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This research study proposes a unique framework that takes input from

a surface electromyogram (sEMG) and functional near-infrared spectroscopy

(fNIRS) bio-signals. These signals are trained using convolutional neural networks

(CNN). The framework entails a real-time neuro-machine interface to decode the

human intention of upper limb motions. The bio-signals from the two modalities

are recorded for eight movements simultaneously for prosthetic arm functions

focusing on trans-humeral amputees. The fNIRS signals are acquired from the

humanmotor cortex, while sEMG is recorded from the human bicepmuscles. The

selected classification and command generation features are the peak, minimum,

and mean 1HbO and 1HbR values within a 2-s moving window. In the case

of sEMG, wavelength, peak, and mean were extracted with a 150-ms moving

window. It was found that this scheme generates eight motions with an enhanced

average accuracy of 94.5%. The obtained results validate the adopted research

methodology and potential for future real-time neural-machine interfaces to

control prosthetic arms.

KEYWORDS

assistive robotics, disability, intelligent systems, machine learning, prosthesis, trans-
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1. Introduction

Human motion identification by monitoring muscle activation is a thriving field of

research. There are various methods for tracking muscle activity that occurs during physical

movement (Visconti et al., 2018). For instance, to monitor muscular contraction, techniques

applied include sonomyography (SMG) (Xie et al., 2014), mechanomyography (MMG)

(Sattar et al., 2021a), miokinemetric (MK) (Sattar et al., 2021a), and electric impedance

estimation (Xie et al., 2014). Muscle contraction for intention is often determined using

surface electromyography (sEMG) and near-infrared spectroscopy (NIRS) (Zhou et al., 2007;

Herold et al., 2018), as it allows continuous muscle motion monitoring during motor actions

and activities for rehabilitation. Surface electromyography (sEMG) measures the activity of

motor units (MUs) or electrodes. These electrodes are placed over the skin covering the

muscles. The signals extracted by these devices are influenced by many factors, including

the unit of the contraction, the number and type of fibers, and the position of the motor unit

action potential (MUAP) from the signal recognition (Tan et al., 2023).
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Nevertheless, these characteristics are only a related

subcategory of the factors that instigate inconsistencies in

interpreting the time and occurrence-based statistical features of

the sEMG signals. The evaluation of these factors was conducted

by researchers who have obtained significant results from their

analysis (Jarrasse et al., 2017). Techniques for monitoring muscle

activity are employed to measure and analyze the performance

of machines and equipment, as well as to evaluate the physical

condition of their operators (Hyodo et al., 2012; Hong et al., 2018).

Another study showed that the hybrid scheme could estimate

shoulder and elbow motion with >90% accuracy and wrist, grip,

and finger motion with 65%−70% accuracy (Bakshi et al., 2018).

The commands were generated independently from the forearm.

These techniques can be used in various industries, including

manufacturing, construction, transportation, and healthcare.

The advancement of optical brain imaging has paved the

way for innovative human-machine interface (HMI) techniques

(Ayaz et al., 2022). It is accomplished using functional near-

infrared spectroscopy (fNIRS) (Ayaz et al., 2022). fNIRS is a brain

imaging technique that is non-invasive and measures alterations

in oxygenated and deoxygenated hemoglobin concentrations in

the brain. It uses near-infrared light to detect changes in blood

flow in the brain, which can be used to study brain function.

The application of this technology to robotic systems has proven

promising and attracted increased attention in the medical field

(Syed et al., 2021). This technique provides a way to monitor

brain activity that is both indirect and non-invasive. Its portable

acquisition system supports performing experiments in any

environment. The fNIRS measures near-infrared light attenuation

and quantifies the concentration of chromophore attained through

time-based changes. It exploits the optical window in which

the fundamental elements of the human body cause no major

hindrance to infrared light (700–900 nm).

Moreover, it is worth noting that the process of brain activity

can also be elucidated by the absorption of light by oxygenated

hemoglobin (Hb) and deoxygenated hemoglobin (deoxy-Hb).

These two substances play a vital role in this process and their

interaction with light is crucial in understanding the functioning

of the brain. The uniqueness of absorption bands of deoxygenated

and oxygenated hemoglobin allows the evaluation of relative

changes in hemoglobin concentration. The light attenuation is

computed at a few arbitrary wavelengths (Abitan et al., 2008). The

multi-wavelengths are employed due to undifferentiated absorbing

coefficients at 810 nm.

In this activity, an improved Beer-Lambert law is applied to

estimate the relative concentration for the entire length covered

by light photons (Pancholi and Joshi, 2020). The measurement

system includes an emitter for an incident beam of light and

a detector to identify the reflected light. The distance between

the emitter and detector positions is estimated precisely, and

the brain hemodynamic condition is apprehended. The light

absorption is converted into a hemodynamic response using the

Beer–Lambert Law. Four steps are taken to classify brain signals

and provide neurofeedback: preprocessing, feature extraction,

classification, and command production. The classifier is trained

using characteristics extracted from brain signals. It can be

created using machine learning or deep learning methods such

as artificial neural networks, convolutional neural networks, deep

belief networks, long short-term memory, or a cascade of CNN

and LSTM (Luo et al., 2021). While deep learning algorithms have

improved performance in solving complex classification problems

in brain-computer interface research, they also present a unique

challenge when dealing with large datasets.

Despite remarkable development (Pfeifer et al., 2018;

Pancholi and Joshi, 2019), the classic brain signal system still

confronts substantial hurdles. For starters, brain signals are easily

contaminated by biological (e.g., eye blinks, muscle artifacts,

weariness, and attention level) and environmental (e.g., sound)

artifacts (Abitan et al., 2008). As a result, extracting helpful

information from distorted brain signals and constructing a

resilient system that operates in various conditions is critical.

Second, it must contend with the poor SNR of non-stationary

electrophysiological brain signals. Due to their time complexity and

the possibility of information loss, typical preprocessing or feature

extraction algorithms cannot simply address low SNR (Khan and

Hong, 2017; Luo et al., 2021). For example, the state-of-the-art

classification accuracy (CA) for multi-class motor imagery EEG

is often less than 80%. Analyzing the studies comprised of fNIRS,

this value drops to 70% (Luo et al., 2021). Recently, EEG and

fNIRS have been hybridized, and promising results were obtained

to investigate acupuncture therapy’s effects on mild cognitive

impairment patients. Unique learning approaches are required to

cope with dynamic data streams in brain signal systems.

The application of advanced deep learning techniques in

the analysis of brain signals has yielded impressive results,

demonstrating substantial progress in overcoming the challenges

posed by big data analysis and the inherently erratic nature of

such signals (Luo et al., 2021). Deep machine learning offers

two benefits: One, it operates on raw brain inputs, bypassing

time-consuming preprocessing and feature extraction. Second,

using deep structures, deep neural networks may capture both

representative high-level characteristics and hidden relationships.

CNNs are one of the most common deep-learning models

for exploring spatial information. Because of its conspicuous

qualities, such as regularized structure, high spatial locality,

and translation invariance, CNN is commonly utilized to

uncover latent spatial information in applications like image

recognition, ubiquity, and object search. CNN is intended

to capture the differential relationships among the patterns

associated with various brain signals. Recently, research has been

dedicated to using hybrid fNIRS-sEMG systems for multiple

applications, including brain-computer interfaces, sports science,

and rehabilitation.

Combined fNIRS-EMG systems can provide a comprehensive

picture of brain-muscle activity during movement tasks. The

combination of fNIRS and EMG can improve the accuracy and

reliability of brain-computer interface systems. This system can

study the relationship between brain activity and muscle activity

during different types of movement. Using hybrid fNIRS-EMG

systems in sports science can help athletes and coaches optimize

training and performance. These systemsmonitor brain andmuscle

activity during rehabilitation to maximize rehabilitation. Overall,

the limited but promising literature on hybrid fNIRS-EMG systems

suggests that these systems have much potential for a wide range
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TABLE 1 Demographic details of the amputated subjects.

Subject ID A1 A2 A3 A4

Gender Male Male Male Male

Age 23 27 32 45

Amputated side Right Left Right Right

Residual length 15 cm 17 cm 10 cm 18 cm

Cause of amputation Accident Accident Accident Diabetes

of applications, and there is ongoing research that aims to further

understand and develop these systems.

In this study, we propose to combine the information acquired

from the sEMG and fNIRS to generate control commands for a

prosthetic arm device designed for transhumeral amputees. These

control commands are further translated to actuate the device

in real-time to perform eight movements associated with the

upper limb.

The structure of this paper is as follows: the contributions

are outlined in the introduction, while Section 2 focuses on

the acquisition and processing of experimental data for both

modalities. Section 3 introduces our proposed deep-learning

algorithm for recognizing human arm motions. The results are

discussed in Section 4, followed by the research conclusion.

2. Materials and methods

2.1. Subjects

Twenty healthy subjects (15 males and five females)

participated in the experiment (age: 32 ± 5.67). Four trans-

humeral amputees also participated in the study. It was ensured

that none of the subjects suffered from any past disorders

concerning mental, neurological, or visual health. All subjects were

briefed about the data acquisition procedure, and a consent was

obtained in the written form. The details about these amputees are

tabulated in Table 1. The Air University Human Research Ethics

Committee (HREC) permitted trials on human subjects.

Further, these research experiments followed the ethical

standards of the Declaration of Helsinki. The sensors’ placement

on the scalp is illustrated in Figure 1. The placement of an armband

for sEMG and a head cap for fNIRS bio-signals on a transhumeral

amputee subject are shown in Figure 2.

2.2. Sensors description

Myo armband is a wearable gadget produced by Thalamic Labs.

It consists of eight sEMG sensors. The armband can receive muscle

intention data at precisely the sampling frequency of 200Hz. The

Myo armband comprises a nine-axis inertial measurement unit

(IMU) which contains a gyroscope and an accelerometer. All these

devices possess three-axis motion and help locate the armband

and acceleration position for a particular time window. It records

the myoelectric intentions in milli volts (mV) from −30mV to

+70mV. The armband was worn around the bicep muscle just

above the elbow joint. However, amputee subjects used the residual

muscle to wear the armband.

The NIRSport (NIRSport, NIRx Medical Technologies, LLC,

United States) is a neuroimaging device with 24 detectors and

24-source optodes. We used the fNIRS optodes location decider

(fOLD) toolbox to design probe arrangements covering the motor

cortex. After setting the specificity threshold to 15%, we obtained

eight sources and eight detectors assigned according to the 10–5

international system. This setup provided 20 fNIRS channels for

measurement at the inter-optode distance of 3 cm and allowed

the acquisition rate of 7.8Hz. An easy cap with fNIRS optodes

inserted at the 10–5 international system was placed between

nasion to inion and left to right preauricular points (reference

point Cz).

2.3. Experimental procedure

To account for trans-humeral amputation, four of the

associated main arm motions, i.e., elbow, two wrist joint motions,

and the hand motion, are considered in bi-direction. These

motions compromise Wrist Extension (WE), Elbow Flexion (EF),

Wrist Supination (WS), Wrist Flexion (WF), Elbow Extension

(EE), Wrist Pronation (WP), Hand Open (HO), and Hand

Close (HC).

2.4. Training session

Before the experiment, all participants were informed of the

details of experimental tasks and procedures. In addition, there

was a 10min pre-training to familiarize them with operation

and training modes. The testing session included positioning the

subjects on a comfortable chair about 100 cm from the table. This

distance was set to avoid interference between the screen backlight

and optical sensors. Another reason was to clear the visibility of

motion cues prepared to assist the participant. This environment

supported the signal extraction process. The data was collected

in a controlled environment. The signal acquisition took place in

a dark room, with the specially designed head cap to cover the

optodes as the light from the laptop might interfere. The gain

values computed by NIRSport were also analyzed. The data from

each subject, i.e., healthy and amputee, was acquired thrice. The

sampling paradigm was comprised of five tasks, including (1) an

undeveloped session spanned over 30 sec to create a reference

point, (2) a Screen indication to the participants to perform

one of eight definite tasks, (3) recording the pre-defined tasks

sequentially and then repeating the same by the subjects with

random intentions, (4) recording all the eight motion’s data by

fNIRS and sEMG simultaneously, and (5) separating each 10-s

task by a 20-s rest session. This experimental model is represented

graphically in Figure 3.

The motions were repeated twice, i.e., one activity was

performed 16 times by each participant. Every block in Figure 3

represents the acquisition of these motions. One block represents

16 repetitions of one movement. The sub-block representation is

given in Figure 3 as well.
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FIGURE 1

fNIRS sensors placement montage provided by NIRx technologies. The green circles labeled as Dn (where n = 1–8) are detectors, while the red

circles marked as Sn are sources. The purple lines show the channels of interest.

FIGURE 2

Sensors placement on trans-humeral amputated subject.

2.5. Signal acquisition and processing

Data collection: fNIRS data is collected using a system

that includes light emitters and detectors. The light emitters

send near-infrared light through the scalp and skull, and the

sensors measure the amount of light absorbed by the brain.

Data preprocessing: The raw data collected by the fNIRS system

must be preprocessed to remove artifacts and noise. It includes
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FIGURE 3

Experimental model for signal acquisition.

detrending, baseline correction, and spatial filtering. Once the

data has been preprocessed, it can be analyzed using various

techniques. These may include statistical tests to identify changes

in brain activity or more complex approaches such as machine

learning algorithms. Subsequently, in the nirslab environment, the

data is processed with a built-in signal processing software with

NIRSport. The nirslab environment undertakes the specifications

and conditions adopted in real-time and hence becomes an optimal

choice for signal processing through NIRSport. The unwanted

data and unusual spikes are truncated and filtered to compute the

hemodynamic states.

When data logging was initiated, the next step was to find

the electrodes participating in the signal acquisition process.

A specific muscle was activated for one particular activity;

hence, the electrode selection step reduced the time response for

further actions. Reducing the amount of information transmitted

by the controller results in a faster response time for signal

processing. The electrode-wise activity of the Myo armband or the

electromyographic intentions of a healthy and amputee subject is

shown in Figures 4A, B, respectively.

It was observed that during the signal acquisition process,

not all the electrodes were activated. A unique set of electrodes

showed activity with each selected motion. The threshold value was

set to 48mV (by z-score method) to select only those channels

from which important data of electromyographic signals could

be recorded for healthy subjects. Meanwhile, this threshold value

varies for amputees and reduces to 16mV. It is important to take

note that both the healthy and amputated subjects participated in

selecting the same electrodes for identical motion. This electrode

selection contributed to the generation of results with less response

time. An indication of activated electrodes during all eight

movements acquired from a healthy subject is illustrated in Table 2,

and amputee subjects are given in Table 3.

When moving from the elbow to the wrist, fewer electrodes are

activated because the bicep muscles struggle to accurately capture

wrist movements. Therefore, it is crucial to extract pertinent data

features from the signals that have been recorded. In case of weak

electromyographic intention, the wavelength feature is prudent

to generate accurate results not commonly obtained by other

attributes, i.e., mean, peak, etc.

In EMG signal processing, it is common to use a sliding window

approach in which a window of a certain length is moved along

the length of the signal, and various calculations are performed

on the data within the window at each position. The window size

can significantly impact the results of these calculations, and no

“correct” window size is appropriate for all applications. Some

standard window sizes that are used for EMG signal processing

include (Barron et al., 2020):

• 50–200 ms: These window sizes are often used for time-

frequency analysis of EMG signals, as they are small enough

to capture the fine temporal structure of the signal but large

enough to provide a reasonable amount of data for analysis.

• 500–1,000 ms: These window sizes are often used for

calculating statistical measures of EMG signals, such as mean

power, variance, and kurtosis.

• 2,000–5,000 ms: These window sizes are often used for

analyzing the overall activity of an EMG signal, such as

calculating the total number of muscle contractions or the

entire time a muscle was active.

• Whereas some standard window sizes used for fNIRS signal

processing include: 2 s, 5 s, 10 s, and 30 s.
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FIGURE 4

(A) Acquired sEMG bio-signals from healthy subjects against each defined motion. (B) Acquired sEMG bio-signals from an amputee subject. The

amplitude of intentions acquired from the sensor is recorded in milli volts (mV), and the data is then normalized. Whereas on the x-axis, the number

of samples is plotted.

The nirslab package is a robust MATLAB-based software

analysis environment designed to aid in studying time-varying

near-infrared observations. It imports NIRS measurement data

and pertinent information about the measurement [e.g., positions

of optical probes (optodes) on the scalp, as shown in Figure 1.

time of applied stimuli or experimental tasks]. Creating files

containing optode-position and measurement-timing information

and toolboxes for modifying this data. Preprocessing measurement

data with toolboxes that eliminate noisy data channels erasing

empirically unnecessary periods, removing artifacts from data, and

filtering to exclude experimentally irrelevant frequency bands.

Since limb movement is involved, motion artifacts may get

involved in the acquired data. Several approaches can be used to

remove motion artifacts from (fNIRS) data (Pfeifer et al., 2018).

In some cases, excluding data points heavily contaminated by

motion artifacts may be necessary. It is done by visually inspecting

the data or using automated algorithms to detect and flag these data

points. However, the present study is based on capturing the fNIRS

because of movements, so these artifacts cannot be filtered out as it

may cause aninformation loss. However, the measures mentioned

above can be taken to avoid such artifacts. Several steps are involved

in processing fNIRS data (Cui et al., 2010; Scholkmann and Wolf,

2012). These steps are described in the coming sections.

An FIR (finite impulse response) filter is a digital filter

commonly used to process signals in various applications,

including audio, image, and biomedical signal processing (Syed

et al., 2020). FIR filters are characterized by having a finite impulse

response, i.e., the output of the filter will eventually become zero

after a limited number of time steps. FIR filters are implemented

using a set of coefficients to weigh the input data. These coefficients

are designed to emphasize specific frequencies in the input signal

and attenuate others, depending on the desired frequency response
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TABLE 2 Activated electrodes of Myo armband for the selected motions of EE, EF, WS, WP, WE, WF, HO, and HC using the z-score method.

Electrodes EE EF WS WP WE WF HO HC

1 68 mV 40mV 48mV 55 mV 9mV 6mV 7mV 10 mV

2 72 mV 32mV 54 mV 19mV 48mV 7mV 4mV 7 mV

3 31mV 78 mV 70 mV 20mV 8mV 50 mV 11mV 5 mV

4 50 mV 19mV 21mV 24mV 22mV 30mV 10mV 8 mV

5 51 mV 17mV 15mV 56 mV 33mV 29mV 10mV 13 mV

6 28mV 75 mV 52 mV 11mV 49 mV 48 mV 12mV 3 mV

7 60 mV 66 mV 38mV 52 mV 10mV 15mV 5mV 4 mV

8 45mV 75 mV 49 mV 31mV 13mV 14mV 8mV 10 mV

Selected/significant channels are represented in bold.

TABLE 3 Activated electrodes of Myo armband for the selected motions of EE, EF, WS, WP, WE, WF, HO, and HC using the z-score method.

Electrodes EE EF WS WP WE WF HO HC

1 20mV 19mV 27mV 7mV −12mV −15mV – –

2 24mV 11mV 6mV −2mV 27mV −14mV – –

3 10mV 30mV 22mV −1mV −13mV 29mV – –

4 29mV −2mV 0mV 3mV 1mV 9mV – –

5 3mV −4mV −6mV 8mV 12mV 8mV – –

6 7mV 27mV 4mV −10mV 28mV 27mV – –

7 12mV 18mV 17mV 4mV −11mV −6mV – –

8 24mV 27mV 28mV 10mV −8mV −7mV – –

of the filter. The output of an FIR filter can be expressed as:

y[n] =
∑

_k x[n− k] ∗h[k] (1)

where y[n] is the output at a time step n, x[n] is the input at a time

step n, and h[k] is the k-th coefficient of the filter.

The choice of window function will affect the trade-off between

the stopband attenuation and the transition width of the filter.

Different window functions are suitable for various applications,

and selecting the appropriate window function is an essential

consideration in designing an FIR filter. In the presented study,

the z-score has been evaluated for electrode/optode selection.

The z-score method, also known as the standard score method,

is a statistical technique used to determine how many standard

deviations a given data point is from the mean of a dataset (Zhang

et al., 2019). The z-score is calculated as follows:

z = (x − µ)/σ (2)

where x is the data point, µ is the mean of the dataset, and σ is the

standard deviation of the dataset.

The z-score can identify outliers in a dataset and determine

whether a data point is statistically significant. For example, a

data point with a z-score of 2 or more is an outlier because it

is more than two standard deviations from the mean. Similarly,

a data point with a z-score of 1.96 or more in a two-tailed

test is statistically significant at the 0.05 level (Khalil et al.,

2022). Then the features are extracted from the data samples

and used as input to neural networks for motion prediction

training (Zhang et al., 2021).

Sub-HbOdynamic changes are plotted in real-time on

NIRStar R© and computed offline in nirslab. The results were

based on the modified Beer-Lambert law for scattering media.

The operator modified all input parameters of the Beer-Lambert

law (absorption coefficients and inter-optode distance) in nirslab.

In NIRStar R©, these input parameters were fixed according to

the values calculated in real-time. The default inter-optode

distance was set to 3.0 cm. A change in the light reduction at

a known wavelength is expressed by equation (3). The MBLL

was used to convert changes in raw optical density signals into

oxy- and deoxy-hemoglobin concentration changes, respectively
(

cHbO (t) and cHbR (t)
)

:

[

1cHbO (t)

1cHbR (t)

]

=

[

αHbO (λ1)&αHbO (λ1)

αHbO (λ2)&αHbO (λ2)

]−1 [

1A(t; λ1)

1A(t; λ2)

]

l× DPF
(3)

Differential path-length factor (DPF) denotes the curve path

length factor, and l is the distance between the source and detector.

A (t; λ1) and A(t; λ2) are the absorption at two different instants,

αHbO (λ) and αHbR (λ) are the extinction coefficients of HbO and

HbR, while 1cHbO (t) and 1cHbR (t) represent changes in the

concentration of HbO and HbR, respectively (Strangman et al.,

2002, 2003; Ando et al., 2010; Cui et al., 2010; Scholkmann et al.,

2010; Scholkmann and Wolf, 2012; Albinet et al., 2014; Lambrick

et al., 2016).
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FIGURE 5

Acquired fNIRS bio-signals against each defined motion.

The DPF is a dimensionless modification factor. The DPF

detects an increase in the optical path length. The optical path

length is produced by light scattering in organic tissue. The DPF

and source-detector separation product evaluate the “true” path

length of the light inside the biological tissue cell (Villringer and

Chance, 1997; Perrey, 2008; Issard and Gervain, 2018; Quaresima

and Ferrari, 2019). For NIRx technologies, the value of optical path

length is set constant for wavelengths. The fNIRS channel-wise

hemodynamic states are demonstrated in Figure 5.

2.6. Deep learning scheme

This section highlights the architecture of a deep learning

algorithm implemented in this research to translate the selected

eight motions for the upper limb.

2.6.1. Deep neural network architecture
Deep neural networks have more layers than traditional ones

(Luo et al., 2021; Sattar et al., 2021a; Zhang et al., 2021). The

layers in a deep neural network are composed of multiple artificial

neurons, each connected to several other neurons in the next layer.

In the human brain, the neurons inspire the artificial neurons in

a deep neural network. They are intended to process and transfer

information in a manner similar to how organic neurons function.

Convolutional neural networks (CNNs) are a type of deep

neural network that process data with a grid-like structure. CNNs

comprise several layers, including convolutional, pooling, and fully

connected layers. A few fundamental equations that are commonly

used in CNNs (Li et al., 2017; Syed et al., 2021) are given as:

• Convolution: This mathematical operation combines the

input data with a set of learnable weights (kernel or filter)

to produce a feature map. The convolution operation can be

expressed mathematically as in equation (4):

F [i, j] =
∑

_k
∑

_l X[i+ k, j+ l] ∗W[k, l] + b (4)

F is the feature map, X is the input data, W is the kernel, and

b is a bias term.

• Pooling: This down-sampling operation reduces the feature

map size and the number of parameters in the model.

There are several types of pooling, including max pooling

and average pooling. Max pooling can be expressed as

equation (5):

F′[i, j] = max (F [is : is+ f , js : js+ f ]) (5)

where F
′
is the pooled feature map, s is the stride size, and f is

the size of the pooling window.

• Fully connected layer: This is a traditional neural network

layer used to interpret the features extracted by the

convolutional layers and make a prediction. The output of a

fully connected layer can be expressed as equation (6):

F = WX + b (6)

F is the layer’s output, W is the weight matrix, X is the input

data, and b is a bias term. During the experimental studies, it was

analyzed that raw data produced by the selected signal is ineffective

for analysis because of its non-linear, non-stationary, and stochastic

nature. Such characteristics of the sEMG-fNIRS signals are due
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FIGURE 6

Proposed CNN architecture.

to the continuous variation in motor unit recruitment and the

arbitrary way the motor unit potentials are superimposed.

The two main factors that engender a change in these signals

include (1) the number of peaks (NPs), which corresponds to

the frequency of components, and (2) the signal’s amplitude,

which directly relates to the strength of a particular activity. The

parameters used to derive the proposed scheme include (1) T acts

as the window size or frame size, and (2) the nth derivative of the

signal, i-e, △n, (3) the discrete Fourier transform (DFT) of signals

is represented as χ[k], and (4) the frequency index is defined by

k, where k varies from 0 to T – 1. The time differential property

of the Fourier Transform (Feng et al., 2020) indicates that the

nth derivative of the signal is computable and is calculated by

multiplying the signal’s frequency spectrum and nth power of k (Li

et al., 2017; Ameri et al., 2019), as explained in (7).

F
[

△nσ (t)
]

= knχ[k] (7)

where σ (t) is the signal in the time domain,△n is the nth derivative

of the signal, and χ [k] is the frequency transform of the signal. The

power spectral moments are used to preprocess the signal before

feeding input to the neural network. The moment µ of the nth

order is defined as (8).

µn =

√

√

√

√

T−1
∑

t=0

tnχ[t]. (8)

According to the integral of squares method by Parseval’s

theorem, the segmented signal is defined in the form of its power

as in (9)

T−1
∑

t=0

σ [t] =
1

T

T−1
∑

t=0

∣

∣

∣
χ[t] · χ[t]

∗
∣

∣

∣
=

T−1
∑

t=0

η [t] (9)

Using the equations (7), (8), and (9), the 0th, second, and fourth

moments are defined as follows in (10) and (11)

µ0 =

√

√

√

√

T−1
∑

t=0

(σ [t])2 (10)

µ2 =

√

√

√

√

T−1
∑

t=0

(1σ [t])2 (11)

Similarly, the fourth-order moment is expressed by

equation (12).

µ4 =

√

√

√

√

T−1
∑

t=0

k4χ[t] =

√

√

√

√

T−1
∑

t=0

(

12σ [t]
)2

(12)

The number of peaks (NP) is then computed using the ratio of

moments (Pancholi and Joshi, 2019). As defined in equation (13)

NP =

√

µ4

µ2
(13)

The square version of NPs is shown in equation (14)

NP =

√

µ4

µ2
= β (14)

PP = µ∗
Oβ (15)

In the proposed architecture, the sEMG-fNIRS signal passes

through a function named PP (β) or the product of peaks and

power as expressed in equation (15). This preprocessing step forms

the bio-signal stationery and reduces the dimension of the training

dataset with less neural information loss.

The proposed network comprises three convolution layers, two

fully connected layers, and one SoftMax layer. These layers are

illustrated in Figure 6. First, preprocessed information is passed
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through the first convolution layers that contain 128 filters with

a kernel size of 7. The output from the first convolution layer

constitutes 18 × 128. The second convolution layer includes the

same number of filters with a kernel size of 5. The output from the

second convolution layer is 14 × 128. Subsequently, the max pool

of size two was incorporated into the architecture, and an output of

7× 128 was obtained.

Further, a third convolution layer with 64 filters with a kernel

size of 3 is applied. The output of the third convolution layer is 5

× 64. Afterward, the global average pooling is applied between the

third and fourth fully connected (FC) layer of size 512. An FC of

128 is incorporated by following the SoftMax layer and adopting

the Adam optimization method (Wen et al., 2021).

For layer 1, the mathematical formulation is described as (16).

αl
m(j) = bl(j)+

i≤128
∑

i=1

(

Ii,jw1(p, q, i)+ Ii,j+1w2(p, q, i)
)

(16)

where αl
m(j) belongs to neuron j of map q in the respective layer

l, it also shows the multiplication between the weighted values and

input neurons. The filter used in the neural network is wk (p, q, i)

layer, map, channel/kernel, and the positions are defined by p, q,

i, and k in the kernel, respectively. The bias in layer-1 for neuron

j is indicated by bl(j). For layer-2 and layer-3, the mathematical

expression is given as equation (17).

αl
m(j) = bl(j)+

i≤N l
k∈rnel

∑

i=1

(

Mi,jwl

(

p, q, i
)

+Ml−1
i,j+1w2(l,m, i)

)

(17)

Nlkernel denotes the number of kernels in layer l. Mi,j belongs

to the components i, j (neuron j in-kernel i) of the feature maps

produced, following the convolution from the preceding layers.

Finally, two fully connected layers (FCs) are used, and a SoftMax

layer of size eight is employed. After this, the information acquired

from the bio-signals is fed into a classifier to map distinct patterns.

After classifying the data, their real-time testing was performed to

validate the significance of training performance.

Following the completion of classifier training, the outputs are

merged to arrive at a conclusive decision. The forthcoming section

will outline the methodology employed to establish a definitive

conclusion from bothmodalities. Section 4 will contain an in-depth

analysis of the outcomes derived from this evaluation.

3. Combining bio-signals

A hybrid fNIRS-sEMG system combines these two techniques

to measure both brain and muscle activity simultaneously. Some

of the key findings from this research include that Hybrid fNIRS-

sEMG systems can provide a complete picture of brain and muscle

activity during movement tasks (Khan and Hong, 2017; Nsugbe

et al., 2020; Sattar et al., 2021b). The combination of fNIRS

and sEMG can improve the accuracy and reliability of brain-

computer interface systems. Hybrid fNIRS-sEMG systems can be

used to study the relationship between brain activity and muscle

activity during different types of movement. Using hybrid fNIRS-

sEMG systems in sports science can help athletes and coaches

optimize training and performance. Combining fNIRS and sEMG

technologies in hybrid systems allows for monitoring of both brain

and muscle activity during rehabilitation, which can optimize the

rehabilitation process. Current research on these systems shows

promising potential for various applications, and continued efforts

are being made to further understand and enhance them.

A fundamental impression behind this hybrid fNIRS and

sEMG-based control interface is combining both modalities to

mutually counter their shortcomings. Specific inadequacies have

been reported in published literature when a single modality is

used for bio-signals (Villringer and Chance, 1997; Nsugbe et al.,

2020). A single output from two signals is achieved in a few unique

manners and may include the devices’ explicit applications and

limitations (Park et al., 2023; Pichiorri et al., 2023). Hybridmethods

are implemented to run a simple game control for a healthy person,

which may aid in control applications of peripheral devices used

by amputees.

Usually, the fNIRS or surface electromyographic intention

signals are examined to activate specific modules of any hardware,

such as elements in an assistive device (Zhang et al., 2019, 2021).

On the other hand, both could be merged. The final output allows

users to adjust and switch control reliably and efficiently. Only

limited approaches can be applied to classify the hybrid sEMG-

fNIRS intentions for a specific peripheral appliance. A hybrid

scheme processes the predicted input commands simultaneously or

sequentially as a multiple-input framework.

The number of classes has an impact on the accuracy of fNIRS

estimation; as the number of classes rises, the accuracy declines as

the brain hemodynamic responses become uniform as a signal. On

the other hand, a classifier distinguishes the motion intention based

on sEMG, even if the number of classes is more than 50. Hence,

the control is distributed to both modalities. The hand motions

could not be predicted in the present study as the signal source for

the bicep muscle of trans-humeral amputee limits the number of

motion intentions. As the inference is based on the learning model,

the fNIRS can counter this problem by giving themotion intentions

of the hand, especially in the case of amputees.

4. Results and discussions

The state-of-the-art research suggests that the human-machine

interface controls are initiated either on a single modality or

through the hybridization of multiple modalities. The present

study lodges on a hybrid method to generate the control

commands translated to activate a prosthetic arm for trans-

humeral amputees. The obtained results in this research are briefly

discussed below.

4.1. Channel selection

The results show that all the optodes were not apprehending

the actual concentration change when the subject executed brain

activity. However, the same channels were active when similar

motions were performed in another trial of signal acquisition.

Hence, Channel activations were sorted according to the t-values

extracted from the training data.
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FIGURE 7

Motion-wise accuracies of individual subjects to decide and select the bio-signal for a defined motion.

It is important to note that the choice of window size can

significantly impact the analysis results and should be carefully

considered based on the specific goals of the study. Window

sizing is generally proposed to generate a fast response for real-

time applications (Khalil et al., 2022). Considering this, the 0–

0.5, 0–1, and 0–2 s for windows were selected. The split-seconds

were employed for sEMG features extraction and investigation of

hemodynamic features to secure the best window size to decrease

the computation time.

The channel outputs highlight the need to choose good

channels for recognizing definite brain activitie. The Signal

averaging and z-score method are used to select a channel as per

the channel choice standard. This concept has been supported by

human brain studies (Hong et al., 2018; Park, 2023; Park et al.,

2023). When the right side of the human body is in motion, the

human brain’s left hemisphere is activated. In this research, the

subjects were asked to move their right arm, and it is evident that

the hemodynamic patterns occurring in the right hemisphere were

merely noisy. The right hemispheres’ channels (1–10) do not show

significant activity. Considering this, the action was discarded in

feature extraction and motion classification. However, the left side

of the motor cortex was active, and the channels from 11 to 20 were

used to classify the motions.

4.2. Classification accuracy

The performance outcome was statistically evaluated based

on the number of correctly predicted samples. This activity was

completed during 0–10 s, and data was gathered from sEMG

and fNIRS.

The data was separated into batches for validation. Batch-

1 comprised 60% data for training and 20% for validation and

testing. Batch-2 trained on 70% of the data; 20% was separated for

validation and 10% for testing. In other cases, the percentages for

batch preparation varied. However, some batch sizes resulted in

overfitting, while a couple was statistically insignificant when the

student’s t-test was performed. The training CA is 88.83 and 83.95%

for sEMG and fNIRS, respectively. Each step was calculated in 230

µs with a 3 s epoch completion time. The training CA of 90.81 and

86.06% was observed when batch size was fixed at 600 samples for

fNIRS and sEMG. Each step has been computed in 180 µs with

a 2 s epoch completion time. When the batch size was explored

in 400 for both fNIRS and sEMG, the CAs of 91.65 and 90.81%

were achieved, respectively, while 130 µs has been observed with

2 s epoch completion time. An enhanced average of 94% predicted

motions were found while evaluating the response from all healthy

subjects for the fNIRS and sEMG activity alone, while the accuracy

was 96% for four movements (Cui et al., 2010; Herold et al., 2017).

This motion-wise accuracy is shown in Figure 7. This is where

the modality of bio-signal was selected, and a defined motion was

labeled to be predicted by the modality giving the best accuracy

value. Paired t-test was implemented for sEMG vs. fNIRS vs. hybrid

model accuracies, and by conventional criteria, this difference (p=

0.0001) is exceptionally statistically significant.

However, the sEMG classification accuracy for wrist

flexion/extension was below the acceptable range of 80%. In

the hybridization approach, weighted input activity produced

98% correct estimation by integrating fNIRS and surface

electromyography. Subject-wise accuracies are given in Figure 8.

The LDA and k-NN accuracies are extracted from the published

studies that match the same sample set (Sattar et al., 2021b, 2022;

Syed et al., 2021). Interestingly, the sEMG intentions for the

wrist flexion/extension were weak, and hence fNIRS played a

significant role in the inconsistency of the accuracy. The accuracy

for the motion hybridized was increased to 98% as the fNIRS

took command. It was also observed that the amputee A2 had

amputation for over 10 years, which resulted in weak sEMG

intentions. However, integrating the fNIRS and sEMG modalities

helped achieve better accuracies. A graphical comparison of

average classification accuracy evaluated from single modality

signals and hybrid techniques is illustrated in Figure 9.

When comparing the performance of single modality vs.

hybrid modality, it’s clear that the combined approach consistently
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FIGURE 8

Subject-wise accuracies from each classifier.

FIGURE 9

A comparison of single modality accuracies along with hybrid modality. These are the average values of accuracy computed for all motions

subject-wise.

outperforms the gradual decline in accuracy observed with single

modality. When the eminence of the myographic input dropped

under a particular threshold value, the acquired outcomes were

of poor quality. The solid infringement of the supposition that

input patterns are stationary over time was the leading cause of

failure. This problem was nullified by progressively updating the

probabilities of the two input sources.

5. Control scheme for prosthetic arm
device

The trained classifier was then implemented in real time

to examine the potential of the proposed control scheme. The

predicted motions were translated to actuate the prosthetic arm

device, as shown in Figure 10. The control commands from

both modalities was used to actuate the device according to the

defined motion. As illustrated in Figure 10, each signal modality

translated the four movements, resulting in the actuation of the

prosthetic arm device. The device was tested on healthy as well as

amputee subjects.

Unexpectedly, the combined command prompts an average

increase of 6% in classification accuracy compared to the single

modality scheme. The sEMG intentions are usually flawless

and give no error while dealing with the classification of the

signals. It has been observed that electromyographic sense

may not always produce the desired outcome. Specifically,

it has been noted that weak intention signals resulting from
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FIGURE 10

The prosthetic device control scheme based on electromyography and functional near-infrared spectroscopy signals.

TABLE 4 Real-time motion classification results of the proposed hybrid

framework.

Input class No. of misclassified motions/no. of
motions performed

Healthy Amputee

EE 0/30 0/20

EF 0/30 0/20

WS 0/30 0/20

WP 1/30 0/20

WE 0/30 1/10

WF 1/30 1/10

HO 0/30 1/15

HC 0/30 0/15

wrist motion can negatively impact overall performance.

The real-time motion classification results are illustrated in

Table 4.

The workspace or the arm’s trajectory varies as the arm length

changes. The residual muscles of amputees also vary. Illustrated in

Figure 11 is an example of the course that may be followed if the

subject can perform the defined eight motions as discussed earlier.

Determining the space/trajectory of the arm can be beneficial in

future studies for robust real-time control.

To the authors’ best knowledge, the proposed framework is

unique in hybridizing sEMG and fNIRS signals for upper limb

amputation. A comparison was made with other state-of-the-art

machine learning techniques, such as LDA, SVM, k-NN, and ANN

(Sattar et al., 2019, 2021a,b, 2022). The results are compared

with the current research. The maximum individual classification

accuracies and time taken by the machine learning algorithms are

presented in Table 5.

The present study validates the advantages of a hybrid neural-

machine interface (Mughal et al., 2022). The hybridization of two

distinct modalities resulted in stable output performance, unlike

the results reported in published studies for a single modality

source. Besides the exceptionally high adequacy, the intention

from the growing muscular fatigue leads to a minor performance
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FIGURE 11

An example of trajectories of the prosthetic arm in the 3D space (healthy subject).

TABLE 5 Performance evaluation and comparison with existing classification models (max. values).

Technique Learning
method

Time response Classification accuracy

sEMG fNIRS Hybrid sEMG fNIRS Hybrid

TD features LDA 250ms 1.5 s 2 s 65% 62.82% 67.12%

FD features LDA/SVM 250ms 2 s 2.5 s N/A N/A 52.67%

TFD features k-NN 150ms 1.5 s 1.5 s 73.70% 69.83% 74.5%

Raw sEMG ANN 300ms N/A N/A 72.30% N/A 72.3%

Raw fNIRS ANN N/A 4 s N/A N/A 58% 58%

Raw sEMG/fNIRS CNN 180 µs 230 µs 280 µs 86.83% 83% 88.83%

TD features k-NN 150ms 0.5s 0.5s 88.83% 86% 93.06%

Proposed framework CNN 130 µs 200 µs 180 µs 91.81% 93.65% 98%

Bold indicates differentiate between this study and previous works.

deprivation as the control is shifted to brain hemodynamic

responses. Such a framework can be accounted for reliable hybrid

brain-computer interface control for an extended day (Zafar et al.,

2019).

Hybrid HMI techniques have the potential to provide a

more intuitive and natural way for amputees to control their

prostheses, allowing them to perform a broader range of tasks

and activities. Some of the critical areas of research in this

field include:

• Developing new algorithms and machine learning techniques

to process fNIRS and sEMG signals and translate them into

control commands for the prosthetic arm.

• Improvement of the accuracy and reliability of fNIRS and

sEMG-based control systems by developing better sensors and

signal processing methods.

• Hybrid fNIRS-sEMG control systems that can take advantage

of the complementary information provided by these

two modalities.

In general, the prospects for controlling prosthetic arms

through the use of fNIRS and EMG signals are promising. There

is continuous research being conducted to enhance and advance

these technologies, which will undoubtedly play a vital role in the

development of advanced prosthetic devices in the future.

6. Conclusion

The sEMG and fNIRS signals were acquired using the

Thalamic Lab’s Myo armband and a NIRSport from the NIRx

Technology. The framework developed for real-time interfacing

was investigated for eight-arm motion intention by humans. It

includes WS, WP, WE, WF, EE, EF, HO, and HC. The bio-signals

were analyzed for patterns related to the selected motions. A CNN

was designed and implemented for the classification of the acquired

bio-signals. The respective motion commands were generated for a

prosthetic arm. The activity predicted by the proposed framework

shows an accuracy of 94.5%.
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Moreover, the highest value of accuracy of an individual subject

was recorded at 98%. Such accuracy with eight control commands

has yet to be reported. The time taken for the classifier to generate

control commands and the accuracy were also evaluated through

the state-of-the-art machine learning algorithms, and the results are

compared with the proposed framework. The proposed scheme is a

preprocessing step for making input evidence for future research.

Future work will focus on the real-time implementation of the

proposed system to control a prosthetic arm by the amputee.

Furthermore, a framework to fuse these two bio-signals for fast

command generation will be designed.
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