (Taylor, 1963). Here, an

approximated function of the trans-membrane potential Vm(ζ ) is

utilized, from which the trans-membrane current im(ζ ) is derived.

The function in Equation 1 is continuous and is therefore widely

used to model the trans-membrane action potential. It was defined

by Rosenfalck (1969).

Vm(ζ ) =
{

a · ζ 3 · e−λ·ζ + b ζ > 0

b ζ ≤ 0,
(1)

where a ∈ R
+ and λ ∈ [0, 1] are shape defining parameters, b ∈ R

−

is the resting potential, and ζ is the myoelectric action potential

local coordinate. In this study, the parameters of the myoelectric

action potential are set to a = 96mV/mm (Farina and Merletti,

2001), b = −80mV (Ludin, 1969), and λ = 1 /mm (Farina and

Merletti, 2001).

Using the approximation of the membrane potential from

Equation 1, a trans-membrane current density can be determined

using the core conductor model as described by Taylor (1963).

The core conductor model divides the electrically active cell

membrane into segments. If the segment width is approaching zero,

a continuous description of the trans-membrane current density is
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achieved as shown in Equation 2.

Im(ζ ) = a · ζ
Re + Ri

·
(

(λ · ζ )2 − 6λ · ζ + 6
)

· e−ζλ, (2)

where Re and Ri are the resistance per unit length within and

outside the cell, respectively. The current source density will be

used to calculate concentrated current sources, which in turn will

be used as current sources for the electric field model of the muscle

fiber.

A membrane region with negative ions flowing into the muscle

fiber is considered to be a current source. If negative ions leave the

muscle fiber within a membrane region, this region can be regarded

as a current sink. This definition conforms with the technical

definition of current sources and sinks. In the case of the trans-

membrane current density described in Equation 2, there are three

distinct regions (SI, SII, and SIII), as also indicated in Figure 2B.

Each region can be interpreted either as a distinct current source

or sink (in Figure 2B, a source is represented by ⊕ and a sink by

⊖). If the current distribution within a section is concentrated in a

single current (concentrated current source), it would be located at

the center of the respective section. There are two positive regions

(one at the beginning and the other at the end of the signal) and

one negative region between them. In terms of current sources and

sinks, this means a current source ⊕, followed by a sink ⊖ and

another source⊕.

In order to determine the concentrated sources, the bounds of

each section (SI, SII, and SIII) have to be known. The corresponding

bounds are found by analyzing the roots of Equation 2. These roots

are used to divide the current density into three sections with the

following boundaries.

SI =
[

0

−
√
3−3
λ

]

, SII =
[

−
√
3−3
λ√

3+3
λ

]

, and SIII =
[ √

3+3
λ

limυ→∞ υ

]

.

(3)

The trans-membrane current per concentrated current source

is now calculated using the definite integral of Im in Equation 2

within each section using the boundaries of Equation 3. The general

solution for the concentrated current source of a section Si is

imi =
∫ fi

ei

Im(ζ ) dζ , (4)

with fi and ei being the section boundaries. The position of the

concentrated current source on the ζ -axis is chosen to be at the

ζ -coordinate of the centroid of a section.

ci =

[

ζ · ∂
∂ζ
Vm(ζ )

]fi

ei
−
[

Vm(ζ )
]fi

ei
[

∂
∂ζ
Vm(ζ )

]fi

ei

, (5)

where ci is the position of the ith concentrated current source in the

ζ -coordinate system.

The model of the concentrated current source, as introduced in

Equations 4, 5, is stationary, thus neglecting the emergence at the

motor end plate, propagation along the fiber, and disappearance at

the tendon junctions at the ends of the muscle fiber. To incorporate

these aspects, boundaries of muscle fiber and the traveling of the

current source have to be taken into account.

When a muscle fiber is innervated, the myoelectric action

potential is generated at the motor end plate, triggered by the

neurotransmitter acetylcholine. As compared to the axial length

of the muscle fiber, the motor end plate is small. Therefore, the

borders of the motor end plate to the left and right of the voltage-

gated membrane section are assumed to coincide (innervation

point). The myoelectric action potential gradually emerges from

this innervation point and excites the neighborhood on both sides.

This results in two sets of concentrated current sources which

then “travel” bidirectionally along the muscle fiber away from the

innervation point.

When both sets of the concentrated current sources (the left

and right sides of the innervation point) have fully emerged, there

is no change in the shape of the current source curves until they

reach the end of the muscle fiber. In this study, it is assumed that

the myoelectric action potential (representing a set of concentrated

current sources) travels with constant speed (conduction velocity)

between the innervation point and the myotendinous junction

(transition between muscle and tendon tissue). This assumption is

based on an assumed homogeneous ion channel distribution along

the muscle fiber.

Physiologically, the skeletal muscle fiber is attached to the

tendon tissue at both ends. The tendon has no excitable cell

membrane, thus the signal cannot propagate any further and

disappears at the myotendinous junction. This disappearance is

often observed as the end effect in the sEMG as a stationary signal

component (Roberto Merletti, 2004, p. 181). In order to model the

finiteness of the muscle fiber, in this study, the sealed end approach

(Dumitru, 2000) is used.

The propagation of the concentrated current source for an

infinite muscle fiber without an innervation point can be described

by changing the axial position of the concentrated currents imi over

time. In contrast, for a finite muscle fiber with an innervation point,

the emergence at the innervation point and disappearance at the

myotendinous junction have to be taken into account. Using the

coordinate definition from Figure 2, the left tendon onset is set at

x = 0, the innervation point at x = PIP, and the right tendon onset

at x = PMF . The length of the muscle fiber is given by PMF , and x

is the axial coordinate. There are two sets of concentrated current

sources. One set travels in the direction of the left tendon and the

other travels toward the right tendon.

The left signal emerges from the innervation point. Therefore,

the source function has to be shifted to x = PIP, and the left side

propagation ismodeled with the translated coordinate, xl(ζ , t). This

transformation is time dependent, as the current source travels

along the muscle fiber.

xl(ζ , t) = ζ + PIP − v · t, (6)

where v ≥ 0 is the conduction velocity of themuscle fiber. Equation

6 is rearranged to ζ and inserted into the function for the current

density in Equation 6. Since xl(ζ , t) is the conversion from ζ to x

coordinate, the superscript l can be omitted for the right hand side

of Equation 7.

Im,l(x, t) = Im
(

x−
[

PIP − v · t
])

. (7)
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The coordinate translation in Equation 6 should also be applied to

the respective section limits.

eli(t) = xl(ei, t) = ei + PIP − v · t
f li (t) = xl(fi, t) = fi + PIP − v · t. (8)

The finiteness of the muscle fiber is modeled for the emergence

and disappearance by adjusting the section boundaries (sealed end,

denoted by the superscript, fin).

el,fini (t) =











PIP PIP ≤ eli(t)

eli(t) 0 < eli(t) < PIP

0 otherwise

f l,fini (t) =











PIP PIP ≤ f li (t)

f li (t) 0 < f li (t) < PIP

0 otherwise

. (9)

As a result, the concentrated current source of a section i ∈
{I, II, III} and its position are as follows:

im,l,fin
i (t) =

∫ f l,fini (t)

el,fini (t)
Im,l(x, t) dx

cl,fini (t) = 1

im,l,fin
i (t)

·
∫ f l,fini (t)

el,fini (t)
x · Ix,l(x, t) dx. (10)

The signal that travels to the right is modeled similar to the left

signal.

xr(ζ , t) = ζ + PIP + v · t. (11)

Like above, xr(ζ , t) is the conversion from ζ to x coordinate,

and the superscript r can be omitted on the right hand side of

Equation 12. This results in the description of the current density

in Equation 12.

Im,r(x, t) = Im
(

−
[

x−
(

+PIP + v · t
)])

. (12)

The respective adaptation of the section boundaries is shown in

Equation 13.

eri (t) = xr(ei, t) = ei + PIP + v · t
f ri (t) = xr(fi, t) = fi + PIP + v · t, (13)

and of the disappearing section boundaries in Equation 14.

er,fini (t) =











PIP PIP ≥ eri (t)

eri (t) PIP < eri (t) < PMF

PMF otherwise

f r,fini (t) =











PIP PIP ≥ f ri (t)

f ri (t) PIP < f ri (t) < PMF

PMF otherwise

. (14)

As a result, the concentrated current source of a section i ∈
{I, II, III} and its position are as follows:

im,r,fin
i (t) =

∫ f r,fini (t)

er,fini (t)
Im,r(x, t) dx

cr,fini (t) = 1

im,r,fin
i (t)

·
∫ f r,fini (t)

er,fini (t)
x · Im,r(x, t) dx. (15)

2.1.2. Muscle fiber electrode potential
To set up a simulation for the expected potentials that would be

measurable at the skin surface with sEMG electrodes, the potential

at an observation site outside the muscle fiber must be determined

mathematically. As an extracellular field description, the model

of muscle fiber in an unbounded, isotropic, uniform, and two

dimensional volume conductor, according to Plonsey (1977), is

used.

φ(EP) = 1

4πσ e

∫ ∞

−∞

Im(ζ )

r(EP, ζ )
dζ , (16)

where EP is the point of observation and σ e is the conductivity

of extracellular medium. The distance to the signal source r(EP, ζ )
is measured to the center axis of the muscle fiber. The integral

in Equation 16 is split into parts using the section boundaries as

follows.

φ(EP) = 1

4πσ e








∫ e−I

−∞

Im(ζ )

r(EP, ζ )
dζ

︸ ︷︷ ︸

= 0

+
∑

i∈{I,II,III}

∫ fi

ei

Im(ζ )

r(EP, ζ )
dζ



 , (17)

with e−I = limh→0

(

eI − h
)

. As Im(ζ ) = 0 for all ζ < 0, Equation

17 turns into

φ(EP) = 1

4πσ e

∑

i∈{I,II,III}

∫ fi

ei

Ims(ζ )

r(EP, ζ )
dζ . (18)

In Equation 18, the observation point EP is specified relative

to the action potential local coordinate system ζ . However, in

Equation 19, a coordinate transformation from the local coordinate

system of an action potential to a global coordinate system,

as defined in Figure 3A, is introduced. The observation point

(i.e. electrode) in the global coordinate system is called EPE. The
concentrated current source per section in Equation 19 is assumed

to be located at its distribution center, and finite muscle fiber

conditions are assumed. In terms of an observation point in the

global coordinate system, the potential field is modeled as follows

for the concentrated current source traveling on the left side:

φl(EPE, tk) =
1

4πσ e

∑

i∈{I,II,III}

im,l,fin
i (tk)

r(EPE, cl,fini , tk)
, (19)

with

r(EPE, ci, tk) =

∥
∥
∥
∥
∥
∥
∥

ci(tk)






cosβ · cosα
sinβ · cosα
− sinα




+ EPMF − EPE

∥
∥
∥
∥
∥
∥
∥
2

. (20)
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FIGURE 3

Depictions of the geometrical parameters of a muscle fiber (A) and a motor unit (B, C). The innervation points are marked by �. In (A), the orientation

(α,β) and position parameters (reference point at myotendinous junction EPJ, innervation point PIP , and fiber length PMF ) of a single muscle fiber in

three-dimensional space are defined. (B) Within a motor unit, the positions of innervation points are taken from a circular region within the z, y plane

(center EPIZ and radius R). (C) Within the z, x plane, the left myotendinous junction point is taken from the WTL region (the center of which has a

distance LL from the center of the WI region). The right myotendinous junction point is taken from the WTR region (the center of which has a

distance LR from the center of the WI region). The x-coordinate (EPIZ
x ) of the innervation point is taken from the WI region. This type of motor unit

parameterization is based on the work of Merletti et al. (1999).

If the superscript l is replaced by r, equation 19 also applies

to the right traveling concentrated current sources. Due to the

assumption of a quasi static electric field, signal propagation is

modeled in discrete steps (quasistatic, tk+1 = tk + 1t). If the

potential field generated by the right traveling current source is

treated similarly and due to the linearity of the potential field, a

complete field description for an unbounded volume conductor

with a muscle fiber of finite length is given by

φ(EPE, tk) = φl(EPE, tk)+ φr(EPE, tk). (21)

After inserting the respective terms, this leads to

φ(EPE, tk)

= 1

4πσ e





∑

i∈{I,II,III}

im,l,fin
i (tk)

r(EPE, cl,fini , tk)
+

∑

i∈{I,II,III}

im,r,fin
i (tk)

r(EPE, cr,fini , tk)



 .
(22)

This description of a single muscle fiber electrode potential is

used to model a motor unit electrode potential in the following

section.

2.1.3. Motor unit electrode potential and
simulation setup

Each motor unit consists of multiple muscle fibers. The sum

of electrode potentials of all muscle fibers Equation 22 at EPE gives

the motor unit electrode potential at EPE. The individual parameters

of each muscle fiber depend on the motor unit configuration.

The geometry of a motor unit is defined by the region where

the innervation points of each muscle fiber are located, as well

as the regions where the individual muscle fibers end. In this

study, the muscle fibers are assumed to be parallel to each other

(α = β = 0). The innervation points are drawn from a

uniform distribution within the cylindrical volume defined by the

parameters [WI , EPIZ , and R], as shown in Figures 3B, C. The left

end of a muscle fiber is drawn from a uniform distribution defined

by [EPIZx , LL, and WTL]. Similarly, the right end is drawn from a

uniform distribution defined by [EPIZx , LR, andWTR; Figure 3C]. The

geometry constraints are drawn individually for each muscle fiber

and are then transformed into muscle fiber parameters.

The amount of muscle fibers within a motor unit is assumed to

non linearly depend on the relative motor neuron size as described

by Enoka and Fuglevand (2001).

NMF(i) = a · exp
(
ln(R)

NMU
· i
)

with i ∈ [0,NMU], (23)

where i ∈ N is the motor unit identifier. The smallest number of

muscle fibers within a motor unit was assumed as a = 21, based

on the findings from the first dorsal interosseous muscle as reported

by Enoka and Fuglevand (2001). In accordance with the article on

biceps brachii reported by Buchthal and Schmalbruch (1980), the

total number of muscle fibers was chosen as NMF,total = 580 · 103
and the number of motor units was set to NMU = 774. The

parameter R was chosen such that the total amount of muscle fibers

of all motor units is
∑NMF,total

i=0 NMF(i) = NMF,total, which resulted

in R ≈ 188.6.

The motor unit conduction velocity seems to depend linearly

on the force twitch rise time (Andreassen and Arendt-Nielsen,

1987). If in turn the twitch rise time is assumed to depend linearly

on the motor unit size, the following description can be used to

model the motor unit conduction velocity.

vMU(i) = vmax − vmin

NMU − 1
· i+ vmin. (24)

Here, vmin = 2.5 m
s and vmax = 5.4 m

s were assumed

(Andreassen and Arendt-Nielsen, 1987). The conduction velocity

of a muscle fiber within a motor unit i was drawn from the normal

distribution given by

vMF(i) ∼ N

(

µ = vMU(i), σ = 0.22
m

s

)

, (25)

where σ was taken from Farina et al. (2000).
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In summary, the motor unit is parameterized by a set of

geometry parameters (motor unit geometry set)

{

EPIZ ,R,WI

︸ ︷︷ ︸

innervation zone

, LL, LR,WTL,WTR

︸ ︷︷ ︸

left and right
myotendinous junction

}

(26)

and the amount of muscle fibers within a motor unit NMU, from

which the conduction velocity of each muscle fiber is calculated.

2.2. Myoelectric simulation framwork -
experimental setup

For the generation of a virtual electromyography data set, 48

motor units were simulated with varying parameters in six different

motor unit geometry sets (see Equation 26 and Figure 3), and

per set with eight different motor unit sizes (number of muscle

fibers). The simulations were conducted with varying signal-to-

noise ratios. The innervation zone parameters (the left side of

Equation 26) were constant for all simulated motor units and were

chosen arbitrarily in plausible ranges.

WI = 2 cm R =
√

10 cm2

π
EPIZ = [0, 0, 0]T . (27)

The widths of the myotendinous junction region (the right side

of Equation 26) were fixed to WTL = WTR = 0.5 cm for all

simulatedmotor units. However, the shape parameters affecting the

position of the myotendinous junction regions were varied. The

distance between the left and right myotendinous junction regions

L = LL + LR was either set to L = 15 cm or L = 19 cm. For both L

configurations, three sets of LL and LR were simulated.

LL = L · gL

LR = L · gR,
where(gL, gR) ∈ {(0.5, 0.5), (0.7, 0.3), (0.25, 0.75)}. (28)

For each of the six motor unit geometry sets, eight motor units

with different sizes were generated. The amount of muscle fibers

within each of the eight motor units was determined by Equation

23. The motor unit id i also refers to the motor unit size.

i ∈ 400, 450, 500, . . . , 750. (29)

The conduction velocity of each individual muscle fiber was set

as described in Equations 24, 25 based on the amount of muscle

fibers within a motor unit.

For the electrode configuration, a linear electrode array with

a 5mm inter electrode distance (IED) was chosen. The electrode

array was placed 2 cm above the innervation zone center EPIZ . The
array consisted of Nelec = 68 electrodes. In total, 20 electrode

arrays per motor unit, each with 68 electrodes, were simulated. The

electrode arrays differed in an x-offset.

EPEe =





−17 cm+
(

e · 0.5 cm+ offset
)

0 cm

2 cm



 , where e ∈ [0,Nelec − 1],

where offset ∈
{

n · 0.5 cm
20

∣
∣
∣n ∈ [0, 19]

}

(30)

The index e is the index of the mono polar electrode potential

within each array. The algorithm presented in this study assumes a

double differential electrode configuration. The double differential

potential is calculated based on three neighboring mono polar

electrode potentials as follows:

φDD(EPDD, tk) =
(

φ(EPDD; tk)− φ(EPDD+1; tk)
)

−
(

φ(EPDD+1; tk)− φ(EPDD+2; tk)
)

,

where DD ∈ [0, 65].

(31)

The calculated double differential potentials were then located

at the center electrode of each triplet.

EPDD = EPEe=DD+1, where DD ∈ [0, 65]. (32)

The electrode triplets were chosen as shown in 1© of Figure 4.

To simulate varying noise levels, Gaussian noise was added to

the double differential motor unit electrode potentials. The variance

of the randomGaussian noise process is estimated based on a given

signal-to-noise ratio.

SNR = 10 log10

(
Psignal

Pnoise

)

. (33)

The double differential motor unit electrode potential, as

defined in Equation 31, is a time discrete signal. Therefore, the

added noise signal will also be a time discrete signal. As a result,

Equation 33 turns into

SNR = 10 log10










(

1

Nt

Nt∑

k=1

∣
∣φ
(EPEe , tk

)∣
∣
2

︸ ︷︷ ︸

signal power Psignal

)

·
(

1

Nt

Nt∑

k=1

∣
∣e(tk)

∣
∣
2

︸ ︷︷ ︸

≈σ 2

)−1










,

with e(tk) ∼ N (µ = 0, σ) , (34)

where σ is the uncorrected standard deviation of the additive noise

and Nt is the number of simulated time steps. Equation 34 is then

rearranged to σ .

σ (SNR, Psignal) =
√

Psignal

10SNR·0.1
. (35)

All double differential potentials are stored in an array of size

NDD × Nt during simulation. For each double differential signal

over time, the signal power Psignal (cmp. Equation 34) is calculated.

The median of all signal powers P̃signal in the array is then

determined. Based on this, the standard deviation σ (SNR, P̃signal)

of the noise is obtained according to Equation 35. For each SNR,

Gaussian noise values are then drawn from that distribution and

added to all potentials in the array.

The resulting double differential potentials with added

Gaussian noise are then defined as

φDD,SNR(EPEDD, tk) = φDD(EPEDD, tk)+ e(tk),

with e(tk) ∼ N
(

µ = 0, σ (SNR, P̃signal)
)

.
(36)

In this simulation, the double differential potentials over time

are generated with a sampling frequency of fs = 5 kHz. The

simulation duration is set such that the action potential of the

longest muscle fiber reaches the end of the respective fiber. This

results in a simulation time of Tsim = 38.8ms.
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FIGURE 4

Block diagram of the algorithm for the estimation of the center of the innervation zone. Depiction also contains plots of intermediate data from

inside the algorithm. 1© The input consists of recordings from a double di�erential electrode configuration. 2© In preprocessing, the data is bandpass

filtered. 3© Each double di�erential electrode potential is correlated with the wavelet described in Equation 37. The plot in (A) shows the electrode

potential of electrode DD20 represented in blue and the wavelet with the optimal phase represented in black. In (B), the correlation of the wavelet

with electrode DD20 is shown. The gray line in (A, B) marks the optimal wavelet position in time. In (D), the optimal wavelet time delay τ for each

double di�erential electrode is shown as black dots. 4© For each possible pair of these optimal wavelet time delays, a line is calculated. 5© From these

lines, all intersections are determined. After the normalization of the intersection points w.r.t. inter electrode distance 6©, the intersections are

clustered with the DBSCAN algorithm 7©. The biggest cluster is displayed in (C) as red crosses and then used to estimate the center of the innervation

zone which is marked by the white triangle. 8© Transforms back to denormalized coordinates.

2.3. Algorithm for the estimation of the
center of the innervation zone center

The estimation of the center of the innervation zone is based on

tracking the motor unit potential in a double differential electrode

array configuration. The basic idea of the algorithm is that the

motor unit potential is detected on both sides of the center of the

innervation zone with at least two electrodes per side. From that,

the position of the center of the innervation zone on the electrode

array can be estimated. Ideally, two electrodes per side of the motor

unit’s center of the innervation zone would be sufficient. However,

the detection of the motor unit potential is subject to inaccuracies

due to shape changes of the motor unit potential caused by noise

and varying conduction velocities. Here, an electrode array is used

which is placed in the general orientation of the skeletal muscle

fibers covering a sufficient area of the muscle to likely include the

center of the innervation zone.

The proposed algorithm for the estimation of the center of

the innervation zone assumes a linear electrode array with double

differential electrode potentials. The algorithm consists of seven

computational steps. These steps are displayed in Figure 4 as a block

diagram, where 1© represents the double differential electrode

array input. The computational steps are marked with 2© to 8©
in the figure. The sub figures of Figures 4A–C display examples of

intermediate results of critical algorithm step outputs.

2© The input data was filtered with a Butterworth

bandpass filter. The filter was implemented with 2 second-

order sections. The cutoff frequencies were f1 = 4Hz and

f2 = 500Hz. The cutoff frequencies were designed to safely

maintain the EMG frequencies encountered in real sEMG

measurements. The high pass cutoff frequency was chosen

to also include low motor unit firing frequencies starting at

≈ 5Hz (Conwit et al., 1998). The shape defining frequencies

of a motor unit potential are ensured to be present in

the filtered signal by following the SENIAM low pass filter

recommendations for sEMGs as reported by Roberto Merletti

(2004).

3© The position of the motor unit potential is estimated by the

convolution of a wavelet with the electrode potential over time. The

motor unit potential is located at that point in time, at which the

convolution is maximum. As wavelet, the Hermite-Rodriguez series

expansion was selected, which is a Hermite Polynomial scaled and

weighted with a Gaussian function (Conte et al., 1994). The third

Hermite Polynomial is used as proposed by Farina et al. (2000). This
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results in the following wavelet description.

ω2 (t, λ) = 1√
22 · 2!

· H2

(
t

λ

)

· 1√
π · λ · exp

(

− t2

λ2

)

,

with H2(x) = 4x2 − 2, (37)

and with λ being the width parameter of the wavelet. The wavelet

ω2 is convoluted with each of the discrete double differential

motor unit potentials at all time points tk. The maximum of the

convolution denotes the point in time where the wavelet matches

optimally to the course of the electrode potential as shown in

Figures 4A, B. This optimal time point was determined for each

motor unit configuration, each double differential electrode DD,

and signal-to-noise ratio SNR as follows:

τmax,DD,SNR = arg max
n∈[1,Nt]

(

φDD,SNR[k] ∗ ω2[k]
)

(tn)
︸ ︷︷ ︸

wavelet convolution WCDD,SNR

. (38)

An example of the wavelet matching the electrode potential is

shown in Figure 4A. The optimal wavelet position is marked by a

gray line. In Figure 4B, the wavelet signal convolution WC over

the whole simulation time is depicted. The result is an assumed

motor unit potential position in time for each double differential

electrode triplet τmax,DD,SNR. This position is further expressed as

a vector. The subscript SNR is omitted in order to simplify the

following equations. It has to be considered that all operations were

still carried out for each simulated signal-to-noise ratio.

ETDD =
[

τmax,DD DD
]T

. (39)

4© Position pairs of motor unit potentials are formed for

each position vector ET with its subsequent neighbor based on the

electrode id DD.

SP =
{

ETP, ETP+1

}

, where P ∈ [0,DD− 1]. (40)

For each of these pairs SP, parameters of a line crossing both

points of the pair were calculated. Each line is described as

DD = mP · τmax,DD + bP, where DD ∈ {P, P + 1}, (41)

with mP and bP as line parameters. If these line parameters do not

exist as a real value, then the position pair is undefined.

5© For all existing position pairs SP, all possible intersections

of lines with opposite slope signs are calculated. These intersection

points are given by

EXm =
[

Xτm XDDm

]T
, (42)

withm being the intersection index.

6© The intersection points EXm are normalized.

EXm,norm =
[

1 0

0 ve
IED

]

︸ ︷︷ ︸

N

EXm, (43)

where ve is the expected conduction velocity (in this study, it is

set to 4 m
s ), and IED is the inter electrode distance (in this study,

it is set to 5mm, see Equation 30). An example of normalized

intersection points is shown as black crosses in Figure 4C. The

individual intersection points are plotted with a transparency of

20%.

7© The normalized intersection points are clustered with

the density-based clustering algorithm DBSCAN. The scikit-learn

(v1.2.0) implementation of DBSCAN was used (Pedregosa et al.,

2011). The clustering algorithm DBSCAN is configured with a

minimal number of data points within a cluster of three. The

density parameter ǫ remains a free parameter of the presented

algorithm for the estimation of the center of the innervation zone.

The biggest cluster is selected (red data points in Figure 4C); of

which, the mean intersection point is calculated, which is named
EICnorm (white triangle in Figure 4C).

8© Finally, EICnorm is denormalized.

EIC = N−1 EICnorm. (44)

The estimation of the center of the innervation zone presented

in this study has two parameters that remain free to be chosen

by the user. These are the wavelet width parameter λ and the

DBSCAN density parameter ǫ. These parameters are explored by

parameter variation. To compare parameter settings, a metric is

required. In terms of the performance of the algorithm, there are

two general ways in which the algorithm can perform better or

worse. The first is a statistical measure of prediction accuracy,

i.e., the absolute mean error (MAE) between prediction and the

known mean innervation point of a motor unit. The second is to

determine whether the algorithm was able to predict the center of

an innervation zone or not. To facilitate a comparison with the

MAE, the amount of motor unit innervation zones that could not

be estimated Nne was used. If the center of the innervation zone

could not be estimated at least once, the MAE is undefined.

Depending on the use case, it might be desirable to optimize

the algorithm for high prediction accuracy, even if this comes at

the expense of a low number of motor unit potentials that can be

tracked. Therefore, an error score combining the MAE and Nne is

defined.

ES (α) = 0.5 ·
(

α · MAE

IED · 0.5 + (1− α) · Nne

Ntotal

)

,

where 0 ≤ α ≤ 1. (45)

The error score weight α can be used to set a trade-

off between accuracy (small MAE) and robustness (small Nne).

A high value for α corresponds to a strong emphasis on

accuracy and a low emphasis on robustness and vice versa for

a low value of α. In order to analyze the error score ES

in the parameter space (λ, ǫ) of the algorithm, a parameter

variation was conducted with a constant α = 0.5, and at four

different signal-to-noise levels SNR ∈ {−5 , 0 , 5 , and 10 dB}.
This parameter variation was then repeated by prioritizing the

algorithm’s robustness and accuracy, by choosing α = 0.25 and

α = 0.75, respectively.

Additionally, the absolute error (AE) distribution and the

amount of center positions of the innervation zone that were not

tracked (Nne) were examined for six parameter sets over input

signals with SNR’s ranging from−10 to 20 dB in 5 dB increments.
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FIGURE 5

Depiction of exemplary motor unit electrode potentials of three di�erent motor unit configurations, all with innervation zone center at electrode DD

33 (with DD being the double di�erential electrode id). (A) Distance to the left myotendinous junction LL short and distance to the right

myotendinous junction LR long (ratio 25:75). (B) Both distances to myotendinous junctions are equal. (C) Same as (A) but mirrored (ratio changed to

70:30). All signals contain a Gaussian noise of an estimated 5 dB signal-to-noise ratio. Data is filtered by a digital Butterworth bandpass filter

consisting of 2 second-order sections, where the cuto� frequencies are f1 = 4Hz and f2 = 500Hz.

FIGURE 6

Depiction of a single motor unit electrode potential for varying signal-to-noise ratios (SNR), after bandpass filtering. From (A–D), the signal-to-noise

ratio increases, which means that the fraction of noise gets smaller. For each signal to noise ratio, 20 error signals are generated and added to the

simulated signal. Each noisy electrode potential of motor unit is plotted over time on the top of each other with a constant transparency (30%). Note

that with decreasing signal-to-noise ratio [from (D–A)] the extreme points of the electrode potentials of the motor unit electrode potentials vary

strongly which influences the fit of the wavelet.

The parameter sets were chosen as the optimal parameters in the

case of input signal SNR = 5 dB with an α ∈ {0.25, 0.5, 0.75}
and in the case of an input signal SNR ∈ {0 , 5 , and 10 dB} with
an α = 0.5.

3. Results

The presented algorithm for finding the center of the

innervation zone was tested using simulated electromyography

data with varying degrees of noise. First, the simulation results

are presented and then the accuracy and robustness of the

algorithm are examined. Configuration files for the EMG simulator

(Mechtenberg, 2023) and the parameter optimization results are

available on zenodo (https://doi.org/10.5281/zenodo.8056478).

3.1. Motor unit potential simulation

As described in Section 2.2, the simulation was set up with

six motor unit geometry sets. For each motor unit geometry set,

eight motor units of different motor unit sizes (e.g., with different

numbers of muscle fibers) were randomly generated and used for

simulation. With an average of 1, 368 muscle fibers per motor unit,

a total of 65, 664 muscle fibers were simulated (6 · 8 · 1, 368).
For each electrode in an array of 68 electrodes, 195 time steps

of 0.2ms were calculated, resulting in a simulation of 39ms per

electrode. The computational time for the simulation of a single

muscle fiber for all 68 electrodes was 7.8ms on an Intel(R) Xeon(R)

W-2295 processor. Most of the computation time was consumed

for exporting the simulation results of each muscle fiber to the

hard drive.
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FIGURE 7

The results of the parameter variation are shown for the mean absolute error (MAE) in (A) and for the number of untrackable motor unit innervation

zone centers Nne in (B). The leftmost column shows results for the lowest SNR = −5 dB. With each additional column, the SNR increases by 5 dB.

Both measures, MAE and Nne, are normalized before they are combined to the error score ES(α), as defined in Equation 45. The combined error score

in the case of varying weights α is shown in this figure.

The motor unit potential is the sum of electrode potentials of

all muscle fibers. An example of motor unit simulation results are

shown in Figure 5. The sub figures (A–C) show double differential

electrode potentials for three different motor unit configurations

with different distances (LL, LR) from the center of the innervation

zone to the myotendinous junctions. Gaussian noise of 5 dB

was added to the double differential signals before these, where

bandpass was filtered as described in Section 2.3.

The effect of varying signal-to-noise levels on the filtered

electrode potentials is demonstrated in Figure 6 with an increasing

SNR ∈ {−5 , 0 , 5 , and 10 dB} from (A–D). Whereas, the change

in the peak shape of motor unit potential is noted with decreasing

signal-to-noise level (D–A).

3.2. The estimation of the center of the
innervation zone - robustness vs. quality
for di�erent SNRs

The goal of the development of the algorithm for estimating

the center of the innervation zone was to achieve an algorithm

that can be adapted to different noise conditions using a small

set of parameters depending on the quality demands of the

use case. The algorithm was designed to either achieve high

accuracy in determining the center position of the innervation

zone or to achieve high robustness to noise, at the expense of

accuracy.

In Section 2.3, MAE was introduced as a measure for accuracy.

The number of motor unit innervation centers that could not be

identified (Nne) was introduced as the measure for the robustness

of the algorithm (Details of MAE and Nne are shown in Figure 7).

To configure a trade off between accuracy and robustness, a new

error score ES(α) was proposed in Equation 45. The parameter α is

used to weigh the influence of the individual error measures, MAE

and Nne. A parameter variation was conducted with a constant

α = 0.5 and four different signal-to-noise levels (SNR) as depicted

in Figure 8B. The parameters λ (wavelet width parameter) and

ǫ (clustering density parameter) are plotted on the abscissa and

ordinate, respectively. In the leftmost column, the results are shown

for the lowest SNR = −5 dB. With each additional column, the

SNR increases by 5 dB.

The color encodes the error score ES(α). A darker blue

corresponds to a lower error score, and a lighter yellow corresponds

to a higher error score. For white spots, the error score is undefined.

For each SNR, the optimal parameter is marked with a black cross.

Figure 8A shows the same as (B) but for a constant α = 0.25

(stronger emphasis on robustness). Figure 8C shows the same as

(B) but for a constant α = 0.75 (stronger emphasis on accuracy).

As a result, there are two factors determining the optimal mode of

operation. These are the error score weight α and the input signal

SNR for which the algorithm is used.

Regarding the question of which absolute numbers (accuracy in

mm and the number of actually tracked innervation centers) belong

to the error scores from Figure 8, the representation in Figure 9 was

created. The third column in Figure 8 (error scores for SNR = 5

dB) are used to determine the optimal parameter sets for the results

in Figure 9. Figure 9 shows the absolute error AE (in mm) and the

number of untracked centers of the innervation zoneNne belonging

to an optimal parameter set (black cross in Figure 8). The MAE is

plotted as a white dot per SNR category (gray whiskers represent the

standard deviation of the MAE, and 0.25 and 0.75 percentiles are
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FIGURE 8

Depiction of the error score ES(α) as proposed in Equation 45 for di�erent signal-to-noise ratios (SNR). The leftmost column shows results for the

lowest SNR = −5 dB. With each additional column, the SNR increases by 5 dB. (A) The plot of the error score for α = 0.25 (stronger emphasis on

robustness). (B) The plot of the error score for α = 0.5 (equal emphasis on robustness and accuracy). (C) The plot of the error score for α = 0.75

(stronger emphasis on accuracy). The parameter λ configures the wavelet width and the parameter ǫ defines the cluster density of the algorithm for

the estimation of the center of the innervation zone. The color encodes the error score ES(α). A darker blue corresponds to a lower error score, and a

lighter yellow corresponds to a higher error score. For white spots, the error score is undefined. For all plots, the optimal parameter set is marked

with a black cross.

drawn as black lines). Column (A, D) shows this for ES(0, 25), (B, E)

for ES(0.5), and (C, F) for ES(0.75). It can be seen that all MAE are

below the inter electrode distance (IED). With a strong weightage

on the accuracy [column (C, F)], significantly fewer motor units are

tracked [no outliers above the IED line as opposed to columns (A,

D) and (B, E)].

In Figure 10, the AE and the number of untracked centers of

the innervation zone Nne are shown for the optimal parameters

in the case of α = 0.5 (black crosses in Figure 8B) starting from

SNR = 0 dB in column (A, D) of Figure 10. The same is shown

in columns (B, E) and (C, F) for SNR = 5 dB and SNR = 10dB,

respectively. As shown in Figure 10, all mean errors MAE are below

the inter electrode distance (IED). With a high signal-to-noise ratio

[column (C, F)], again significantly fewer motor units are tracked

(small number of outliers above the IED line).

In summary, the error score ES(α) can be used to configure

the presented algorithm for different use cases by adjusting α, as

theremight be scenarios where the accuracy could be less important

compared to the robustness of the algorithm and vice versa.

4. Discussion

This study aimed to develop an algorithm for the localization

of motor unit innervation centers in skeletal muscles based on

sEMG measurements. The algorithm is intended to improve the

prediction quality of muscle-driven joint models by estimating

the mechanical shortening of a muscle during contraction more

accurately based on the measurements of displacements of the

innervation center. This information can be used, e.g., in the

respective muscle submodel. In the next step, it has to be tested

whether the displacement tracking of motor unit innervation

centers allows for a direct determination of muscle shortening, e.g.,

by determining movement of a mean innervation center.

For future use in embedded systems of exoskeletons and

wearables, the algorithm presented in this study has to meet several

requirements. It has to be compatible with noisy measurement

data and be computationally efficient at the same time. In order

to objectively evaluate both requirements, it was decided to test

the algorithm in this study on noisy simulated data in a controlled
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FIGURE 9

The plot of absolute error AE (in mm) and the number of untracked innervation centers for a selected parameterization from the SNR = 5 dB column

of Figure 7. Column (A, B) shows the results for the optimal parameter set (black cross in Figure 7) for α = 0.25. Columns (C, D) and (E, F) show the

same as the column (A, B) but for α = 0.5 and α = 0.75, respectively.

FIGURE 10

The plot of absolute error AE (in mm) and the number of untracked innervation centers for a selected parameterization from the α = 0.5 row of

Figure 7. Column (A, B) shows the results for the optimal parameter set (black cross in Figure 7) for SNR = 0 dB. Columns (C, D) and (E, F) show the

same as the column (A, B) but for SNR = 5 dB and SNR = 10 dB, respectively.

manner instead of directly using real data. It was shown that the

algorithm can cope with artificially noisy data. For the subsequent

adaptation to real data, the ability to balance the robustness of the

recognition against the recognition accuracy under different noise

conditions plays an important role.

During the design of the myoelectric simulator used in this

study, the following key assumptions were made. The muscle

fibers are assumed to be placed in a homogenous, isotropic, solely

resistive, and unbound medium. The muscle fiber transmembrane

currents are modeled as concentrated current sources and sinks,

whose strengths and positions are functions of time. The muscle

fibers themselves are of configurable length and position and have a

configurable innervation point position. These assumptions allow

a simulation of the end effect of the muscle fiber and gradual

emergence of the signal at the innervation point of the muscle

fiber. The model thus fulfills the requirements for a simulation that
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is used for the investigation of motor end plate zones (Stegeman

et al., 2000). Additionally, the generated EMG signal shapes of

the myoelectric simulator were qualitatively compared to real

recordings (Roberto Merletti, 2004).

The assumptions mentioned above allow a fast and efficient

computation of the simulated EMG. Petersen and Rostalski (2019)

published an open source simulator that makes use of a more

complex volume conductor model and a continuous source

function at the cost of an increase in computational complexity.

Zhang et al. (2017) proposed an EMG model using a detailed

volume conductor, based on magnetic resonance imaging, utilizing

finite element electric field simulation. However, both complex

models were not needed to design the presented algorithm, as

the typical sEMG signal wave form was already achieved by the

assumptions in the presented simulation approach.

In the next steps, the algorithm will be implemented on an

embedded system and tested with real measurement data. The

embedded variant would have to identify multiple innervation

zone centers within an EMG recording. The presented algorithm

is designed to track the center of the innervation zone of a single

motor unit. As a result, the algorithm has to be extended to find

all motor unit centers of the innervation zone. Therefore, for e.g.,

an intermediate processing step needs to be established. In the

current form of the presented algorithm, such an intermediate

processing step would need to segment the EMG data in time,

this could be as simple as a sliding window. The hypothesis, that

a simple segmentation method is sufficient, is coupled with the

assumption that it is sufficient to observe a mean innervation

zone movement of all observed motor unit potentials instead of

identifying and tracking potentials of exactly the same motor units.

A more elaborate approach might be preferable which ensures that

in a given window, there is a dominant motor unit potential.

In the medium term, the relationship between mean center

displacement of the innervation zone and muscle contraction

movement will be investigated in more detail, and the algorithm

will be expanded accordingly. Future work in this regard will be

focused on relatively large muscles, like the biceps brachii, as in

the case of larger muscles, there is less chance of interference with

dominant motor unit potentials from other muscles. It is to be

expected that in general, anymethod for tracking innervation zones

performs poor for muscles that are relatively small and that are

close to other muscles (e.g., forearm muscles). Finally, it will be

integrated into the joint control of an actuated exoskeleton.
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