
TYPE Original Research

PUBLISHED 02 March 2023

DOI 10.3389/fnbot.2023.1132679

OPEN ACCESS

EDITED BY

Xiao Bai,

Beihang University, China

REVIEWED BY

Jianchu Lin,

Huaiyin Institute of Technology, China

Zhang Hengmin,

University of Macau, China

Zhilei Chai,

Jiangnan University, China

*CORRESPONDENCE

Chunhe Song

songchunhe@sia.cn

Peng Zeng

zp@sia.cn

RECEIVED 27 December 2022

ACCEPTED 13 February 2023

PUBLISHED 02 March 2023

CITATION

Wu T, Song C and Zeng P (2023) Model pruning

based on filter similarity for edge device

deployment. Front. Neurorobot. 17:1132679.

doi: 10.3389/fnbot.2023.1132679

COPYRIGHT

© 2023 Wu, Song and Zeng. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Model pruning based on filter
similarity for edge device
deployment

Tingting Wu1,2,3,4, Chunhe Song1,2,3* and Peng Zeng1,2,3*

1State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,

Shenyang, China, 2Key Laboratory of Networked Control Systems, Chinese Academy of Sciences,

Shenyang, China, 3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences,

Shenyang, China, 4University of Chinese Academy of Sciences, Beijing, China

Filter pruning is widely used for inference acceleration and compatibility with

o�-the-shelf hardware devices. Some filter pruning methods have proposed

various criteria to approximate the importance of filters, and then sort the filters

globally or locally to prune the redundant parameters. However, the current

criterion-based methods have problems: (1) parameters with smaller criterion

values for extracting edge features are easily ignored, and (2) there is a strong

correlation between di�erent criteria, resulting in similar pruning structures. In

this article, we propose a novel simple but e�ective pruning method based on

filter similarity, which is used to evaluate the similarity between filters instead

of the importance of a single filter. The proposed method first calculates the

similarity of the filters pairwise in one convolutional layer and then obtains the

similarity distribution. Finally, the filters with high similarity to others are deleted

from the distribution or set to zero. In addition, the proposed algorithm does

not need to specify the pruning rate for each layer, and only needs to set the

desired FLOPs or parameter reduction to obtain the final compression model.

We also provide iterative pruning strategies for hard pruning and soft pruning to

satisfy the tradeo� requirements of accuracy and memory in di�erent scenarios.

Extensive experiments on various representative benchmark datasets across

di�erent network architectures demonstrate the e�ectiveness of our proposed

method. For example, on CIFAR10, the proposed algorithm achieves 61.1% FLOPs

reduction by removing 58.3% of the parameters, with no loss in Top-1 accuracy

on ResNet-56; and reduces 53.05% FLOPs on ResNet-50 with only 0.29% Top-1

accuracy degradation on ILSVRC-2012.

KEYWORDS

network acceleration, filter pruning, edge intelligence, network compression,

convolutional neural networks

1. Introduction

Deep neural networks(DNNs) have become one of the most widely used algorithms

in image classification (Krizhevsky et al., 2012), object detection (Ren et al., 2015), video

analysis (Graves et al., 2013), and other fields with far surpassing accuracy than traditional

algorithms. However, the high computing power and memory requirements of DNNs make

it difficult for edge devices to deploy them with low latency, low power consumption,

and high precision (Uddin and Nilsson, 2020; Veeramanikandan et al., 2020; Zhang et al.,

2020; Fortino et al., 2021). To address this problem, various methods have been proposed

for network compression and inference acceleration, including lightweight architecture

design (Howard et al., 2017; Zhang X. et al., 2018), network pruning (LeCun et al., 1990;

Hassibi and Stork, 1993; Li et al., 2016), weight quantization (Courbariaux et al., 2015;

Hubara et al., 2017), matrix factorization (Denton et al., 2014), and knowledge distillation

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1132679
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1132679&domain=pdf&date_stamp=2023-03-02
mailto:songchunhe@sia.cn
mailto:zp@sia.cn
https://doi.org/10.3389/fnbot.2023.1132679
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1132679/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

(Hinton et al., 2015; Gou et al., 2021). Quantization compresses the

model by reducing the size of the weights or activations. Matrix

factorization is to approximate the large number of redundant

filters of a layer using a linear combination of fewer filters. And

knowledge distillation trains another simple network by using the

output of a pre-trained complex network as a supervisory signal.

Among them, network pruning compresses the existing network

to reduce the requirements for space and computing power, to

achieve real-time operation on portable devices. According to

the granularity of pruning, network pruning methods can be

divided into structured and unstructured pruning. Unstructured

pruning requires specialized hardware and software for effective

reasoning, and random connections will lead to poor cache locality

and memory jump access, which makes acceleration very limited.

Among structured pruning methods, filter pruning has received

widespread attention because of its advantages of being directly

compatible with current general-purpose hardware and highly

efficient basic linear algebra subprogram (BLAS) libraries. The

research in this paper belongs to the category of structured pruning,

that is, the pruning granularity is at the level of convolution kernels.

Formally, for a CNN with weights of W and L convolutional

layers, and Ni filters in each layer, determining which filter needs

to be pruned is a combinatorial optimization problem, that can be

expressed as follows (Zhou et al., 2019):

{

minM C(D;M ◦W)

minM
∑L

i=1 ‖Mi‖1
(1)

where M is the mask of the filter, and C is the cost function of the

CNN on dataset D. If there is a subset of convolution kernels such

that the network can be pruned without performance degradation,

it will be required to perform 2
∑L

i=1 Ni search and evaluation

steps. For the current large network structure, this is an NP-hard

problem, which is difficult to accurately solve by searching all

possible subsets.

Among the simplest methods is the greedy method, or saliency-

based method, which sorts weights by importance. The core

problem is how to measure the importance of the filters. Recently

a variety of filter pruning methods have been proposed to design

more effective pruning guidelines. Hu et al. (2016) proposed

using the average percentage of zero values (APoZ) to measure

the importance of the activation value, which is defined as the

proportion of zeroes in the activation values. Li et al. (2016) put

forward a hypothesis based on the absolute value: the smaller

the l1 − norm of the filter is, the less its influence on the final

result. Molchanov et al. (2016) utilized the absolute value of

the first-order term in the expansion of the objective function

relative to the activation function as the criterion for pruning. Liu

et al. (2017) introduced a channel scaling factor to the BN layer,

added l1 regularization to make it sparse, and then pruned the

filters with a smaller scaling factor. He et al. (2019) developed

a pruning method based on a geometric median to remove

redundant filters.

Although the above works have achieved notable achievements,

there are still many limitations: (1) Due to the different

distributions of the values of the convolution kernels in different

layers, the abovementioned pruning methods based on global or

local criteria for sorting filters may ignore filters with smaller

values in the sorting but extract edge features. Huang et al. (2020)

compared different pruning standards and found that they have

strong similarities, and that the importance of the obtained filters is

almost the same, resulting in similar pruning structures. (2) Recent

work (Liu et al., 2018) shows that the pruning structure is the

key to determining the performance of the pruning model rather

than the inheritance weight. Manually setting the pruning rate of

each convolutional layer is equivalent to redesigning the network

structure completely, and improper pruning rate settings will result

in insufficient pruning or excessive pruning. In addition, for large

networks, it is very expensive to accurately calculate the importance

of the filters and set the pruning rate of each layer. (3) For special

network structures such as residual blocks, most works only prune

the channels of the middle layer of the block, which limits the space

available for pruning. (4) The pruning process and the large number

of fine-tuning required to restore the pruning performance lead to

an excessively long pruning cycle, which is also the direction that

needs to be optimized at present.

This paper focuses on the above problems and aims to improve

the network performance under the same compression ratio.

Therefore, we propose a channel pruning framework based on

filter similarity, and optimize the pruning redundancy criterion,

pruning strategy, pruning structure and pruning process, as shown

in Figure 1. Specifically, in the pruning criteria, different from

previous works which used precise rules to sort filters, we consider

the problem from another perspective, focusing on the correlation

of filters in one layer, and propose that two filters with high

similarity extract similar features, and the extracted features can

replace each other. In the pruning strategy, we do not need to

specify the pruning rate of each layer, and automatically determine

the pruning rate of each layer after determining the filter to be

deleted according to the redundancy condition. In the pruning

structure, we propose fine-grained pruning for special structures,

in which the input and output channels of each block are calculated

according to the redundancy condition constraints and then

pruned in units of groups, thus increasing the reliability selection

space for pruning channels. In addition, in the pruning process, for

the situation that a lot of fine tuning is needed in the existing works,

we perform a small amount of fine-tuning after each pruning of

the whole network, which improves the efficiency of pruning. To

summarize, our main contributions are as follows:

• We propose a novel method for estimating filter redundancy

based on filter similarity, which does not rely on precise

criteria to evaluate the importance of filters.

• The algorithm adaptively obtains the pruning rate of the layers

according to the redundancy degree of each layer, which is

difficult to determine in previous methods.

• The algorithm optimizes the channel pruning strategy of

the special network structure, allowing the input and output

channels of the residual block to be removed, further

increasing the pruning space.

• The algorithm prunes the filters of the entire network at

one time, and adopts two different pruning processes, hard

pruning and soft pruning, which greatly reduces the large

amount of fine-tuning caused by layer-by-layer pruning.

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

FIGURE 1

The pruning diagram of a convolutional layer. First, we compare all the filters in pairs, and then we count the distance set obtained, and put the filters

corresponding to the distance value below the soft threshold into the set to be pruned. Finally, the filters with a higher frequency are considered

redundant. The two methods of soft pruning and hard pruning are used to deal with redundant filters.

2. Related work

The typical work of network pruning is weight pruning

and filter pruning. Weight pruning prunes individual parameter

in the network to obtain a sparse weight matrix. Different

from weight pruning, filter pruning removes the entire filter

according to a certain measure. Filter pruning significantly reduces

storage usage and decreases the computational cost of online

inference. The key to filter pruning is the selection of filters,

which should yield the highest compression ratio with the lowest

compromise in accuracy. Based on the design of the filter

importance criterion, we empirically divide the filter pruning into

the following categories.

2.1. Based on magnitude

The simplest heuristic is to evaluate importance according

to the absolute value of the parameter (or feature output) and

then prune the part below the threshold by the greedy method,

which is called amplitude-based weight pruning. Li et al. (2016)

proposed using the absolute value of the weight as a measure of

its importance (Zhang H. et al., 2018; Zhang et al., 2022). For

structured pruning, group LASSO is often used to obtain structured

sparse weights, such as in Liu et al. (2015) and Wen et al. (2016).

Liu et al. (2017) introduced a channel scaling factor in the BN

layer and pruned the corresponding weights with small scaling

factors. In addition, the importance evaluation can also focus on

the activation value. Hu et al. (2016) proposed using the average

percentage of zero value (APoZ) to measure the importance of the

activation value.

2.2. Based on loss function

The assumption based on absolute value judgment is that

the smaller the absolute value of a parameter is, the smaller the

influence on the final result. We call this the “smaller-norm/less-

important” criterion, but this assumption is not necessarily true

(as discussed in Ye et al., 2018). Another method is to consider

the impact of parameter pruning on loss. LeCun et al. (1990) and

Hassibi and Stork (1993) proposed the OBD and OBS methods,

respectively, whichmeasure the importance of weights in a network

based on the second derivative of the loss function relative to the

weight (the Hessian matrix for the weight vector). The method of

Molchanov et al. (2016) was also based on Taylor expansion, but it

utilized the absolute value of the first-order term in the expansion

of the objective function relative to the activation function as the

criterion for pruning. This avoids the calculation of second-order

terms (i.e., the Hessian matrix). Lee et al. (2018) regarded the

absolute value of the derivative of the normalized objective function

with respect to the parameter as a measure of importance.

2.3. Based on the reconstructability of the
feature output

The thirdmethod is to consider the impact on the rebuildability

of the feature output, that is, minimizing the reconstruction error of

the pruned network for the feature output. Typically, methods such

as those of Luo et al. (2017) and He et al. (2017) identify channels

that need to be pruned byminimizing feature reconstruction errors.

Yu et al. (2018) proposed the NISP algorithm by minimizing

the reconstruction error of the penultimate layer of the network,

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

and back-propagating the importance information to the front to

determine the channel to be pruned. Zhuang et al. (2018) proposed

the DCP method. On the one hand, additional discriminative

perception loss is added to the middle layer (to strengthen the

discriminative ability of the middle layer), and on the other hand,

the loss function of the error is also considered. The gradient

information of the two losses is synthesized for the parameters, and

the channels that need to be pruned are determined.

2.4. Other criteria

There are also other criteria based on the weights of the

importance of ranking. He et al. (2019) proposed a filter pruning

via geometric median (FPGM) method, the basic idea of which was

to remove redundant parameters based on the geometric median.

Lin et al. (2020) developed a method that was mathematically

formulated to prune filters with low-rank feature maps. Wang

et al. (2021) statistically modeled the network pruning problem

in a redundancy reduction perspective and finded that pruning

in the layer with the most structural redundancy outperforms

pruning the least important filters across all layers. Cai et al. (2022)

utilized a variant of the pruning mask as a prior gradient mask

to guide fine-tuning. The disadvantage of the greedy algorithm

is that it can only find local optimal solutions and ignores the

relationship between the parameters. Some studies have aimed

to consider the interrelationships among parameters to find a

better global solution. Peng et al. (2019) proposed the CCP

method, which considers the dependence between channels and

formalizes the channel selection problem as a constrained quadratic

programming problem. Wang et al. (2018) and Zhuo et al. (2018)

used spectral clustering and subspace clustering to explore the

relevant information in the channels and featuremaps, respectively.

With the development of AutoML research, such as AMC (He

et al., 2018b), RNP (Lin et al., 2017), and N2N learning (Ashok

et al., 2017), these tasks are all attempts to automate part of the

pruning process.

3. Methodology

In this section, we introduce in detail the pruning algorithm

based on the similarity of filters. The algorithm uses the similarity

between the convolution filters in the convolutional layer to obtain

network compression recommendations.

3.1. Motivation

Unlike current views of parameter importance-based pruning,

we show that the removal of any one of the channels will not

significantly impair the representational power of the network

as long as there are two sufficiently similar channels. We derive

theoretical support to justify the reasonability of our similarity-

based pruning approach. Assuming that the neural network has L

convolutional layers, Nl and Nl+1 represent the number of input

channels and output channels of the lth layer convolution layer,

respectively. F(l,i) represents the ith filter of the lth layer, and the

corresponding input feature map can be expressed as F (l,i) ∈
R
H×W×B, where H,W,B represent the height and width of the

feature maps, and the batch size, respectively. The tensor of the

connections of the lth and l+ 1th layers can be parameterized by

W ∈ R
Nl×Nl+1×K×K , 1 ≤ l ≤ L.

Considering two consecutive convolutional layers and using

non-linear activation h(•) after each linear convolution, then:

F(l+1,nl+1) =
∑

nl∈{1,...,Nl}
h

(

F(l,nl)
)

∗W(nl ,nl+1) (2)

whereW(nl ,nl+1) ∈ R
K×K is the nl-dimensional weight of the nl+1-

th convolution kernel, corresponding to the nl+1-th input feature

map. We explore and analyze the loss of representational power

brought about by removing one of two similar feature channels

and its filter. Suppose that F (l,i) and F (l,j) are two similar channels,

deleting the F (l,i), then for the pruned F
(l+1,nl+1)
p we have:

F
(l+1,nl+1)
p = h

(

F
(l,j)

)

∗
(

W(i,nl+1) +W(j,nl+1)
)

+
∑

nl 6=i,j
h

(

F(l,nl)
)

∗W(nl ,nl+1)
(3)

We use mean squared error (MSE) to quantify the loss of the

two feature maps before and after pruning:

L

(

F(l+1,nl+1),F
(l+1,nl+1)
p

)

=
(

Hl+1 ×Wl+1 × B
)−1 ×

∥

∥

∥
F(l+1,nl+1) − F

(l+1,nl+1)
p

∥

∥

∥

2

2

=
1

al+1

∥

∥

∥

(

h
(

F
(l,i)

)

− h
(

F
(l,j)

))

∗W(i,nl+1)
∥

∥

∥

2

2

(4)

where al+1 = Hl+1 ×Wl+1 × B. For each feature map F
(l+1,nl+1)
p

in the l+ 1-th convolutional layer, the loss caused by removing the

feature map F (l,i) from the l-th convolutional layer, as defined in

Equation (4), admits the following upper bound:

L

(

F(l+1,nl+1),F
(l+1,nl+1)
p

)

≤ ε × min
j∈{1,...,Nl}

L

(

F
(l,i),F (l,j)

)

(5)

where ε = al
al+1

K2
∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2
and K2 corresponds to the size

of each filter W(nl ,nl+1). Detailed derivation can be found in

Appendix.We can conclude fromEquation (5) that E is determined

by the size of the feature maps, the L2-norm of the convolution

kernel and its weights. In experiments, E is usually a value of the

order of 10−2, which means that the loss of removing one of the

similar channels is negligible, as long as there are sufficiently similar

channels to replace it.

In practice, our goal is to find similar channels and remove one

of them. However, computing the similarity of channels directly has

two apparent limitations. First, the activations of feature maps are

affected differently by different batches of data. Second, calculating

the similarity between all channels is inefficient for current large

CNN architectures. To solve these issues, we use the convolution

kernel as a unit for comparison. It can be seen from Equation

(2) that when the input feature maps are the same, the feature

maps obtained by similar convolution kernels are also identical,

and the parameters of the kernels are not affected by the data batch.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

FIGURE 2

The distance distributions of each layer of the network model parameters trained by VGG16 on the CIFAR10 and CIFAR100 datasets are shown in

(A, B). (C) The distance distribution of all convolutional layers in the third stage of ResNet-32/CIFAR10. (D) The third layer of ResNet-34/ILSVRC-2012.

Intuitively, we quantify the similarity of two kernels by Euclidean

distance, which is more commonly used in the analyses that

need to reflect a difference in dimensions. In addition, Euclidean

distance measures the distance between points in multidimensional

space and can remember the absolute difference of characteristics.

Therefore, for the lth convolutional layer:

D(l) = dist
(

Fl,j, Fl,k
)

, 0 ≤ j ≤ Nl+1, j ≤ k ≤ Nl+1

=



















































d0,1 d0,2 · · · d0,Nit1−1
d1,2 · · · d1,Nit+1−1

...

. . . dj,k
...

dNi+1−2,Ni+1−1



















































(6)

where

dj,k =

√

√

√

√

√

Nl
∑

n=1

K
∑

k1

K
∑

k2=1

∣

∣W j
(

n, k1, k2
)

−Wk
(

n, k1, k2
)
∣

∣

2
(7)

W j(n, k1, k2) is each weight in the filter F
(l,j). For the lth convolution

layer, we obtain a set of distances D(l), which contains the distances

between the jth filter and all other filters. The smaller the distance

is, the more significant the similarity between the two filters,

indicating that the filter has extracted features similar to those of

other filters.

We remove the repeated distance with the same subscript in

D(l), and perform statistical analysis on all values in the set. Statistics

show an interesting phenomenon that the distance distribution

of each layer is an approximately Gaussian distribution in the

trained network, as shown in Figure 2. The distance sets D(l) of

different layers in the network are distributed differently, and the

mean value even differs by an order of magnitude. However, the

distance distribution between the filters has partial jitters since the

convolutional layers, such as conv1 and conv2 of the VGG16, are

affected by the input data.

3.2. Filter pruning based on similarity

After the distance distribution of each convolutional layer is

obtained, how great can the distance between the two filters be

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

determined to be similar? One of the methods is to get a minimum

distance value min[D(l)] each time, that is, to remove one filter

each time until the set requirement is reached. That is inefficient

and laborious for network structures with thousands of convolution

kernels. To obtain a set of redundant filters simultaneously, we first

need to set a threshold λ, and a pair of filters corresponding to

a distance less than this threshold are judged to be similar. Since

the distance distribution of each convolutional layer is different,

simply specifying the threshold of each layer will bring more

hyperparameter problems. How can a reasonable threshold be set

for each layer more efficiently with fewer hyperparameters?

Inspired by the empirical rule (3σ ) of a Gaussian distribution,

the probability of falling within [µ− σ ,µ+ σ ] is 0.68:

P(i)(µ− σ ≤ x ≤ µ+ σ ) = 0.68, x ∈ D(l) (8)

we set a scaling factor α such that λ = µ − ασ ∈ (−∞,µ], and

then α ∈ [0,+∞),

P(l)
(

d
(l)
j,k
≤ λ

)

=
1

√
2πσ

∫ λ

−∞
exp

(

−
(x− µ)2

2σ 2

)

dx

t= x−µ
σHHHHHH

1
√
2π

∫
λ−µ

σ

−∞
exp

(

−
t2

2

)

dt

=
1
√
2π

∫ −α

−∞
exp

(

−
t2

2

)

dt

= 8(−α) = 1−8(α)

(9)

where 8(•) is the distribution function of the standard normal

distribution, it can be obtained from checking the Standard normal

distribution table: when α = 0, λ = µ, P = 0.5; and α →
+∞, λ→−∞, P→ 0. If d

(l)
j,k

< µ−α∗σ , the filters corresponding

to d
(l)
j,k

in the shaded part of Figure 1 are judged to be similar, and

then d
(l)
j,k

is selected as the candidate set D
(l)
select

:

d
(l)
j,k
∈ D

(l)
select

j, k ∈ F
(l)
select

(10)

F
(l)
select

is the set of indexes of the corresponding filters in D
(l)
select

. We

use a hyperparameter α to get equal-probability candidate sets in

different layers for different distance distributions in each layer.

It can be seen in the experiment that a filter satisfies similar

conditions simultaneously with multiple filters, but how can we

determine the final deleted filters in the candidate set. For the

lth layer, we count the number of times of the jth appears in

F
(l)
select

, denoted by C
(l)
j . Under extreme circumstances, if d

(l)
j,k

<

λ
(

0 ≤ k ≤ Nl+1 − 1, k 6= j
)

holds for the distance between the jth

filter and all other filters, then C
(l)
j = Nl+1 − 1. We use the

proportional factor r ∈ [0, 1] to represent the frequency of the

jth filter,

r =
C
(l)
j

Nl+1 − 1
(11)

If C
(l)
j > r∗(Nl+1 − 1), then j ∈ F

(l)
pruned

, F
(l)
pruned

is the set of final

pruning filters. The above algorithm obtains a set of redundant

filters for one convolution layer in the network structure, and the

schematic diagram of the pruning process of each layer is shown in

Figure 1.

3.3. Compression recipes

In addition to the judgment method of network parameter

redundancy, the pruning strategy, implementation and network

structure are also essential factors that affect the compression

performance. As the pruning rate increases, network performance

loss increases, and the redundant judgment of parameters is also

prone to deviation when the network parameters deviate from

the optimal point. Previous work uses layer-by-layer pruning and

fine-tuning strategies or retraining to reduce the judgment error

caused by performance loss and iterates this process until the

target compression rate is achieved. However, when the iteration

parameter setting is small and the target compression rate is

significant, the pruning period will greatly increase, and the

training time cost will be very high. Therefore, we prune all

layers at once instead of layer-by-layer pruning and fine-tuning,

significantly reducing the pruning cost. After complete pruning,

the computation and parameter quantity of the whole network are

calculated. If the set pruning requirements are met, the pruning

is completed; otherwise, the redundant filters will continue to be

searched for further pruning on the network structure of the last

pruning until the set pruning requirements are met (computational

cost reduction or parameter reduction), as shown in Algorithm 1.

In the implementation of pruning, He et al. (2018a) proposed

not to directly delete the pruned parameters in the pruning process,

which increases the fault tolerance of judgment. Many current

works are based on soft pruning implementations, and for a fair

comparison, we propose an iteration pruning strategy based on soft

pruning. In the experiment, it is found that although the filters

set to zero in the previous iteration are not deleted, they will not

change in the subsequent fine-tuning no matter how the network

Require: Training dataset D; the model with W, and

each layer with W (l) ∈ R
Nl×Nl+1×K×K , 1 ≤ l ≤ L; FLOPs

or params pruning rate: rate = rateFLOPs/rateparams.

Ensure: The pruned model W(τ )

1: W ← train(W, D)

2: while pruned_rate = 0 to rate do

3: for i = 1 to L do

4: for j, k = 0 to Ni+1 − 1 do

5: D
(i)
j,k
= dist(Fi,j , Fi,k)

6: if D
(i)
j,k

< µ− α∗σ then

7: D
(i)
j,k
∈ D

(i)
select

8: j, k ∈ F
(i)
select

9: end if

10: if C
(i)
j > r∗Ni+1 − 1 then

11: j ∈ F
(i)
pruned

12: end if

13: F(i) ← F(i) − F
(i)
pruned

14: end for

15: end for

16: W ← update_params(W ,D)

17: end while

18: W ← finetune(W ,D)

Algorithm 1. Iterative pruning algorithm.

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

FIGURE 3

(A) The plain structure in VGG, and the number of output channel pruning in each layer is directly calculated by the algorithm. (B) The dense block,

the number of output channels of each layer is fixed (gr), and the number of input channels is calculated by the algorithm. (C, D) Residual block and

inverted residual block, respectively. The pruning rate of all layers in the block is the same, and the number of input channels and output channels of

each block is guaranteed to be the same.

is updated, which affects the distance calculation and redundant

judgment. To solve this problem, we set a mask for each filter, the

pruned filters are 0, and the others are 1, and the mask is updated

by the algorithm in real-time in each iteration. When calculating

the distance between the filters in one layer, the distance will be

multiplied by the mask value corresponding to the two filters at the

same time,

d
(l)
j,k
= dist

(

Fl,j, Fl,k
)

∗maskj ∗maskk

=

{

0, maskj = 0 or maskk = 0

dist
(

Fl,j, Fl,k
)

,maskj 6= 0 and maskk 6= 0

(12)

In the distance set D(l), the distance d
(l)
j,k

between a filter with

a mask of zero and any other filter is zero. Before the next step

of obtaining the distance statistics, the algorithm ignores a value

of zero for d
(l)
j,k
, which is equivalent to allowing only the unpruned

filters to participate in the subsequent pruning.

In pruning structure, some networks with special structures,

such as ResNet and DenseNet, improve the efficiency and

performance, but also make pruning more challenging. Only

pruning the middle layer in the block is currently the most used

strategy, but the filters between blocks are not easily pruned due to

excessive constraints. We propose a more flexible pruning strategy,

which is pruned in units of blocks, increasing the selection space

of pruned filters under the guarantee rules. First, we calculate the

pruning rate of the middle layers of all blocks in a group according

to the filter redundancy determination algorithm proposed in the

previous section, and then take the minimum value as the group’s

pruning rate rategroup. And then, the number of filters card(F
(l)
pruned

)

to be pruned at any lth layer in the group can be obtained:

card
(

F
(l)
pruned

)

= rategroup ∗ Nl+1 (13)

For the lth layer, F
(l)
selected

can be obtained by Equation (10), and the

number of occurrences C
(l)
j of the jth filter in F

(l)
selected

can be sorted.

The final pruned filters F
(l)
pruned

intercept the top card(F
(l)
pruned

) filters

from F
(l)
selected

. The specific pruning mode of the different structures

is shown in Figure 3.

The algorithm calculates the redundant filters of the whole

network at one time instead of layer-by-layer, and then prunes or

sets them to zero. The FLOPs and parameters reduction for the

entire network is calculated after one iteration. If the set pruning

rate is reached, the pruning is completed; otherwise, the parameters

are updated to find more similar filters for further pruning. Then

pruning is performed again until the set pruning rate is reached.

After all pruning is completed, only a small amount of fine-tuning

is required, as shown in Algorithm 1. In addition, we compare

the current works with our proposed method from the aspects

of criteria, whether to manually set the pruning rate of each

layer, whether to process the residual structure, and the pruning

method, as shown in Table 1. The proposed method optimizes

and improves the pruning criterion, pruning rate setting, special

structure processing, and pruning method.

4. Experiments

We evaluate the effectiveness of our algorithm on CIFAR-

10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,

2009), and ILSVRC-2012 (Russakovsky et al., 2015) datasets

using representative CNN architectures: VGGNet (Simonyan and

Zisserman, 2014), ResNet (He et al., 2016), andDenseNet. CIFAR10

contains 50,000 training images and 10,000 testing images of size 32

× 32, which are categorized into 10 different classes. CIFAR100 is

similar to CIFAR-10 but has 100 classes. ImageNet contains 1.28

million training images and 50 k validation images of 1,000 classes.

VGGNet and ResNet represent two typical network structures with

single branch and multiple branches respectively, and DenseNet

prunes the input channels.

We calculate the size and computational complexity of the

network through the number of network parameters and floating

point operations (FLOPs) for one forward propagation. For the lth
convolutional layer,

FLOPs = HW
(

CinK
2 + 1

)

Cout

params =
(

CinK
2 + 1

)

Cout

(14)

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

TABLE 1 Comparison of our proposed method with current works.

Method Criterion Manually specify
the pruning rate?

Residual structure
processing?

Pruning method

L1 L1-norm Yes No Hrad

Taylor Taylor expansion Yes No Hrad

ThiNet Reconstruction error Yes No Hrad

SFP L2-norm Yes No Soft

FPGM Geometric median Yes No Soft

HRank Feature maps’ average rank Yes No Hrad

SRR-GR L1-norm No No Hrad

PGMPF L2-norm Yes No Soft

Ours Filter similarity No Yes Hrad/Soft

H and W are the length and width of the input feature map,

respectively, and Cin,Cout are the number of input and output

channels of the lth convolutional layer, which correspond to the

number of filters Nl and Nl+1.

We evaluate the performance of the convolution kernel pruning

method by using the method of parameter quantity or the drop rate

of computation, and different performance indicators can be used

according to the requirements of different scenarios:

rateFLOPs = 1−
FLOPsoriginal

FLOPscompressed

rateparams = 1−
paramsoriginal

paramscompressed

(15)

Different pruning methods use pre-trained models or self-

trained models as the baseline network. Due to the different

training parameters (e.g., different learning rates, training times,

data augmentations, etc.) and different experimental frameworks

(TensorFlow, PyTorch, etc.), the Top-1 and Top-5 accuracies of the

baseline network reported in the original papers are different. To

make a fair comparison, we evaluate the effectiveness of pruning

using the drop rate of Top-1 and Top-5 accuracy on the test set,

which is the accuracy difference between the baseline network

and the compressed network. Under the same compression rate,

the smaller the difference, the better the pruning effect. All

the comparison results in this paper are directly quoted from

the original paper of the related method or the official code

reproduction. All experiments are implemented on four NVIDIA

TITAN Xp GPUs using PyTorch.

4.1. Results on the CIFAR-10/100 datasets

We analyze the performance on the CIFAR datasets with

VGG16, DenseNet-40, and ResNet-32/56/110. All the networks are

trained using SGD with Nesterov momentum (Sutskever et al.,

2013) 0.9, a weight decay parameter of 10−4, and an initial learning

rate of 0.1. The learning rate is set to 0.001 when updating

parameters or fine-tuning. For VGG16 and DenseNet-40, the

baseline network is trained for 300 epochs with a batch size of 256.

And for ResNet, the baseline network is trained for 200 epochs with

a batch size of 256.

4.1.1. CIFAR10
We make a comparison with methods using hard pruning

strategies, such as L1 (Li et al., 2016), the method of Molchanov

et al. (2016), and with some current soft pruning methods, such

as SFP (He et al., 2018a), FPGM (He et al., 2019), and HRank

(Lin et al., 2020), and SRR-GR (Wang et al., 2021). In the

VGG16/DenseNet experiment, α is set to 1, r is set to 0.35. And in

ResNet, α is set to 1, r is set to 0.3. We adopt rateFLOPs as constraints

and report rateparams at the same time.

Results on CIFAR10 dataset are shown in Table 2. It can

be observed that our proposed algorithm outperforms other

methods under different networks and with similar or even

higher compression ratios. In VGG16 with a plain structure, the

performance of the similarity-based redundancy determination

method far exceeds the other pre-defined determination methods,

which indicates that the similarity-based determination method

can effectively identify redundant parameters. On pruning strategy,

soft pruning and hard pruning have little difference in performance

under the same FLOPs pruning rate constraint. For example,

at a pruning rate of 42.5%, the pruning performance of soft

pruning is even worse than hard pruning. Moreover, there is

little difference in performance between the evaluation criteria

at a low pruning rate, but as the pruning rate increases,

the judgment criteria have a more significant impact on the

pruning performance.

In ResNet, the processing of the pruning structure and

the pruning strategy also have an impact on the compression

performance in addition to the criterion. The performance of

hard pruning for L1 and ours is slightly worse than that

of the soft pruning strategy. SFP uses the pruning principle

with a small absolute value and does not prune the channels

between the residual blocks, thus the performance is the worst.

FPGM and HRank employ more effective criteria and a lot

of fine-tuning, and the performance is improved. We achieve

superior compression performance over existing work using a

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

TABLE 2 Comparison of the results of di�erent network structures on the CIFAR10 dataset.

Model Method Prune Top-1
(↓) (%)

FLOPs
(↓) (%)

Params
(↓) (%)

VGG16 L1 (Li et al., 2016) ✓ 0.15 34.20 64.00

Ours ✓ 0.17 42.47 43.95

L1 (Li et al., 2016) ✓ 3.66 83.51 83.46

(Molchanov et al., 2016) ✓ 2.78 78.03 84.56

Ours ✓ 1.74 81.62 82.33

FPGM (He et al., 2019) ✗ 0.34 34.20 64.0

Ours ✗ 0.17 42.48 43.96

HRank (Lin et al., 2020) ✗ 2.73 76.50 92.0

Ours ✗ 1.56 79.68 81.64

Ours ✗ 1.93 88.99 92.70

ResNet-32 L1 (Li et al., 2016) ✓ 11.81 43.76 44.72

Ours ✓ 0.31 43.47 43.61

SFP (He et al., 2018a) ✗ 0.55 41.50 –

FPGM (He et al., 2019) ✗ 0.70 53.2 –

Ours ✗ −0.29 50.36 55.71

ResNet-56 L1 (Li et al., 2016) ✓ 1.75 27.60 –

SFP (He et al., 2018a) ✗ 1.33 52.60 –

FPGM (He et al., 2019) ✗ 0.66 52.60 –

HRank (Lin et al., 2020) ✗ 0.09 50.00 42.40

SRR-GR (Wang et al., 2021) ✗ −0.37 53.8 –

Ours ✗ −0.64 61.10 58.31

ResNet-110 L1 (Li et al., 2016) ✓ 0.61 38.60 –

Ours ✓ 1.65 60.70 60.80

SFP (He et al., 2018a) ✗ 0.30 40.80 –

FPGM (He et al., 2019) ✗ −0.05 52.30 –

HRank (Lin et al., 2020) ✗ 0.85 68.60 42.40

Ours ✗ 0.53 71.69 76.06

DenseNet-40 HRank (Lin et al., 2020) ✗ 0.57 40.80 36.5

Ours ✗ 0.37 45.24 41.04

HRank (Lin et al., 2020) ✗ 1.13 61.00 53.80

Ours ✗ 0.90 62.22 62.02

The "✓" indicates hard-pruning and "✗" indicates soft-pruning. The "(↓)" denotes the drop between baseline and the pruned model. A negative value in "Top-1(↓)(%)" indicates an improve

model accuracy over the baseline model. The "-" denotes results are not reported in original papers. Other tables follow the same convention. The bold values indicate that experimental results

are better than other methods.

similarity-based determination method and fewer fine-tuning

epochs with the same soft-tuning implementation strategy.

For DenseNet, where the input channels need to be pruned,

we more effectively identify the redundant input channels

while achieving excellent compression performance. Overall, soft

pruning achieves higher pruning rates with similar accuracy

than hard pruning. The criterion has a greater impact on the

plain structure, in which the number of channels between layers

is not constrained. The pruning performance of models with

unique structures is affected by the judging criteria and the

pruning strategy.

4.1.2. CIFAR100
The results on the CIFAR100 dataset are shown in Table 3.

Compared to the CIFAR10 dataset, CIFAR100 is more challenging

for pruning due to more categories. We compare with L1 (Li et al.,

2016), themethod ofMolchanov et al. (2016), SFP (He et al., 2018a),

FPGM (He et al., 2019), and PGMPF (Cai et al., 2022) on VGG16

and ResNet32/56/110. In the VGG16 experiment, α is set to 1, r

is set to 0.35, and in ResNet, α is set to 1, r is set to 0.3. All the

data in the table are obtained under the same number of fine-

tuning according to the public code. The parameters not given

in the table are because the code or the paper does not give the

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

TABLE 3 Comparison of pruned ResNet on CIFAR100.

Depth Method Prune Top-1
(↓) (%)

Top-5 (↓)
acc (%)

FLOPs
(↓) (%)

Params
(↓) (%)

VGG16 L1 (Li et al., 2016) ✓ 2.24 1.27 50.44 50.23

(Molchanov et al., 2016) ✓ 2.36 1.42 40.25 47.36

Ours ✓ 1.69 1.72 51.99 68.79

FPGM (He et al., 2019) ✗ 2.06 1.73 48.93 –

PGMPF (Cai et al., 2022) ✗ 0.35 – 48.20 –

Ours ✗ 0.34 1.25 52.80 62.97

ResNet-32 L1 (Li et al., 2016) ✓ 18.37 11.47 43.76 44.16

Ours ✓ 2.74 1.73 43.45 43.38

SFP (He et al., 2018a) ✗ 2.21 1.12 53.16 –

FPGM (He et al., 2019) ✗ 0.16 -0.63 53.16 –

Ours ✗ −0.59 −0.07 50.51 53.25

ResNet-56 SFP (He et al., 2018a) ✗ 1.05 −0.16 63.16 –

FPGM (He et al., 2019) ✗ 1.33 −0.10 63.16 –

PGMPF (Cai et al., 2022) ✗ 2.71 – 52.6 –

Ours ✗ 0.71 1.03 64.98 61.45

ResNet-110 Ours ✗ 0.98 0.65 59.23 56.70

The bold values indicate that experimental results are better than other methods.

specific calculation process. It can be observed that our method

still outperforms other existing methods when reaching similar or

higher pruning rates. Compared with the CIFAR10 dataset, the gap

between different judgment criteria methods is more prominent,

and even the accuracy gain brought by the increased number of

fine-tuning still cannot compensate for the performance loss of the

network due to inaccurate pruning. For example, SFP reduces the

accuracy by 2.21% under half the FLOPs compression on ResNet32.

FPGM still has an accuracy loss of 0.16%with the increased number

of fine-tuning. However, the accuracy of our method has not

decreased but increased, which can reflect the differences between

different evaluation criteria. At the same time, the network is more

sensitive to pruning on larger datasets, and the redundancy of the

network does not increase with the depth of the network, which

brings more difficulty to the judgment of parameter redundancy.

For ResNet110, while the pruning rate is reduced compared to

ResNet56, the network performance also drops significantly.

4.2. Results on ILSVRC-2012

In the experiments, we use ResNet-18/34/50 to demonstrate the

proposed pruning performance on a large-scale dataset, ILSVRC-

2012 (Russakovsky et al., 2015). All the baseline networks are

obtained by training 100 epochs with a batch size of 256. We

follow the same parameter settings as [16] and [56], where the

hyperparameter α is set to 1 and r is set to 0.35. We compare

the proposed method with ThiNet (Luo et al., 2018), FPGM (He

et al., 2019), MIL (Dong et al., 2017), PFEC (Li et al., 2016),

CP (He et al., 2017), SFP (He et al., 2018a), HRank (Lin et al.,

2020), PGMPF (Cai et al., 2022), and SRR-GR (Wang et al.,

2021) and present the results in Table 4. All the results of the

other methods in the table are directly from their reports in the

literature. For ResNet with different depths, the hard pruning and

soft pruning strategies are tested to make a fair comparison with

other methods of different implementations. From the previous

experiments on the CIFAR10/100 datasets, we conclude that the

network performance is more sensitive to pruning in underfitted

network structures. For ResNet18/34, our algorithm achieves the

same FLOPs drop rate under the hard pruning strategy and achieves

a smaller Top-1 accuracy drop rate than other methods using

soft pruning strategies; in soft pruning, a better performance is

still obtained with more pruned FLOPs than other methods. For

ResNet50, the performance of the pruning algorithms is not very

different, but our algorithm still achieves a better performance.

For example, it reduces the computation by nearly half (53.05%),

while the Top-1 accuracy loss is only 0.29%. Similarly, the final

performance of the soft pruning strategy is still significantly better

than that of the hard pruning strategy.

4.3. Ablation study

4.3.1. Influence of hyperparameters
There are two hyperparameters α and r in the algorithm

proposed in this paper. These two parameters together determine

the pruning rate of each layer. From the introduction of the

algorithm in Section 3, we only need to specify a set of α and r

values for each network structure, to avoid manually specifying the

pruning rate of each layer in the network. Next, we will discuss

how to select the hyperparameters in the experiment and how

their values affect the pruning rate. To explore the relationship

more clearly, we choose to use the VGG16 to experiment on the

CIFAR100 datasets.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

TABLE 4 Comparison of pruned ResNet on ILSVRC-2012.

Model/ Data Method P.F. Base
top-1
acc(%)

Pruned
top-1
acc(%)

Top-1
(↓)(%)

Base
top-5
acc(%)

Pruned
top-5
acc(%)

Top-5
(↓)(%)

FLOPs
(↓)(%)

ResNet18 MIL (Dong et al., 2017) ✓ 69.98 66.33 3.65 86.94 89.24 2.30 34.6

Ours ✓ 70.48 68.58 1.90 89.60 88.44 1.16 50.1

SFP (He et al., 2018a) ✗ 70.28 67.10 3.18 89.63 87.78 1.85 41.8

FPGM (He et al., 2019) ✗ 70.28 67.81 2.47 89.63 88.11 1.52 41.8

PGMPF (Cai et al., 2022) ✗ 70.23 66.67 3.56 89.51 87.36 2.15 53.5

Ours ✗ 70.48 68.96 1.52 89.60 88.55 1.05 52.85

ResNet34 MIL (Dong et al., 2017) ✓ 73.42 72.99 0.43 91.36 91.19 0.17 24.8

PFEC (Li et al., 2016) ✓ 73.23 72.17 1.06 - - - 24.2

Ours ✓ 73.90 72.30 1.60 91.59 90.79 0.80 53.1

SFP (He et al., 2018a) ✗ 73.92 71.83 2.09 91.62 90.33 1.29 41.1

FPGM (He et al., 2019) ✗ 73.92 72.11 1.81 91.62 90.69 0.93 41.1

PGMPF (Cai et al., 2022) ✗ 73.27 70.64 2.63 91.43 89.87 1.56 52.7

Ours ✗ 73.90 72.80 1.10 91.59 91.04 0.55 52.07

ResNet50 ThiNet (Luo et al., 2018) ✓ 75.30 74.03 1.27 92.20 92.11 0.09 36.79

CP (He et al., 2017) ✓ - - - 92.20 90.80 1.40 50.0

Ours ✓ 75.82 74.74 1.08 92.95 92.28 0.67 40.78

SFP (He et al., 2018a) ✗ 76.15 74.61 1.54 92.87 92.06 0.81 41.8

FPGM (He et al., 2019) ✗ 76.15 75.03 1.12 92.87 92.40 0.47 42.2

HRank (Lin et al., 2020) ✗ 76.15 74.98 1.17 92.87 92.33 0.54 43.76

SRR-GR (Wang et al., 2021) ✗ 76.13 75.76 0.37 92.86 92.60 0.19 44.10

PGMPF (Cai et al., 2022) ✗ 76.01 75.11 0.90 92.93 92.41 0.52 53.5

Ours ✗ 75.82 75.53 0.29 92.95 92.83 0.12 53.05

The bold values indicate that experimental results are better than other methods.

For different α values, the algorithm can obtain different

candidate sets. This value determines how large the distance value

of two filters should be if they will be selected to be pruned. The

larger α is, the more filters are finally pruned. For a fixed value

of r, the pruning rate of different layers obtained by different

α is shown in Figure 4A. For different r values, different sets of

final pruned channels can be obtained. For a convolution kernel,

r determines how many other convolution kernels it is similar to,

and it is regarded as a redundant convolution kernel. The larger r

is, the fewer pruned filters are obtained. For a fixed α, the pruning

rate of different layers obtained by different r values are shown in

Figure 4B.

It can be inferred from the above figures that the values of r and

α are correlated roughly linearly with the final pruning rate. These

two hyperparameters together determine the pruning rate of each

layer. According to the rules obtained from the experiments in the

figure, we can take the appropriate r and α for different networks in

later experiments. The algorithm does not need to precisely specify

the exact values of r and α. Excellent experimental performance

can be obtained when α is between 0.8 and 1.1 and r between 0.25

and 0.4, and the settings of α and r have a certain influence on the

number of iterations. Once they are set, there is no need to specify

the pruning rate of each layer, and the algorithm directly derives the

filters that need to be pruned for each layer.

4.3.2. Pruning rate change during iteration
The proposed algorithm determines the pruning rate of each

layer adaptively without manual specification. After setting the

FLOPs or parameters constraints, the algorithm automatically

prunes the redundancies in each layer and calculates the FLOPs

and parameters after each iteration. After several iterations, the set

target is reached, and pruning is completed, thereby avoiding layer-

by-layer pruning and much fine-tuning. As shown in Figure 4,

pruning becomes increasingly difficult with increasing numbers

of iterations, and the network performance becomes increasingly

sensitive to pruning. In the last few iterations, only a small

number of filters are pruned, which results in a significant

decrease in accuracy. For different datasets, the redundancy of each

convolutional layer for the same network structure is different. On

the CIFAR10 datasets, the redundancy of the first few convolutional

layers is higher, and the pruning rate is between 50 and 80%.

However, the pruning rates of the first few layers on the CIFAR100

datasets are all below 40%.

4.3.3. Feature map visualization and actual
speedup

To verify whether the filters identified by our proposed

algorithm are truly redundant, we visualize the first layer of

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

FIGURE 4

(A) The pruning rate of each convolutional layer with di�erent values of α for the VGG16 on the CIFAR100 datasets at r = 0.35. (B) The pruning rate of

di�erent layers with di�erent values of r when α = 1. (C, D) The pruning process of the VGG16 on the CIFAR10/100 datasets when rateFLOPs is set to

0.8 and 0.6, respectively. On CIFAR10, the algorithm meets the pruning requirement after 10 iterations, while CIFAR100 exceeds 6 iterations. The

pruning rate of each layer and the change process of rateFLOPs and rateparams are also shown in the figure.

FIGURE 5

Visualization of the weights and feature maps of the first convolutional layer of the VGG16 on the CIFAR100 datasets. The first convolutional layer has

64 filters, and the filters with red bounding boxes are to be pruned. The green boxes are similar channels artificially determined according to the

feature map and the convolution kernel, while the green boxes and red boxes are the channels identified and pruned by the algorithm.

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

TABLE 5 Speedups of compressed network models on di�erent datasets.

Model/Dataset Original
time
(ms)

Pruned
time
(ms)

Speedup

CIFAR10 VGG16 (11.01%) 16.92 4.69 3.61×

ResNet-32 (49.64%) 6.78 3.83 1.77×

ResNet-56 (38.90%) 9.60 4.15 2.31×

ResNet-110 (23.94%) 15.12 4.28 3.53×

DenseNet-40 (37.98%) 23.26 9.78 2.38×

ImageNet ResNet18 (47.15%) 45.15 23.39 1.93×

ResNet34 (47.93%) 73.82 45.38 1.63×

ResNet50 (46.95%) 165.31 97.61 1.69×

the convolution kernel and the corresponding feature map of

the VGG16 on the CIFAR100 datasets. The part marked in red

in the figure contains the pruned filters and the corresponding

feature maps. We analyze the filters and the corresponding feature

maps and find that there are multiple similar filters in the same

convolution layer, and their corresponding feature maps are also

quite similar. For example, comparing their weights and feature

maps, the filters (7, 12, 22, 24, 37, 56) all extract the overall outline

of the cat. Our algorithm prunes the filters (7, 12, 24, 37) and keeps

the other two similar filters (22, 56), as shown in Figure 5.

We evaluate the actual speedup of our proposed method

on the intelligent edge accelerator Jeston nano, as shown in

Table 5. Since previous works used different GPUs and libraries,

and pruned models are not readily available, we only report

the inference time and speedup of the original model and the

pruned model using our proposed method. It can be seen from

the table that on edge devices, the inference speed of our

proposed compression model is faster than that of the original

model, but the actual speedup ratio cannot reach the theoretical

reduction of calculation. The actual acceleration ratio of VGG is

much smaller than the theoretical acceleration ratio, while the

acceleration ratio of ResNet and DenseNet is comparable to the

theoretical acceleration ratio. We believe that the gap between

theoretical and actual speedup is mainly caused by the cache

effect and memory accessing pattern in GPU, which is affected

by the hardware itself, the network architecture, and Pytorch

library implementation.

5. Conclusion

In this article, we propose a novel strategy for judging the

redundancy of filters based on similarity. To obtain the redundant

filters, we analyze the similarity distribution law for filters in

a convolution layer, and obtain a compact network by pruning

the redundant filters with certain strategies. A large number of

experiments proved the effectiveness and flexibility of the method

under the same experimental parameters and the performance does

not depend on a large number of fine-tunings.

Although the pruning method we proposed does not need to

specify the pruning rate of each layer, it still relies on the values of

two hyperparameters. If different hyperparameters are specified for

each layer according to the redundancy of each layer, the network

will be further compressed. We plan to combine this method

with reinforcement learning to automatically adjust the required

parameters and improve the performance to a higher level. We

performed simple statistical tests on similar filters to provide a basis

for further pruning, which is far insufficient for complex CNNs.

We will further analyze the filters’ similarity data and combine the

visual analysis of each layer to provide guidance for pruning.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author/s.

Author contributions

TW: writing—original draft. CS and PZ: writing—review and

editing. All authors have read and agreed to the published version

of the manuscript.

Funding

This work was supported by National Key R&D Program of

China (2017YFA0700300), Nature Science Foundation of China

(62273337), Nature Science Foundation of Liaoning Province

(2021-MS-030), and Independent Project of State Key Laboratory

of Robotics (2022-Z03).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

References

Ashok, A., Rhinehart, N., Beainy, F., and Kitani, K. M. (2017). N2n learning:
Network to network compression via policy gradient reinforcement learning. arXiv
preprint arXiv:1709.06030.doi: 10.48550/arXiv.1709.06030

Cai, L., An, Z., Yang, C., Yan, Y., and Xu, Y. (2022). “Prior gradient mask
guided pruning-aware fine-tuning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 1 (Vancouver, CA). doi: 10.1609/aaai.v36i1.
19888

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: training deep
neural networks with binary weights during propagations,” in Advances in Neural
Information Processing Systems (Montreal, QC), 3123–3131.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. (2014). “Exploiting
linear structure within convolutional networks for efficient evaluation,” in Advances in
Neural Information Processing Systems (Montreal, QC), 1269–1277.

Dong, X., Huang, J., Yang, Y., and Yan, S. (2017). “More is less: a more
complicated network with less inference complexity,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (Honolulu, HI), 5840–5848.
doi: 10.1109/CVPR.2017.205

Fortino, G., Zhou, M., Hassan, M. M., Pathan, M., and Karnouskos, S. (2021).
Pushing artificial intelligence to the edge: emerging trends, issues and challenges. Eng.
Appl. Artif. Intell. 103:104298. doi: 10.1016/j.engappai.2021.104298

Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). Knowledge distillation: a survey.
Int. J. Comput. Vis. 129, 1789–1819. doi: 10.1007/s11263-021-01453-z

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). “Speech recognition with deep
recurrent neural networks,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing (Vancouver, CA), 6645–6649. doi: 10.1109/ICASSP.2013.6638947

Hassibi, B., and Stork, D. G. (1993). “Second order derivatives for network pruning:
optimal brain surgeon,” in Advances in Neural Information Processing Systems (San
Francisco), 164–171.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

He, Y., Kang, G., Dong, X., Fu, Y., and Yang, Y. (2018a). Soft filter pruning for
accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866.
doi: 10.24963/ijcai.2018/309

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. (2018b). “AMC:
Automl for model compression and acceleration on mobile devices,” in
Proceedings of the European Conference on Computer Vision (Munich), 784–800.
doi: 10.1007/978-3-030-01234-2_48

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. (2019). “Filter pruning
via geometric median for deep convolutional neural networks acceleration,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (Long Beach, CA), 4340–4349. doi: 10.1109/CVPR.2019.
00447

He, Y., Zhang, X., and Sun, J. (2017). “Channel pruning for accelerating very deep
neural networks,” in Proceedings of the IEEE International Conference on Computer
Vision (Venice), 1389–1397. doi: 10.1109/ICCV.2017.155

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531. doi: 10.48550/arXiv.1503.02531

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., et al. (2017). Mobilenets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861. doi: 10.48550/arXiv.1704.
04861

Hu, H., Peng, R., Tai, Y.-W., and Tang, C.-K. (2016). Network trimming: a data-
driven neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250. doi: 10.48550/arXiv.1607.03250

Huang, Z., Wang, X., and Luo, P. (2020). Convolution-weight-distribution
assumption: rethinking the criteria of channel pruning. arXiv preprint
arXiv:2004.11627. doi: 10.48550/arXiv.2004.11627

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017).
Quantized neural networks: training neural networks with low precision weights and
activations. J. Mach. Learn. Res. 18, 6869–6898. doi: 10.48550/arXiv.1609.07061

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105.
doi: 10.1145/3065386

LeCun, Y., Denker, J. S., and Solla, S. A. (1990). “Optimal brain damage,” in
Advances in Neural Information Processing Systems (Denver, CO), 598–605.

Lee, N., Ajanthan, T., and Torr, P. H. (2018). SNIP: single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340.
doi: 10.48550/arXiv.1810.02340

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2016). Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710. doi: 10.48550/arXiv.1608.08710

Lin, J., Rao, Y., Lu, J., and Zhou, J. (2017). “Runtime neural pruning,” in Advances
in Neural Information Processing Systems (Long Beach, CA), 2181–2191.

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., et al. (2020). “Hrank:
filter pruning using high-rank feature map,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Seattle), 1529–1538.
doi: 10.1109/CVPR42600.2020.00160

Liu, B., Wang, M., Foroosh, H., Tappen, M., and Pensky, M. (2015). “Sparse
convolutional neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (Boston, MA), 806–814.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017). “Learning
efficient convolutional networks through network slimming,” in Proceedings of
the IEEE International Conference on Computer Vision (Venice), 2736–2744.
doi: 10.1109/ICCV.2017.298

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2018). Rethinking the value
of network pruning. arXiv preprint arXiv:1810.05270. doi: 10.48550/arXiv.1810.05270

Luo, J.-H., Wu, J., and Lin, W. (2017). “Thinet: a filter level pruning method for
deep neural network compression,” in Proceedings of the IEEE International Conference
on Computer Vision (Venice), 5058–5066. doi: 10.1109/ICCV.2017.541

Luo, J.-H., Zhang, H., Zhou, H.-Y., Xie, C.-W., Wu, J., and Lin, W. (2018). Thinet:
pruning CNN filters for a thinner net. IEEE Trans. Pattern Anal. Mach. Intell. 41,
2525–2538. doi: 10.1109/TPAMI.2018.2858232

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2016). Pruning
convolutional neural networks for resource efficient inference. arXiv preprint
arXiv:1611.06440. doi: 10.48550/arXiv.1611.06440

Peng, H., Wu, J., Chen, S., and Huang, J. (2019). “Collaborative channel pruning for
deep networks,” in International Conference on Machine Learning (Long Beach, CA),
5113–5122.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: towards real-
time object detection with region proposal networks. arXiv preprint arXiv:1506.01497.
doi: 10.1109/TPAMI.2016.2577031

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252.
doi: 10.1007/s11263-015-0816-y

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
doi: 10.48550/arXiv.1409.1556

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). “On the importance of
initialization andmomentum in deep learning,” in International Conference onMachine
Learning (Atlanta, GA), 1139–1147.

Uddin, M. Z., and Nilsson, E. G. (2020). Emotion recognition using speech
and neural structured learning to facilitate edge intelligence. Eng. Appl. Artif. Intell.
94:103775. doi: 10.1016/j.engappai.2020.103775

Veeramanikandan, Sankaranarayanan, S., Rodrigues, J. J., Sugumaran, V., and
Kozlov, S. (2020). Data flow and distributed deep neural network based low latency IoT-
edge computation model for big data environment. Eng. Appl. Artif. Intell. 94:103785.
doi: 10.1016/j.engappai.2020.103785

Wang, D., Zhou, L., Zhang, X., Bai, X., and Zhou, J. (2018). Exploring linear
relationship in feature map subspace for convnets compression. arXiv preprint
arXiv:1803.05729. doi: 10.48550/arXiv.1803.05729

Wang, Z., Li, C., and Wang, X. (2021). “Convolutional neural network
pruning with structural redundancy reduction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (virtual), 14913–14922.
doi: 10.1109/CVPR46437.2021.01467

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). “Learning structured
sparsity in deep neural networks,” inAdvances in Neural Information Processing Systems
(Barcelona), 2074–2082.

Ye, J., Lu, X., Lin, Z., and Wang, J. Z. (2018). Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers. arXiv preprint
arXiv:1802.00124. doi: 10.48550/arXiv.1802.00124

Yu, R., Li, A., Chen, C.-F., Lai, J.-H., Morariu, V. I., Han, X., et al. (2018). “NISP:
pruning networks using neuron importance score propagation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT),
9194–9203. doi: 10.1109/CVPR.2018.00958

Zhang, H., Qian, F., Zhang, B., Du, W., Qian, J., and Yang, J. (2022). Incorporating
linear regression problems into an adaptive framework with feasible optimizations.
IEEE Trans. Multim. doi: 10.1109/TMM.2022.3171088

Zhang, H., Yang, J., Shang, F., Gong, C., and Zhang, Z. (2018). LRR for subspace
segmentation via tractable schatten-p norm minimization and factorization. IEEE
Trans. Cybern. 49, 1722–1734. doi: 10.1109/TCYB.2018.2811764

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://doi.org/10.48550/arXiv.1709.06030
https://doi.org/10.1609/aaai.v36i1.19888
https://doi.org/10.1109/CVPR.2017.205
https://doi.org/10.1016/j.engappai.2021.104298
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.24963/ijcai.2018/309
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1109/CVPR.2019.00447
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1607.03250
https://doi.org/10.48550/arXiv.2004.11627
https://doi.org/10.48550/arXiv.1609.07061
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1810.02340
https://doi.org/10.48550/arXiv.1608.08710
https://doi.org/10.1109/CVPR42600.2020.00160
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.48550/arXiv.1810.05270
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1109/TPAMI.2018.2858232
https://doi.org/10.48550/arXiv.1611.06440
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1016/j.engappai.2020.103775
https://doi.org/10.1016/j.engappai.2020.103785
https://doi.org/10.48550/arXiv.1803.05729
https://doi.org/10.1109/CVPR46437.2021.01467
https://doi.org/10.48550/arXiv.1802.00124
https://doi.org/10.1109/CVPR.2018.00958
https://doi.org/10.1109/TMM.2022.3171088
https://doi.org/10.1109/TCYB.2018.2811764
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

Zhang, P., Zhang, A., and Xu, G. (2020). Optimized task distribution based on task
requirements and time delay in edge computing environments. Eng. Appl. Artif. Intell.
94:103774. doi: 10.1016/j.engappai.2020.103774

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). “ShuffleNet: an
extremely efficient convolutional neural network for mobile devices,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT), 6848–6856. doi: 10.1109/CVPR.2018.
00716

Zhou, Y., Yen, G. G., and Yi, Z. (2019). A knee-guided evolutionary algorithm
for compressing deep neural networks. IEEE Trans. Cybern. 51, 1626–1638.
doi: 10.1109/TCYB.2019.2928174

Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., et al. (2018).
“Discrimination-aware channel pruning for deep neural networks,” in Advances in
Neural Information Processing Systems (Montréal, QC), 875–886.

Zhuo, H., Qian, X., Fu, Y., Yang, H., and Xue, X. (2018). SCSP: spectral clustering
filter pruning with soft self-adaption manners. arXiv preprint arXiv:1806.05320.

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://doi.org/10.1016/j.engappai.2020.103774
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/TCYB.2019.2928174
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1132679

Appendix

Proof of the equation 5

For the ith feature map F (l, i) of the lth layer, let δ
(l)
i,j =

h
(

F (l,i)
)

− h
(

F (l,j)
)

and δ
(l)
i,j

(

p1, p2
)

denote the image block

centered at (p1, p2), then we have:

L

(

F(l+1,nl+1),F
(l+1,nl+1)
p

)

=
1

al+1

∥

∥

∥

(

h
(

F
(l,i)

)

− h
(

F
(l,j)

))

∗W(i,nl+1)
∥

∥

∥

2

2

=
1

al+1

∑

p1∈{1,··· ,Hl+1}
p2∈{1,··· ,ll+1}

(

δ
(l)
i,j

(

p1, p2
)

∗W(i,nl+1)
)2

=
1

al+1

∑

p1∈{1,··· ,ll+1}
p2∈{1,··· ,ll+1}

∣

∣

∣

〈

δ
(l)
i,j

(

p1, p2
)

,W(i,nl+1)
〉
∣

∣

∣

2

(16)

Applying Cauchy-Schwarz inequality, then:

L

(

F(l+1,nl+1),F
(l+1,nl+1)
p

)

≤
1

al+1

∑

p1∈{1,··· ,Hl+1}
p2∈{1,··· ,Hl+1}

∥

∥

∥
δ
(l)
i,j

(

p1, p2
)

∥

∥

∥

2

2

∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2
k

=
1

al+1

∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2

∑

p1∈{1,··· ,Hl+1}
p2∈{1,··· ,Hl+1}

∥

∥

∥
δ
(l)
i,j

(

p1, p2
)

∥

∥

∥

2

2

(17)

Actually δ
(l)
i,j appears at most K2 times in the

convolution operation, except for the border. For activation

functions commonly used in CNN such as ReLU or

sigmoid, maxx∈R
(

dh(x)
dx

)

≤ 1 and minx∈R
(

dh(x)
dx

)

≥ 0,

and then:

L

(

F(l+1,nl+1),F
(l+1,nl+1)
p

)

≤
1

al+1
K2

∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2

∥

∥

∥
δ
(l)
i,j

∥

∥

∥

2

2

=
1

al+1
K2

∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2

∥

∥

∥
h

(

F
(l,i)

)

− h
(

F
(l,j)

)
∥

∥

∥

2

2

≤
1

al+1
K2

∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2

∥

∥

∥
F

(l,i) − F
(l,j)

∥

∥

∥

2

2

=
al

al+1
K2

∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2
L

(

F
(l,i),F (l,j)

)

(18)

Since F (l,i) is an arbitrary channel of the lth layer, we can further

narrow the upper bound:

L

(

F(l+1,nl+1),F
(l+1,nl+1)
p

)

≤
al

al+1
K2

∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2
min j∈{1,...,Nl}L

(

F
(l,i),F (l,j)

)

= ε × min
j∈{1,...,Nl}

L

(

F
(l,i),F (l,j)

)

(19)

where ε = al
al+1

K2
∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2
and al = Hl ×Wl × B.

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1132679
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Model pruning based on filter similarity for edge device deployment
	1. Introduction
	2. Related work
	2.1. Based on magnitude
	2.2. Based on loss function
	2.3. Based on the reconstructability of the feature output
	2.4. Other criteria

	3. Methodology
	3.1. Motivation
	3.2. Filter pruning based on similarity
	3.3. Compression recipes

	4. Experiments
	4.1. Results on the CIFAR-10/100 datasets
	4.1.1. CIFAR10
	4.1.2. CIFAR100

	4.2. Results on ILSVRC-2012
	4.3. Ablation study
	4.3.1. Influence of hyperparameters
	4.3.2. Pruning rate change during iteration
	4.3.3. Feature map visualization and actual speedup


	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References
	Appendix
	Proof of the equation 5


