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active rehabilitation
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Introduction: Hemiparesis is a common consequence of stroke that severely

impacts the life quality of the patients. Active training is a key factor in achieving

optimal neural recovery, but current systems for wrist rehabilitation present

challenges in terms of portability, cost, and the potential for muscle fatigue during

prolonged use.

Methods: To address these challenges, this paper proposes a low-cost,

portable wrist rehabilitation system with a control strategy that combines surface

electromyogram (sEMG) and electroencephalogram (EEG) signals to encourage

patients to engage in consecutive, spontaneous rehabilitation sessions. In addition,

a detection method for muscle fatigue based on the Boruta algorithm and a post-

processing layer are proposed, allowing for the switch between sEMG and EEG

modes when muscle fatigue occurs.

Results: This method significantly improves accuracy of fatigue detection from

4.90 to 10.49% for four distinct wrist motions, while the Boruta algorithm selects

themost essential features and stabilizes the e�ects of post-processing. The paper

also presents an alternative control mode that employs EEG signals to maintain

active control, achieving an accuracy of approximately 80% in detecting motion

intention.

Discussion: For the occurrence of muscle fatigue during long term rehabilitation

training, the proposed system presents a promising approach to addressing the

limitations of existing wrist rehabilitation systems.

KEYWORDS

brain-machine interfaces, machine learning for robot control, rehabilitation robotics,

sEMG, muscle fatigue detection

1. Introduction

Hemiparesis is a common sequala of stroke survivors (Wist et al., 2016), resulting in

paralysis of one side of the body, including motor dysfunction and muscle weakness in

the extremity (Maria and Eng, 2003; Li et al., 2013). Active therapy initiated by voluntary

intention of patient is more effective for neuron recovery than continuous passive motion

(CPM) (Takahashi et al., 2008), meanwhile, the repeated, continuous training can enhance

the functional recovery of stroke patients (Kwakkel et al., 2004; Wang et al., 2013). Since

wrist joint is critical for activities of daily living (ADLs), many rehabilitation systems were

proposed to assist the active training of wrist (Krebs et al., 2007; Song et al., 2013; Abdallah

et al., 2016; Lin et al., 2020). However, in terms of hemiparesis rehabilitation, these systems

possess two insufficiencies. First, these rehabilitation robots are controlled by the paretic arm,

which is not applicable for the acute hemiparesis patients because of the motor dysfunction

of their damaged side. Second, the above methods neglect the occurrence of muscle fatigue

during the training, causing a risk of impact on the active participance of the patients.
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Bilateral control is naturally appropriate for hemiparesis

rehabilitation since it utilizes surface electromyography (sEMG)

signals of the healthy arm to manipulate the movement of the

affected one, and it has been employed in upper limb rehabilitation

controlling (Nielsen et al., 2011; Leonardis et al., 2015). However,

sEMG-based control encounters challenges of muscle fatigue due

to the increasing workload of the unimpaired side caused by the

habit of the patients with hemiparesis, in which they tend to rely

on their healthy extremity instead of the impaired one during

ADLs (Wolf et al., 1989). When the muscle becomes fatigued,

the physical characteristics of sEMG change (Viitasalo and Komi,

1997; Dimitrova and Dimitrov, 2003; Lalitharatne et al., 2013),

making bilateral control inaccurate and unstable. In that case, the

control issues and discomfort can reduce patients’ willingness to

engage in rehabilitation, leading to fragmented and segmented

rehabilitation that violates the principles of prolonged and

consecutive rehabilitation. Researchers have studied the detection

of muscle fatigue during rehabilitation training Shahmoradi et al.

(2017) extracted time and frequency domain features and used

HiddenMarkovModel to fatigue status recognition system in post-

stroke rehabilitation exercises; Mugnosso et al. (2018) designed an

indicator based on mean frequency of sEMG to detect the ongoing

fatigue during repeated training; Moreover, other studies also

employed machine learning methods based on time and frequency

features to evaluate muscle fatigue, but they have not proposed

an applicable solution for the training after muscle fatigue (Gerdle

et al., 2000; De et al., 2018).

EEG is commonly used to control robots or devices in

many studies since it provides a direct representation of brain

activity (Edelman et al., 2019; Li et al., 2019). However, its

accuracy is less than that of normal sEMG signals, which are

recorded when there is no muscle fatigue (Li et al., 2017).

Consequently, researchers (Lalitharatne et al., 2013; Chowdhury

et al., 2019; Edelman et al., 2019; Li et al., 2019) have attempted

to enhance control performance by combining EEG and sEMG

signals. Nevertheless, the requirement for sophisticated and costly

devices with numerous electrodes and wires, which necessitate the

application of conductive gels, presents a challenge for combining

control. Conversely, ideal human-machine interfaces (HMIs)

should be low-cost, lightweight, and user-friendly (Mahmood et al.,

2021).

To overcome these challenges, this paper proposes a low-cost,

portable, and user-friendly system for active wrist rehabilitation.

The system’s core innovation is a control strategy that switches the

control mode from sEMG to EEG when muscle fatigue occurs. The

aim is to maintain coherent and consistent bilateral training while

minimizing accuracy loss and discomfort. The main contribution

of this paper is a muscle fatigue detection model that has a post-

processing layer embedded with CNN. The Boruta algorithm is

employed to select the optimal features. The Boruta algorithm is a

feature selection approach based on Random Forest classification

(Kursa and Rudnicki, 2010; Ahmadizadeh et al., 2019), which

provides unbiased and stable selection of constructive features.

The paper also proposes an alternative control mode that uses

EEG signals to maintain active bilateral control. Finally, evaluation

experiments are conducted to validate the optimal setting of

the fatigue detection method and the performance of the EEG

control mode.

The present paper is structured as follows: Section

Methodology provides a detailed account of the employed

methods in the proposed system. Section Experiments and

protocols outlines the experimental protocol, while the results

obtained are presented and analyzed in Section Experiment

results. The ensuing discussion and interpretation of the study’s

findings are included in Section Discussion. Finally, Section

Conclusion summarizes the main conclusions drawn from

this investigation.

2. Methodology

2.1. Overall design of EEG and sEMG
control system

In this paper, a system comprising two modes is presented,

namely sEMG Mode (Mode I) and EEG Mode (Mode II), as

illustrated in Figure 1A. Mode I utilizes surface electromyography

(sEMG) data acquired through a wireless MYOArmband (Thalmic

Labs., Canada) to detect and interpret the user’s intended motion,

and Mode II works as an alternative of Mode I when muscle

fatigue occurs. The MYO Armband is capable of recognizing six

types of gestures, which are transmitted to the computer as integer

values via Bluetooth at a frequency of 50Hz. Then the computer

activates the exoskeleton, which assists in executing the intended

motion, as depicted in Figure 2. It should be noted that the system

does not initiate detection of the next gesture until the ongoing

motion has been completed. Moreover, a fatigue detection program

runs concurrently with the motion control program in Mode I,

enabling real-time monitoring of muscle fatigue. Once fatigue is

detected, gesture recognition is halted and the system switches to

Mode II.

Mode II utilizes a low-cost and wireless headband, Brainlink

(Macrotellect Ltd., Shenzhen, China), to capture EEG signals.

Brainlink is a lightweight (39 g) and affordable (<120 USD)

consumer EEG headband that utilizes dry electrodes, thereby

eliminating the need for conductive gels, reducing noise (Mahmood

et al., 2021), and shortening preparation time. The system detects

the user’s state of movement or non-movement via EEG and

activates the exoskeleton to perform the rehabilitation movements

accordingly when movement is detected, as depicted in Figure 1B.

The wrist exoskeleton is a soft-rigid combined assistance device

designed in a prior study (Yang et al., 2021) and characterized

by portability, weighing only 268 g without circuits and battery.

Another advantage is the adaptable soft actuator, which minimizes

the risk of secondary injury.

2.2. Acquisition, preprocessing and feature
extraction of sEMG data

The sEMG signals are acquired through the eight electrodes

around MYO Armband at 200Hz. The armband is placed centrally

between the extensor carpi radialis and extensor digitorummuscles

and is fitted snugly to the user’s arm. In the fatigue detection

process, the sEMG signals are transmitted to a computer and are

subsequently filtered using a fourth-order Butterworth bandpass
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FIGURE 1

Overview of the system. (A) Sketch of exoskeleton-assisted wrist rehabilitation using a hybrid control strategy with low-cost EEG and sEMG sensors.

(B) Integration and application of the system.

FIGURE 2

Diagram of bilateral control for four motions by sEMG. The interconnections are: wrist flexion-wrist flexion, wrist extension-wrist extension, fist

clenching-radial deviation and five fingers opening-ulnar deviation. The green block corresponds to the forward motion of the linear motor, while

the red block denotes the backward motion. A combination of di�erent distances can generate four types of movements.

filter with cutoff frequencies of 10 and 80Hz, in addition to a notch

filter at 50Hz. Let T represents the acquisition time and RM is the

acquisition rate of sEMG, and the sEMG data DM is obtained with

a size of 8× T · RM .

Next, a sliding window approach is applied to segment the EEG

data into smaller slices for local feature extraction. The window

length and step length are denoted by Tw and Ts, respectively.

For the sEMG data, a non-overlapping window with a length of

Tw = Ts = 0.25s (roughly 50 samples) is used for segmentation.

Within each window, features are extracted from the eight sEMG

channels using four different schemes presented in this paper.

Scheme A involves 13 features, including minimum, maximum,

mean, and standard deviation of sEMG amplitude and frequency,

as well as spectral entropy, spectral flux, zero crossing rate, entropy

energy, and Wilson amplitude (WAMP). Scheme B is similar

to scheme A, except for the replacement of mean frequency

with median frequency (MDF). Scheme C includes eight features,

namely root mean square (RMS), MDF, skewness, kurtosis, form

factor, crest factor, impulse factor, and margin factor. Finally,

scheme D comprises only two features, RMS and MDF. As each

channel’s features are computed within one window, a basic feature

matrix MB of size FM × 8. is obtained. To construct the final

feature matrix MM , three adjacent matrices MB are concatenated,

resulting in a size of 3FM × 8. The dataset of MM is denoted
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by DSM , which has a size of NM × 3FM × 10, where NM =
[

(T · RM − Tw)/Ts + 1
]

/3.

2.3. Acquisition, preprocessing and feature
extraction of EEG data

Brainlink utilizes three dry electrodes located on the forehead

to generate a bipolar EEG channel corresponding to F7–Fp1

(Japaridze et al., 2022). The sampling rate of the Brainlink

headband is 512Hz and it employs the NeuroSky ThinkGear ASIC

Module (NeuroSky, USA) to calculate the power spectral density

(PSD) values of the raw EEG data every second. The PSD values

are sorted into eight distinct frequency bands, including Delta,

Theta, Low alpha, High alpha, Low beta, High beta, Low gamma,

and Middle gamma. The software development kit used for this

purpose is MATLAB (MathWorks, USA), which reads these values

as hexadecimal numbers. These hexadecimal PSD values are then

normalized to a range of [0, 1] by dividing the PSD value of each

band by the total PSD values of the corresponding row. Next, the

hexadecimal PSD value of each band is converted into decimal

number, and the PSD value of each band is divided by the total PSD

values of the row to normalize the data into [0, 1]. Let RE denote the

acquisition rate of EEG. The EEG data DE has a size of 8× T · RE.

To crop the EEG data DE, Tw and Ts are set as 8 and 2 s,

respectively, according to the experiments reported in section EEG

classification results. The sliding windowmoves along the temporal

axis, and the EEG feature matrix ME is computed within each

window. Here, 10 features are considered for EEG classification,

which are the eight normalized PSD values in DE plus the values of

β/α and β/(α+θ). Because β/α and β/(α+θ) can show the attention

level of a subject (Zhang, 2018). These two features are computed

using the normalized PSD values inDE, and the EEG feature matrix

ME has a size of Tw× 10. LetDSE represents the dataset ofME,DSE
has a size NE × Tw × 10, where NE = (T · RE − Tw)/Ts + 1.

2.4. Muscle fatigue detection using CNN
with boruta and post-processing

To monitor the muscle fatigue during rehabilitation, a model

named fatigue-CNN with Boruta-based feature selection has been

developed. As illustrated in Figure 3, this model consists of a post-

processing layer and four convolutional layers. The fatigue-CNN is

trained at a learning rate of 0.0001 for 120 epochs, and batch size of

32. The layers are initialized using the Xavier method, and the fully-

connected layers use a dropout rate of 0.65. The optimizer used is

Adam, and the loss function is set to cross entropy. The fatigue

detection process is as follows: First, the feature matrices MM

are normalized using min-max normalization, and then the most

valuable features are selected using the Boruta algorithm. Next, the

selected feature matrices are passed through the four convolutional

layers to extract higher-level features and undergoMaxpooling. The

resulting features are flattened, then passed through a softmax layer

and argmax to obtain the primary prediction results. Finally, the

possibility values of each class and the primary prediction results

are input into the post-processing layer to produce the ultimate

fatigue prediction.

The post-processing step takes into account the sequential

relationship of sEMG to overcome the deficiency of the

Conventional CNN mechanism which treats feature matrices

as independent samples, thus neglecting the interconnections

between the samples. For example, a real sEMG sequence may be

[0 0 0 0 0 0 . . . 1 1 1 1 1 1], where “1” represents fatigue and “0”

denotes non-fatigue, but the neural network may output a result

of [0 0 0 1 1 0. . . 1 0 0 1 0 1]. To address this issue, a non-linear

bias using neighboring information (cf. equation 1) is proposed to

rectify the final recognition results. The detailed workflow is shown

in 4.2.

fci= argmax

(

Pmi +

∣

∣RKm−Pmi
∣

∣ ·
(

RKm−Pmi
)

RKm

)

(1)

where fci is the final classification result of ith input, Pmi is the

classification possibility of the CNN softmax layer for the ith data

andm class,m ∈ (0, 1) is the class of fatigue or non-fatigue And RKm
is the ratio ofm class data in [i-K:i+K] adjacent range.

2.5. Active control based on EEG signal

To facilitate EEG-based control of the exoskeleton, an EEG-

CNN model is proposed for recognizing the user’s intended

movements from EEG signals. The architecture of EEG-CNN is

similar to that of the fatigue-CNN, with the exception of the

absence of the post-processing layer. The EEG-CNN is trained

using a learning rate of 0.0001 for 120 epochs with a batch size of

16. All layers are initialized with the Xavier initialization method,

and the fully connected layers have a dropout of 0.65. The loss

function is set to cross entropy, and the Adam optimizer is used

for optimization.

As described in section Acquisition, preprocessing and feature

extraction of EEG data, the feature matrices ME have been

normalized prior to input into the EEG-CNN. These matrices then

pass through four convolutional layers, a Maxpooling layer, and

fully connected layers to produce the final prediction of motion

intention. The EEG-based classification consists of two categories:

“has motion intention” or “none motion intention.” During EEG

mode, the user wears the EEG headband, and the screen displays

a series of wrist motions. After each prompt, if the user intends to

perform the displayed motion, the user simply repeats the raising

and lowering of the arm, after which the exoskeleton will perform

the corresponding actions. Conversely, if the user does not wish to

move, the user should keep their gaze fixed on the black cross and

remain still.

3. Experiments and protocols

3.1. Experiments on sEMG control before
and after muscle fatigue

Eight subjects (two females and six males) with average age

at 23.6 were involved in this experiment, and the protocol is
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FIGURE 3

Structure of the fatigue-CNN used in fatigue detection. The colored squares represent the output of the convolutional layers, and the numbers

nearby are the size of the corresponding filters. The strides and padding method are listed as well. And the small ellipses are the 1-D features.

shown in Figure 4B. The subjects seated straight and equipped with

MYO armband and they followed the instructions on the screen to

perform four hand motions using their left hands. For each subject,

every motion was repeated for 20 times. Thus, 20 times× 8 subjects

= 160 attempts and the corresponding exoskeleton motions were

recorded. In total, four hand gestures were tested, which resulted in

640 trials in total.

Then, the subjects held a dumbbell of 1.5 kg, and kept doing

wrist flexion and extension until they felt exhausted. Subsequently,

they continuously grasped a grip until their fingers got tired as well.

After the fatigue of both wrist and fingers, they rested for 20 s. Then

they performed the four handmotions again, and another 640 hand

motion recognition results were recorded. After the experiments,

the subjective feelings of the subjects were inquired and recorded.

Eight subjects (two females and six males) with an average age

of 23.6 participated in this experiment, which followed the protocol

outlined in Figure 4B. The subjects seated upright and wore MYO

armbands. Then they followed the instructions on the screen to

perform four handmotions using their left hands. And eachmotion

was repeated 20 times by every subject, resulting in a total of 160

attempts per subject, and 640 attempts in total across all subjects.

The experiment then proceeded to test the recognition of

gesture after the fatigue of subjects. At first, they held a 1.5 kg

dumbbell and continuously performed wrist flexion and extension

until they felt exhausted. Then they grasped a grip until their

fingers became fatigued. And the subjects rested for 20 s before

performing the four hand motions again. A further 640 hand

motion recognition results were recorded. Finally, the subjective

feelings of the subjects were recorded and analyzed after the

completion of the experiments.

3.2. Acquisition and construction of fatigue
sEMG dataset

In order to evaluate the performance of the fatigue detection

method, two datasets are involved, namely, a public sEMG dataset

and a MYO dataset collected in this paper. The public dataset

(Papakostas et al., 2019) contains sEMG data of three motions:

shoulder flexion (SF), shoulder abduction (SA) and elbow extension

(EE). All the signals were extracted in one channel with a sample

rate of 1,926Hz. Following the processing approach in 2.2, the

validation dataset DSM was obtained.

In this paper, a dataset of sEMG signals during constantly

fulfilling wrist flexion and extension (WFE) were recorded. Four

males and two females (not the same individuals in 3.1), who were

all healthy students with an average age at 24.2, were recruited

to collect the data. They seated on a chair in a quiet room, and
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FIGURE 4

The protocol of the experiments using MYO armband. (A) The setting of MYO armband and subjects. (B) Experiments on hand motion recognition.

(C) Acquisition of muscle fatigue data during wrist flexion and extension. The color-bar manifests the progress of muscle fatigue.

putted the left arm on a horizontal desk wiring MYO Armband,

as depicted in Figure 4A. The experimental procedure consisted

of two trials, as shown in Figure 4C. In the first trial, participants

were asked to perform WFE movements with a 1.5 kg dumbbell

at a uniform speed until they felt significantly fatigued. After a 5 s

break, they tried their best to continue repeating the movements

for 40 s. The samples collected during the first 20 s of the trial were

considered as “non-fatigue,” while the last 40 s of data were labeled

as “fatigue.” All the chosen samples were labeled accordingly,

except for one male subject who did not feel significant fatigue.

For both datasets, following the aforementioned procedures,

the corresponding DsM was produced. It is noteworthy that the

DsM was split by motion. All the feature matrices MM of the same

motion of all the subjects were merged in one DsM , in which the

MM of certain subject were ordered by chronological sequence, and

then catenated by subject. Finally, the number of MM in DsM of

SF, SA, EE, WFE were 954, 1,015, 901 and 998. Afterwards, the

validation experiments were performed and the results are shown

in Table 1. When dividing the EMG dataset, a special partition

method was used to produce five-fold validation dataset, that was:

the ith sample of each five samples was selected to form the

testing dataset of in the ith fold, and the remaining formed the

training dataset.

3.3. Experiments on muscle fatigue
detection methods using boruta and
post-processing

The experiments of fatigue detection algorithm are split into

two parts. In experiment I, the algorithm is validated on four

motions with features of scheme A. In experiment II, the fatigue

detection algorithm is tested with or without Boruta optimization

with features of scheme B, C and D.

In experiment I, the aforementioned datasets of SA, EE, SF

and WFE were processed through the procedures in 2.2 and

extracted features through scheme A, and each motion produced

one validation dataset DSM which is Group 1. Then a copy of these

datasets was processed by Boruta algorithm which is named Group

2. Then the samples in two groups were disordered and divided into

testing data and training data at a ratio of 2:8. Afterwards, they were

tested by original CNN and the fatigue-CNN through ten times

of five-folds cross validations, while three K values were tested in

fatigue-CNN group (K= 3, K= 4 and K= 5).

In experiment II, onlyWFE dataset was employed and B, C and

D feature extraction schemes are used to generate DSM (Group 1).

A copy of each of the threeDSM was processed by Boruta algorithm

(Group 2). Following the same procedures of experiment I, the

testing and training datasets were produced and the two groups

were tested by fatigue-CNN through ten times of five-folds cross

validations with three K values.

3.4. EEG acquisition and experiments of
movement state

Six subjects, four males and two females with an average

age of 23.4, participated in this experiment. All the subjects

were in good health and did not have any neural diseases. They

were seated upright in a quiet room, maintaining a distance

of approximately 40 cm from the screen and wearing an EEG

headband on their forehead.

For each subject the test protocol consisted of 30 sessions, and

each session included three randomly selected trials, as illustrated

in Figure 5. The first trial began with a text prompt instructing

the subject to “keep still,” which was displayed for 1.5 s. Next, a

black cross was displayed on the screen for 10 s, and the subject

kept gazing on the cross and keeping their body still. In the second

and third trials, the subject was instructed to perform a specific
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TABLE 1 The accuracies of muscle fatigue detection for di�erent methods.

Motion Original CNN
accuracy

Fatigue-CNN accuracy

K = 3(%) K = 4(%) K = 5(%) 1 (%) P-value

SF 73.20± 0.72 81.16± 0.67 81.64 ± 1.78 77.21± 1.54 4.43 /

SA 63.73± 0.87 65.28± 2.28 65.55± 1.43 68.63 ± 2.07 3.35 /

EE 84.14± 0.49 89.84± 0.76 92.34± 0.64 93.21 ± 0.80 3.37 /

WFE 77.94± 0.98 86.21± 1.02 87.54± 1.30 88.43 ± 1.79 2.22 /

SF+ Boruta 74.00± 1.00 81.56± 1.08 81.80± 1.07 83.39 ± 1.48 1.83 2.20E-03

SA+ Boruta 65.72± 0.64 70.00± 1.86 71.74 ± 1.87 70.28± 1.98 0.74 8.76E-03

EE+ Boruta 85.04± 0.48 92.73± 0.79 92.86± 0.98 93.26 ± 0.91 0.53 9.35E-01

WFE+ Boruta 78.44± 0.99 86.53± 1.44 88.62 ± 1.98 88.14± 2.01 2.09 8.27E-01

The bold values in “K= 3, K= 4, K= 5” columns indicate the highest accuracy in the three columns.

motion, either wrist flexion and extension or arm raising, after

a 1.5 s prompt. There was no black cross on the screen during

these trials, and the screen was completely black while the subject

performed the motion. After each trial, the subject had a 10 s rest.

The samples of keeping still were labeled by “0.” meanwhile,

the samples of wrist movements and arm movements were

labeled by “1.” Various combinations of window and step length

(Tsǫ [2, 4, 6, 8] , Twǫ [6, 8, 10] ) were tested to investigate the proper

settings of EEG mode, and the corresponding DsE was produced.

Notably, the DsE of all subjects were mixed, then ten times of five-

folds cross validations were completed by EEG-CNN for the mixed

dataset of all subjects.

4. Experiment results

4.1. Results of sEMG control before and
after muscle fatigue

In the sEMG control experiments, a successful control was

defined as: the exoskeleton was activated according to the bilateral

control protocol in section Overall design of EEG and sEMG

control system. The recognition results of the same motion of

different subjects were merged, as a result, the successful control

ratio for wrist flexion, wrist extension, fist clenching and five fingers

opening are 97, 95, 95, and 89%, respectively.

In contrast, the accuracies of the four motions after fatigue

are 95, 93, 82, and 80%, respectively. The accuracies of wrist

flexion and wrist extension are almost the same, while those of fist

clenching and fingers opening decrease by nearly 10%. In addition,

7 out of 8 subjects reported that they were not willing to continue

doing movement and could not standardly fulfill the movement

after fatigue.

4.2. Experimental results of fatigue
detection method

The results of Experiment I are shown in Table 1, and it

can be concluded into three aspects. First is the effect of the

post-processing layer, which significantly enhances the accuracy

of fatigue detection for all experimental groups. Specifically, the

improved percentages are 4.90–10.49% for the datasets without

Boruta, while the highest improvement is obtained in WFE

group (10.49%), and the highest accuracy is observed in EE

group (93.21 ± 0.80%). Meanwhile, in the Boruta groups,

the EE + Boruta has the highest accuracy (93.26 ± 0.91%).

However, the accuracy after post-processing is considerably

influenced by the value of K. Basically, the accuracy increases

with the rise of K, and the highest accuracies almost emerge in

K= 5.

Second, after applying the Boruta algorithm, the highest

accuracies of SF and SA showed a significant improvement of

1.75 and 3.11%, respectively. Additionally, the validation results

were tested and found to align with a normal distribution, and

T-tests were conducted to determine the significance of the

accuracies before and after applying the Boruta algorithm. The

P-values for SF and SA were found to be 2.20E-03 and 8.76E-

03, respectively, indicating a significant improvement in their

accuracies. Furthermore, the Boruta algorithm was successful in

reducing the fluctuations of accuracies for all four datasets. In

SA and EE, for instance, the difference between the highest

and lowest accuracies decreased to 0.74 and 0.53%, respectively,

which are only one quarter of the original difference (3.35

and 3.37%). Heatmaps (a) and (b) in Figure 6 show the P-

value of accuracies at different K-values for SA and EE, with

the majority of P-values being close to or <0.05. Conversely,

the P-values after applying Boruta were much higher than

0.05, indicating that the performances of accuracies were not

significantly different. In other words, post-processing was

more stable.

Considering one subject’s data as example, the effects of post-

processing are shown in Figure 7. The preliminary prediction

results are the original output of the CNN (the third row),

and the probability is the output of the softmax layer (the

second row). Then these two results are incorporated in the

post-processing layer. Through this approach, the sequential

relationship of sEMG is leveraged, and therefore the final accuracy

is improved.
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FIGURE 5

The EEG acquisition protocol. The light blue square represents one trial which contains three screen frames. The duration of each frame is shown

under the corresponding squares.

FIGURE 6

The heatmaps of P-values of the accuracies for groups with di�erent K values. (A) SA dataset without Boruta; (B) EE dataset with Boruta; (C) SA

dataset with Boruta; (D) EE dataset with Boruta; The numbers in the figures are the P-values of the corresponding groups and the color-bar visualizes

the P-values.
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FIGURE 7

Diagram of the fatigue detection algorithm. The color-bar denotes the possibility of fatigue, for instance, 1 represents totally fatigue and 0 represents

non-fatigue. The horizontal axis represents the time series.

4.3 Experimental results of di�erent feature
extraction schemes

The results of Experiment II are shown in Table 2. First, After

Boruta algorithm, the size of features decreases considerably, while

the highest accuracies remain stable. Specifically, the decreasing

rates of feature size are 64.7, 74.0, and 27% for B, C and D schemes.

And the highest accuracies of B, C and D group are 88.61± 1.89%,

95.82± 1.15% and 95.27± 1.14%, respectively, which are very close

to the highest accuracies without Boruta algorithm.

Second, considering the accuracies of the same dataset (B, C or

D) at the same K value before or after Boruta as a couple, T-test was

conducted to shown the significance of the difference. As illustrated

in Figure 8, the differences of accuracies are not significant in B

and D, but in the K = 3 and K = 4 group of scheme C, the

improvements of accuracy are significant. Third, K = 3 group

of scheme C has the least computation expense, applicable time

expense and acceptable accuracy. To sum up, the post-processing

layer employs the temporal association of sEMG to improve the

muscle fatigue detection accuracy, and Boruta algorithm selects the

vital features to decrease the computation expense and stabilize the

effects of post-processing.

4.4. EEG classification results

In Figure 9, the average accuracy of ten times validations

of all subjects are illustrated. With the increase of stride, the

classification accuracy decreases, meanwhile, the longer length of

window generates higher accuracy. Specifically, the lowest accuracy

is observed in the group with stride at 8 and LW at 6, which is

slightly <80%. When LW= stride= 8, there is no overlapped data

in the sliding window, and the accuracy of that group is 80.12 ±

1.1%. Moreover, the highest accuracy achieves up to 97 ± 0.6% in

the group where LW= 10 and stride= 2.

FIGURE 8

The heatmaps of P-values of the accuracies for groups with

di�erent K values and di�erent feature schemes.

According to the results, a longer window and higher

overlapping can generate higher accuracy, but will lead to

longer time-latency. To balance the requirement of real-time and

accuracy, the window length and step length of EEG mode are set

as 8 and 2, respectively.

5. Discussion

This study proposes a bilateral-controlled wrist rehabilitation

system with a switching strategy, aiming to encourage patients

to maintain spontaneous rehabilitation and promote the recovery

of neurons for individuals with hemiparesis. Notably, previous
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TABLE 2 The accuracies of muscle fatigue detection in di�erent feature schemes.

Method Original features Features after Boruta

num K = 3(%) K = 4 (%) K = 5 (%) Num K = 3 (%) K = 4 (%) K = 5 (%)

B 312 86.8± 1.01 87.59± 1.03 88.42 ± 1.79 110 86.53± 1.47 88.61 ± 1.89 88.14± 2.42

C 192 93.23± 1.61 94.47± 1.51 94.59 ± 0.99 50 94.64± 1.25 95.82 ± 1.15 95.04± 0.92

D 48 94.96± 1.63 95.16± 1.17 95.54 ± 1.00 35 94.49± 1.94 94.37± 1.54 95.27 ± 1.14

The bold values indicate the highest accuracy in the “K= 3, K= 4, K= 5” columns of each method.

works on fusion control of sEMG and EEG relied on numerous

channels to extract signals, as shown in Table 3, and the

devices utilized in these studies were costly and cumbersome,

requiring more professional guidance and extended setup time.

For instance, Li et al. (2017) used REFA 128 amplifier (TMS

International, the Netherlands) with 64-channel EEG+32-channel

sEMG; Chowdhury et al. (2019) used g.USBamp amplifier (g.tec,

Graz, Austria) in the paper. These amplifiers (cost more than

$ 15,000) must be connected to EEG cap with many wires, in

this case, there must be assistants to help the patients wear the

EEG cap and inject conductive gel into the caps, while the sEMG

electrodes must be pasted on the correct muscle as well. In contrast,

the rehabilitation system presented in this paper is portable and

affordable, consisting of a lightweight exoskeleton and two low-

cost, portable signal-acquisition devices, and can be directly used

for acquiring signals. Nonetheless, this paper primarily focuses

on the rehabilitation system’s strategy, with the integration and

performance testing to be conducted in subsequent research.

Moreover, specific limitations of this system are discussed in the

following sections.

5.1. EEG control using a low-cost and
portable device

In this study, we present a novel approach using a low-cost EEG

band to distinguish spontaneous intention of subjects as manifested

by forearm movements and concentration state. This alternative

solution is advantageous for rehabilitation, as it enables patients

to fulfill consecutive training and maintain voluntary participation

(Kwakkel et al., 2004; Wang et al., 2013). While most previous

studies have focused on extracting EEG signals from corresponding

regions of the motor nerves (Lalitharatne et al., 2013; Chowdhury

et al., 2019; Li et al., 2019), this research employed forehead EEG

signal to reflect the user’s motor intention, and this method has

been studied in a recent paper (Liu et al., 2022).

The paradigm presented in this paper uses EEG activation

from both movement and visual attention, while reducing the

classification into two categories (move or still), resulting in higher

accuracy for EEG control mode. Another reason for designing this

control paradigm is to prepare for incorporatingMYO information

and EEG signals in the future. The position information can be

detected through the MYO Armband’s Inertial Measurement Unit

(IMU), and is not affected by muscle fatigue. We chose not to use

computer vision (CV) to detect motions because it is prone to be

affected by lighting, camera quality, and obstructions. In contrast,

FIGURE 9

The classification accuracies of movement or non-movement with

di�erent strides and window lengths in four fatigue levels. LW is the

length of window, and the small rhombuses represent abnormal

values.

EEG directly reflects brain activity and is not affected by these

factors. Furthermore, the wireless EEG headband used in this paper

is not limited by the range of the camera, which provides greater

portability. However, the application of this strategy is for the

hemiparesis of the early stage when their damaged wrist is paretic

and not able to move, in the future, a resistance training mode

through incorporating force sensor into the exoskeleton would be

studied for the latter stage of recovery.

5.2. SEMG fatigue detection and its
limitations

In this study, a novel approach for detecting muscle fatigue

using a low-cost EMG armband is proposed. By introducing a

non-linear bias through a simple equation (1), the classification

accuracy is significantly improved, as demonstrated in the results.

Furthermore, the Boruta algorithm (Kursa and Rudnicki, 2010)

is utilized to reduce the feature size and improve stability of the

post-processing. Instead of selecting the feature set for a specific

model, the Boruta algorithm can filter out all the feature sets that

are correlated with the dependent variable, thus the stabilization
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TABLE 3 Characteristics in systems that combine EEG and sEMG.

Research Feature
extraction

EEG EMG
combination

Acquisition
channel

Classification
method

Category
number

Classification
accuracy

Real-time
performance

Li et al. (2017) Time domain

features

Simple fusion 64-ch EEG+

32-ch sEMG

LDA 2-class

recognition

80.7–94.2% on single

subject

Offline

Chowdhury

et al. (2019)

CBPT and

CMC

Correlation fusion 3-ch EEG+

2-ch sEMG

SVM 5-class

recognition

84.5–92.8% on single

subject

Offline

Leeb et al.

(2011)

PSD for EEG

time features

for sEMG

Bayesian fusion 16-ch EEG+

4-ch sEMG

Gaussian

classifier

2-class

recognition

60.4–92.0% on single

subject

Offline

Li et al. (2020) CSP for EEG

time features

for sEMG

Hierarchical control 32-ch EEG+

6-ch sEMG

LDA 4-class

recognition

73.3–85.3% on single

subject

Online

Du et al.

(2012)

Wavelet Sequential control EEG+ EMG

+ optical fiber

BP network 2-class

recognition

62.5–82.5% for

EEG

78–89% for sEMG

Online

This paper PSD for EEG

temporal and

frequency

features for

sEMG

Switch control 3-ch EEG

8-ch sEMG

CNN 6-class for

sEMG 2-

classFor EEG

80.12–97% for EEG

94.49% for sEMG

cross subjects

Online

and generalization are better. Note that although all feature samples

were employed in the experiment to select the optimal features,

in practical application, a smaller segment of signals can be used

in finding the index of the optimal features prior to the formal

detection, so that the processing of sEMG in real-time detection

does not include Boruta algorithm. For each detection, the fatigue

detection program acquires 0.75 s sEMG as the data basis, and

the feature extraction needs <0.05 s, while the CNN and post-

processing procedures can be completed within 0.1 s. Therefore, the

fatigue detection program can output a result at 1Hz. Although this

model is run on a laptop with R7 5800 CPU and RTX 3050 GPU, the

portability is not affected because the command is sent by Bluetooth

which is effective to cover the daily using in regular house.

There is still room for improvement in this approach. Firstly,

the current method can only accomplish two-class classification,

and a fatigue index should be developed to define the fatigue level.

The post-processing method only considers the original predicted

results to rectify the output, and dynamic rectification involving

the already corrected neighboring results should be investigated

and tested in future work. Secondly, only four schemes for feature

extraction are used in this study, which may not be the optimal

options. Hence, more features need to be involved and tested in

the future. Third, In the future, the CNN model could be replaced

by machine learning methods like SVM in order to support the

embedded system. Finally, the validation of detection model is

based on healthy young subjects of which the sEMG signals is

different from those of the old subjects. In the future, the sEMG

signal of old subjects should be acquired to train a new model,

in which the parameters of Boruta algorithm and CNN network

are different.

6. Conclusion

In this study, a novel, low-cost and portable rehabilitation

system for wrist recovery is presented. The system incorporates a

sEMG-EEG combined strategy to promote prolonged consecutive

training, with a key contribution being the muscle fatigue

detection method. The use of the Boruta algorithm and post-

processing method improves fatigue detection accuracies for

four motions. Additionally, an alternative control method using

EEG and a CNN model achieves high accuracy in detecting

motion intention.

However, this paper mainly focuses on the control strategy,

and future work should include integration and validation of

the system. Moreover, there is room for improvement, such as

incorporating IMU with EEG mode, and developing a method for

recognizing and defining graded muscle fatigue. Overall, this study

offers an effective control strategy for rehabilitation robots that has

the potential to improve patient outcomes.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://ieee-dataport.org/

documents/fatigue-semg-data.

Ethics statement

The studies involving human participants were reviewed

and approved by Institutional Review Board of Xi’an Jiaotong

University. The patients/participants provided their written

informed consent to participate in this study. Written informed

consent was obtained from the individual(s) for the publication of

any identifiable images or data included in this article.

Author contributions

Conceptualization and methodology: SY and ML. Supervision

and funding acquisition: ML. Experiment design and data analysis:

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1161187
https://ieee-dataport.org/documents/fatigue-semg-data
https://ieee-dataport.org/documents/fatigue-semg-data
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yang et al. 10.3389/fnbot.2023.1161187

SY, ML, and JW. Investigation: SY, JW, ZS, and BH. Writing: SY,

ML, JW, JX, and GX. All authors contributed to the article and

approved the submitted version.

Funding

This work was supported in part by the National Natural

Science Foundation of China under Grant (51975451).

Acknowledgments

The authors thank the participants and all those who provided

help and advice in the experiment.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdallah, I. B., Bouteraa, Y., and Rekik, C. (2016). Design of smart
robot for wrist rehabilitation. Int. J. Smart Sens. Intell. Syst. 9, 1029–1053.
doi: 10.21307/ijssis-2017-906

Ahmadizadeh, C., Pousett, B., and Menon, C. (2019). Investigation of channel
selection for gesture 494 classification for prosthesis control using force myography:
a case study. Front. Bioeng. Biotechnol. 7:331. doi: 10.3389/fbioe.2019.00331

Chowdhury, A., Raza, H., Meena, Y. K., Dutta, A., and Prasad, G. (2019). An EEG-
EMG correlation-based brain-computer interface for hand orthosis supported neuro-
rehabilitation. J. Neurosci. Method. 312, 1–11. doi: 10.1016/j.jneumeth.2018.11.010

De, A. R. V., do Carmo, J. C., and Assis de, O. N. F. (2018). Weighted-cumulated
S-EMG muscle fatigue estimator. IEEE J. Biomed. Health Inform. 22, 1854–1862.
doi: 10.1109/JBHI.2017.2783849

Dimitrova, N. A., and Dimitrov, G. V. (2003). Interpretation of EMG changes
with fatigue: facts, pitfalls, and fallacies. J. Electromyogr. Kines. 13, 13–36.
doi: 10.1016/S1050-6411(02)00083-4

Du, Y., Zhang, X., Wang, Y., and Mu, T. (2012). “Design on exoskeleton
robot intellisense system based on multi-dimensional information fusion,”
in International Conference on Mechatronics and Automation, 2435–2439.
doi: 10.1109/ICMA.2012.6285727

Edelman, B., J., Meng, J., Suma, D., Zurn, C., and Nagarajan, E. (2019). Noninvasive
neuroimaging enhances continuous neural tracking for robotic device control. Sci.
Robot. 4:eaaw6844. doi: 10.1126/scirobotics.aaw6844

Gerdle, B., Larsson, B., and, Karlsson, S. (2000). Criterion validation of
surface EMG variables as fatigue indicators using peak torque: a study of
repetitive maximum isokinetic knee extensions. J. Electromyogr. Kinesiol. 10, 225–32.
doi: 10.1016/S1050-6411(00)00011-0

Japaridze, G., Loeckx, D., Buckinx, T., Armand Larsen, S., Proost, R., Jansen,
K., et al. (2022). Automated detection of absence seizures using a wearable
electroencephalographic device: a phase 3 validation study and feasibility of automated
behavioral testing. Epilepsia. doi: 10.1111/epi.17200. [Epub ahead of print].

Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., and Lynch, D.,
et al. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE
Trans. Neural Syst. Rehabil. Eng. 15, 327–335. doi: 10.1109/TNSRE.2007.903899

Kursa, M. B., and Rudnicki,W. R. (2010). Feature selection with the boruta package.
J. Stat. Softw. 36, 1–13. doi: 10.18637/jss.v036.i11

Kwakkel, G., van Peppen, R., Wagenaar, R. C., Wood Dauphinee, S., Richards, C.,
Ashburn, A., et al. (2004). Effects of augmented exercise therapy time after stroke: a
meta-analysis. Stroke 35, 2529–2539. doi: 10.1161/01.STR.0000143153.76460.7d

Lalitharatne, T. D., Teramoto, K., Hayashi, Y., and Kiguchi, K. (2013). Towards
Hybrid EEG-EMG-based control approaches to be used in bio-robotics applications:
current status, challenges and future directions. J. Behav. Robot. 4, 147–154.
doi: 10.2478/pjbr-2013-0009

Leeb, R., Sagha, H., Chavarriaga, R., and Millan Jdel, R.
(2011). A hybrid brain-computer interface based on the fusion of
electroencephalographic and electromyographic activities. J. Neural Eng. 8:025011.
doi: 10.1088/1741-2560/8/2/025011

Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M.,
Mazzotti, C., et al. (2015). An EMG-controlled robotic hand exoskeleton for

bilateral rehabilitation. IEEE Trans. Haptics 8, 140–151. doi: 10.1109/TOH.2015.2
417570

Li, M., Duan, S., Dong, Y., Wang, C., Feng, W., et al. (2020). “A hierarchical
fusion strategy based on EEG and sEMG for human-exoskeleton system,” in 2020
IEEE International Conference on Real-time Computing and Robotics (RCAR), 458–463.
doi: 10.1109/RCAR49640.2020.9303041

Li, M., Liang, Z., He, B., Zhao, C. G., and Cui, L. (2019). Attention-controlled
assistive wrist rehabilitation using a low-cost EEG sensor. IEEE Sens. J. 19, 6497–6507.
doi: 10.1109/JSEN.2019.2910318

Li, X., Samuel, O. W., Zhang, X., Wang, H., Fang, P., and Li, G. (2017). A
motion-classification strategy based on sEMG-EEG signal combination for upper-limb
amputees. J. Neuroeng. Rehabil. 14, 2. doi: 10.1186/s12984-016-0212-z

Li, X., Suresh, A., Zhou, P., and Rymer, W. Z. (2013). Alterations in the peak
amplitude distribution of the surface electromyogram poststroke. IEEE Trans. Biomed.
Eng. 60, 845–852. doi: 10.1109/TBME.2012.2205249

Lin, C. -H., Su, Y. -Y., Lai, Y. -H., and Lan, C. -C. (2020). A spatial-motion assist-
as-needed controller for the passive, active, and resistive robot-aided rehabilitation of
the wrist. IEEE Access 8, 133951–133960. doi: 10.1109/ACCESS.2020.3010564

Liu, Y., Wang, Z., Huang, S., Wang, W., and Ming, D. (2022). EEG characteristic
investigation of the sixth-finger motor imagery and optimal channel selection for
classification. J. Neural Eng. 19, 016001. doi: 10.1088/1741-2552/ac49a6

Mahmood, M., Kwon, S., Kim, H., Kim, Y. -S., Siriaraya, P., Choi, J.,
et al. (2021). wireless soft scalp electronics and virtual reality system for motor
imagery-based brain-machine interfaces. Adv. Sci. 8:2101129. doi: 10.1002/advs.2021
01129

Maria, K. C., and Eng, J. J. (2003). The relationship of lower-extremity muscle
torque to locomotor performance in people with stroke. Phys. Ther. 83, 49–57.
doi: 10.1093/ptj/83.1.49

Mugnosso, M., Marini, F., Holmes, M., Morasso, P., and Zenzeri, J. (2018). Muscle
fatigue assessment during robot-mediated movements. J. Neuroeng. Rehabil. 15, 119.
doi: 10.1186/s12984-018-0463-y

Nielsen, J. L., Holmgaard, S., Jiang, N., Englehart, K. B., Farina, D., and Parker, P. A.
(2011). Simultaneous and proportional force estimation for multifunction myoelectric
prostheses using mirrored bilateral training. IEEE Trans. Biomed. Eng. 58, 681–688.
doi: 10.1109/TBME.2010.2068298

Papakostas, M., Kanal, V., Abujelala, M., Tsiakas, K., and Makedon, F. (2019).
Physical fatigue detection through EMG wearables and subjective user reports:
a machine learning approach towards adaptive rehabilitation. ACM, 475–481.
doi: 10.1145/3316782.3322772

Shahmoradi, S., Zare, A. L., and Behzadipour, S. (2017). Fatigue Status
Recognition in a Post-Stroke Rehabilitation Exercise with sEMG Signal, 1-5.
doi: 10.1109/ICBME.2017.8430264

Song, R., Tong, K. Y., and Hu., X. (2013). Myoelectrically controlled wrist robot
for stroke rehabilitation. J. Neuroeng. Rehabil. 10, 52–52. doi: 10.1186/1743-0003-
10-52

Takahashi, C. D., Lucy, D. Y., Le, V., Motiwala, R. R., and Cramer, S.
C. (2008). Robot-based hand motor therapy after stroke. Brain 131, 425–437.
doi: 10.1093/brain/awm311

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1161187
https://doi.org/10.21307/ijssis-2017-906
https://doi.org/10.3389/fbioe.2019.00331
https://doi.org/10.1016/j.jneumeth.2018.11.010
https://doi.org/10.1109/JBHI.2017.2783849
https://doi.org/10.1016/S1050-6411(02)00083-4
https://doi.org/10.1109/ICMA.2012.6285727
https://doi.org/10.1126/scirobotics.aaw6844
https://doi.org/10.1016/S1050-6411(00)00011-0
https://doi.org/10.1111/epi.17200
https://doi.org/10.1109/TNSRE.2007.903899
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1161/01.STR.0000143153.76460.7d
https://doi.org/10.2478/pjbr-2013-0009
https://doi.org/10.1088/1741-2560/8/2/025011
https://doi.org/10.1109/TOH.2015.2417570
https://doi.org/10.1109/RCAR49640.2020.9303041
https://doi.org/10.1109/JSEN.2019.2910318
https://doi.org/10.1186/s12984-016-0212-z
https://doi.org/10.1109/TBME.2012.2205249
https://doi.org/10.1109/ACCESS.2020.3010564
https://doi.org/10.1088/1741-2552/ac49a6
https://doi.org/10.1002/advs.202101129
https://doi.org/10.1093/ptj/83.1.49
https://doi.org/10.1186/s12984-018-0463-y
https://doi.org/10.1109/TBME.2010.2068298
https://doi.org/10.1145/3316782.3322772
https://doi.org/10.1109/ICBME.2017.8430264
https://doi.org/10.1186/1743-0003-10-52
https://doi.org/10.1093/brain/awm311
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yang et al. 10.3389/fnbot.2023.1161187

Viitasalo, J. H. T., and Komi, P. V. (1997). Signal characteristics of
EMG during fatigue. Eur. J. Appl. Physiol. 37, 111–121. doi: 10.1007/BF0
0421697

Wang, H., Camicia, M., Terdiman, J., Mannava, M. K., Sidney, S., and
Sandel, M. E. (2013). Daily treatment time and functional gains of stroke
patients during inpatient rehabilitation. PM R 5, 122–128. doi: 10.1016/j.pmrj.2012.
08.013

Wist, S., Clivaz, J., and Sattelmayer, M. (2016). Muscle strengthening for
hemiparesis after stroke: a meta-analysis. Ann. Phys. Rehabil. Med. 59, 114–124.
doi: 10.1016/j.rehab.2016.02.001

Wolf, S. L., Lecraw, D. E., Barton, L. A., and Jann, B. B. (1989). Forced
use of hemiplegic upper extremities to reverse the effect of learned nonuse
among chronic stroke and head-injured patients. Exp. Neurol. 104, 125–132.
doi: 10.1016/S0014-4886(89)80005-6

Yang, S., Li, M., Wang, J., Wang, T., Liang, Z., He, B., et al. (2021). “A novel
wrist rehabilitation exoskeleton using 3D-printed multi-segment mechanism,” in 2021
43rd Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 4769–4772. doi: 10.1109/EMBC46164.2021.9630996

Zhang, J. (2018). Evaluation system of attentiveness based on multiple physiological
information (dissertation). Harbin Institute of Technology.

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1161187
https://doi.org/10.1007/BF00421697
https://doi.org/10.1016/j.pmrj.2012.08.013
https://doi.org/10.1016/j.rehab.2016.02.001
https://doi.org/10.1016/S0014-4886(89)80005-6
https://doi.org/10.1109/EMBC46164.2021.9630996
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	A low-cost and portable wrist exoskeleton using EEG-sEMG combined strategy for prolonged active rehabilitation
	1. Introduction
	2. Methodology
	2.1. Overall design of EEG and sEMG control system
	2.2. Acquisition, preprocessing and feature extraction of sEMG data
	2.3. Acquisition, preprocessing and feature extraction of EEG data
	2.4. Muscle fatigue detection using CNN with boruta and post-processing
	2.5. Active control based on EEG signal

	3. Experiments and protocols
	3.1. Experiments on sEMG control before and after muscle fatigue
	3.2. Acquisition and construction of fatigue sEMG dataset
	3.3. Experiments on muscle fatigue detection methods using boruta and post-processing 
	3.4. EEG acquisition and experiments of movement state 

	4. Experiment results
	4.1. Results of sEMG control before and after muscle fatigue
	4.2. Experimental results of fatigue detection method
	4.3 Experimental results of different feature extraction schemes
	4.4. EEG classification results

	5. Discussion
	5.1. EEG control using a low-cost and portable device
	5.2. SEMG fatigue detection and its limitations

	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


