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Automatic vessel plate number
recognition for surface unmanned
vehicles with marine applications

Renran Zhang, Lei Zhang*, Yumin Su, Qingze Yu and Gaoyi Bai

Department of Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering

University, Harbin, China

In the practical application scenarios of USVs, it is necessary to identify a vessel

in order to accomplish tasks. Considering the sensors equipped on the USV,

visible images provide the fastest and most e�cient way of determining the hull

number. The current studies divide the task of recognizing vessel plate number

into two independent subtasks: text localization in the image and its recognition.

Then, researchers are focusing on improving the accuracy of localization and

recognition separately. However, these methods cannot be directly applied to

USVs due to the di�erence between these two application scenarios. In addition,

as the two independent models are serial, there will be inevitable propagation

of error between them, as well as an increase in time costs, resulting in a less

satisfactory performance. In view of the above, we proposed a method based

on object detection model for recognizing vessel plate number in complicated

sea environments applied to USVs. The accuracy and stability of model have

been promoted by recursive gated convolution structure, decoupled head,

reconstructing loss function, and redesigning the sizes of anchor boxes. To

facilitate this research, a vessel plate number dataset is established in this paper.

Furthermore, we conducted a experiment utilizing a USV platform in the South

China Sea. Comparedwith the original YOLOv5, themAP (mean Average Precision)

value of proposed method is increased by 6.23%. The method is employed on the

“Tian Xing” USV platform and the experiment results indicates both the ship and

vessel plate number can be recognized in real-time. In both the civilian andmilitary

sectors, this has a great deal of significance.

KEYWORDS

YOLOv5, vessel plate number, unmanned surface vehicles (USVs), real-time recognition,
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1. Introduction

Unmanned Surface Vehicles (USVs) have received considerable attention due to their

high working efficiency and strong adaptability. In recent years, USVs have been widely

applied in marine safety filed. They can accomplish the missions such as emergency rescue

and maintaining safety in waterway traffic navigation (Yang et al., 2018; He et al., 2022).

As the unique identification of a ship, the vessel plate number plays an indispensable

role in the process of the USVs carrying out the missions above. In practice, identifying

a ship through the vessel plate number can provide the basic information of the target

vessels for USVs, which contributes to responding to an emergency (Dobref et al., 2018).
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In general, the methods for identifying a ship depending on specific

facilities such as Automatic Identification System (AIS), Long-

Range Identification and Tracking (LRIT) (Harati-Mokhtari et al.,

2007; García-Silveira et al., 2022; Pouyaei et al., 2022). However, due

to volume limitations and stealth requirements, the USVs will not

carry or open the above equipment in most cases. Thus, the hull

identification number detection based on visual images become

more critical to the mission’s success.

In recent years, many researchers have contributed and

provided different methods to identify ship. Zhang et al. (2018)

focused on common ships at the marine port of Dongying that have

conventional, large, and distinct IMO hull markings, often locally

accompanied by Chinese characters. They propose the FCNPR

(Fully Convolutional Network based Plate Recognition) approach

which use a SSD network to locate ship and complete the text line

detection on ship with a full connection neural network. Cropped

image containing text is fed into a pretrained classification model

which is integrated with AIS information to obtain the recognition

result. The shortcoming of this method is that it cannot meet the

real-time requirement. To improve the speed of ship identification,

Huang et al. (2018) present an end-to-end solution for vessel plate

number detection and recognition simultaneously. The network

combines a CNN network for detection of vessel plate number

region and LSTM with CTC for recognition of vessel plate. But

these two researches concerned only large ships with standardized

hull markings, with no consideration of that the font and size that

are not standardized. To cover this drawback, Wawrzyniak et al.

(2022) propose a method based on a combination of different text

localization methods and additional processing and comparison

of various character strings with existing ship identification data

registers. The experiments illustrate that this method can recognize

a wide range of vessels of many types using different hull marking

rules. In these studies, the task of recognizing vessel plate number

is divided into two independent subtasks, text localization in

the image and its recognition. Although researchers endeavor to

separately improve the accuracy of localization and recognition,

these methods cannot be directly applied to USVs because of the

higher real-time need in its application scenarios. Since the text

recognition model is aimed at typical flat-view and close-range

shooting scenarios which cannot perform well in the practical

application scenarios for USVs. Furthermore, due to the series

connection between the two models, the propagation of error

between them as well as an increase in time costs will not

be ignored.

As the vessel plate number is generally composed of numbers, it

is feasible to identify a single number based on the target detection

model and then complete the vessel plate number identification.

And the disadvantages caused by using two serial models can be

avoided. Therefore, this paper proposes a target detection method

to complete the task of vessel plate number recognition.

At present, most target detection methods are based on anchor

boxes, and these detection methods are divided into single stage

and two stages. The two-stage method improves the accuracy

through the regional recommendation network, and then forecasts

based on the anchor. The representative of two-stage method is

R-CNN series network (He et al., 2017). These methods have

higher accuracy, but the detection speed is not satisfactory. The

single-stage method can predict directly through the anchor,

although the accuracy has decreased, it has faster detection speed.

Released by Redmon et al. (2016) in 2015, YOLOv1 is the first

work of one stage detection. Redmon and Farhadi proposed the

YOLOv2 (Redmon and Farhadi, 2017) algorithm in 2017. The

author proposes to improve YOLOv1 algorithm from three aspects

of more accurate, faster and more recognition, in which the

recognition of more objects is expanded to detect 9000 different

objects. In 2018, Redmon and Farhadi proposed YOLOv3 (Redmon

and Farhadi, 2018), which is an improvement made previously. The

biggest improvement features include the use of residual model

Darknet-53, and the use of FPN architecture to achieve multi-scale

detection. On the original basis, YOLOv4 (Bochkovskiy et al., 2020)

and YOLOv5 optimize the backbone network, network training,

activation function, loss function, etc.

Motivated by the above observation, this paper developed a

method based on YOLOv5 for recognizing vessel plate number

in complicated sea environments applied to USVs. The proposed

method for recognizing vessel plate numbers differs significantly

from previous methods in the following respects:

• As the vessel plate number is smaller than that of ship, the

feature of the vessel plate number would be lost during the

feature extraction process. In view of this shortcoming, the

recursive gated convolution structure is introduced to perform

high-order spatial interactions with gated convolutions and

recursive designs, which could improve the model’s capacity

for extracting features.

• The loss function is reconstructed considering the angle of

the vector between the desired regression to improve both the

convergence speed and the accuracy of the inference.

• The classification task focuses on the salient region features

while the regression task focuses on the edge features.

Through shared weights, the coupled detection head performs

classification and location simultaneously. However, the

conflict between the two tasks reduces accuracy. In this paper,

the decoupled detection head is utilized to avoid the conflict

between classification and regression.

• The proposed method is an anchor box-based detection

method and the anchor boxes which are aligned with the

dataset distribution will yield more accurate results. Based

on the K-means++ algorithm cluster algorithm, the sizes of

anchor boxes are redesigned in this paper.

The main contributions of this paper are summarized as

follows. Traditional methods based on localization and recognition

models suffer from the high complexity and error propagation

between these two models. Therefore, we perform both detection

and classification based on the target detection model, deprecating

the text recognition stage. The native YOLOv5 performs well in

object detection with a high degree of accuracy, while the similarity

between single numbers limits its detection and classification

capabilities. To guarantee high-quality detection results, the feature

extraction part, the loss function and the head part of the model are

reconstructed. Different from the previous literature, an innovative

one-stage model structure is proposed and designed in this work to

complete the ship plate number mission for USVs. The proposed
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FIGURE 1

Workflow diagram of the proposed network.

model is implemented on the “Tian Xing” USV platform for testing

performance, and the results of the experiments indicate that it

performs better than the original model.

The structure of this article is organized as follows: The

proposed methods are explained in detail in Section 2. Section

3 presents the experimental results and a discussion. The paper

concludes with Section 4.

2. Methods

For electro-optical sensors employed on USVs, the vessel plate

number occupies fewer pixels in images leading loss of detail,

that further increases the difficulty of regression for detection and

classification simultaneously. To cover this drawback, we propose

to perform detection on different scales feature layers to improve

the performance on vessel plate number recognition. To be specific,

we will introduce recursive gated convolution to perform high-

order spatial interactions without extra computation in Section 2.1.

In addition, the decoupled head strategy will be exploited in Section

2.2 to improve the accuracy of detection. The proposed decouple

head for classification and regression can resolve the coupled

problem caused by parameter sharing in detect layer. In Section 2.3,

the reconstruction of loss function improves the convergence speed

and precision by considering the angle of the vector between the

desired regression. In Section 2.4, the size of anchor is redesigned to

improve the accuracy. Combing the above strategies, the enhanced

YOLOv5 has the capacity to detect ship and recognize the vessel

plate number simultaneously with more accurate results and faster

speed meeting the requirements of application on USVs. The work

flow of our detection model in training is shown in Figure 1.

2.1. The recursive gated convolution block

The Convolutional Neural Networks (CNNs) have driven

remarkable progress in detection model based on deep learning.

The main advantage of CNN compared to its predecessors is that

it automatically detects the important features without human

supervision. In the CNN structure, each neuron is connected only

to a small chunk of the input, meanwhile, all the neurons have the

same connection weights. These two operations can make CNN

obtain the detail features with less computational costs. However,

the strong detail capture capability of CNN makes it be limited in

capturing global features. Inspired by previous work (Rao et al.,

2022), we propose to introduce the recursive gated convolution to

perform high-order spatial interactions. Let x ∈ RHW×C be the

input feature, the output is shown as followed:

[p0
HW×C , q0

HW×C] = φin(x) ∈ R
HW×2C,

p1 = f (q0)⊙ p0 ∈ R
HW×C , y = φout(p1) ∈ R

HW×C (1)
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Where φin, φout represent linear convolution operation to

perform channel mixing, and indicates a depth-wise convolution.

The formulation Equation 1 introduce the 1-order interaction

among the features p0
(i) and q0

(i) through the element-wise

multiplication once. Similarly, the n-order form is formulated as:

[p0
HW×C0 , q0

HW×C0 , ..., qn−1
HW×Cn−1 ] =

φin(x) ∈ R
HW×(C0+

∑

0≤k≤n−1 Ck) (2)

Pk+1 = fk(qk)⊙ gk(pk)/α, k = 0, 1, ..., n− 1 (3)

Where the output is scaled by 1/α , and gk are used to match

the dimension in different orders in Equation 4.

gk =

{

Indentity, k = 0,

Linear
(

Ck−1,Ck

)

, 1 ≤ k ≤ n− 1
(4)

From the recurise formular Equation 3, we can see that

recursive gated convolution block achieves n-order spatial

interactions. And the channel dimension in each order is set as the

Equation 5 to avoid computational overhead.

Ck =
C

2n−k−1
, 0 ≤ k ≤ n− 1 (5)

Where the C indicates the number of channels.

This block can perform high-order spatial interactions to

improve the learning and capacity of the neural network without

extra computation. The details of model are show in Figure 2.

2.2. Decoupled head

In original YOLOv5, the classification and regression are

completed simultaneously in detect layer with the same input

feature map. However, there is conflict caused by spatial

misalignment between classification and boundary regression,

which may harm the performance of detection model (Ge et al.,

2021). To be specific, a detector can hardly get a perfect trade-off

result if accomplishing classification and regression from a same

spatial point/anchor. Motivated by (Revisiting the Sibling Head

in Object Detector), the decoupled head method is introduced

which decouples these two tasks from spatial dimension by two

disentangled proposals.

According to the observation above, the decoupled head is

utilized to predict the class and localization instead of original

detect head in YOLOv5. Different from the method in (Rethinking

Classification and Localization for Object Detection), we propose a

lite decoupled head method without fully connected layers to meet

the requirement of real-time detection for USVs. The decouple

head splits the classification and bounding box regression into

two convolution heads, which have the identical structure with

independent parameters. The details of proposed structure are

shown in Figure 3.

As show in the Figure 3, the num of channels is firstly adjusted

to 256 by convolution layer with 1x1 kernel. Here the ∗ indicates the

FIGURE 2

The structure of the recursive gated convolution block.

width and height stay the same as the input. Then the intermediate

result is fed into the predict part constructed with two parallel

branches, whereas one branch for classification and the other for

regression. This operation can resolve the coupling problem exists

between two tasks, which effectively improve the performance of

detection model.

2.3. Reconstruction of bounding box loss

In the training phrase, the parameters of the model are updated

according the result of loss function. The loss of YOLOv5 is

calculated based on objection score, class probability score, and

bounding box regression score, whereas the Binary Cross the

bounding box regression score is calculated by CIOU. The CIOU

expression is as follows.

CIOU = IOU −
ρ2(b, bgt)

c2
− βv,

v = 4
π2 (arctan

wgt

hgt
− arctan w

h
)
2 (6)

Where indicates the width and height of box respectively,

ρ2(b, bgt) represents the Euler distance square of the center of the

prediction box and the truth box, and c2 represents the diagonal
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FIGURE 3

The architecture of decoupled head.

distance square of the maximum circumscribed matrix between the

prediction box and the truth box. β is the aspect ratio influence

factor, and v represents the penalty items of the prediction box and

the truth box. It can be seen from the formula that CIOU takes

into account the center distance, area overlap, and aspect ratio of

the prediction box and the truth box. Compared with ordinary

IOU, it can more effectively reflect the similarity of the target box.

Therefore, the loss design method based on CIOU can make the

model training converge faster.

However, CIOU only takes the width height ratio as the

influence factor, and does not explicitly consider the width height

value (Zheng et al., 2020). For this reason, EIOU takes the length

width influence factor as the penalty item, rather than the length

width ratio (Yang et al., 2021). The formula is as follows,

EIOU = IOU −
ρ2(b, bgt)

c2
−

ρ2(w, wgt)

cw2
−

ρ2(h, hgt)

ch2
(7)

Where, ρ2(w, wgt)
cw2 and ρ2(h, hgt)

ch
2 represent width influence factor

and length influence factor respectively. Because EIOUdirectly uses

the length and width of the target box as the penalty term, it will

theoretically bring faster convergence speed to the model training.

2.4. Redesigning the sizes of anchor boxes

The YOLOv5 is a model based on anchor, so the prior design

of anchor size is very important. The anchor size of YOLOv5 is

set according to the COCO dataset to obtain different aspect ratios

of large, medium and small targets. However, there is a significant

difference in size between ships and vessel plate number. There

should be a recalculation of anchor size. After analysis, we simply

use the K-means algorithm to regress, and the results obtained are

not necessarily optimal, because the random initial values of the

K-means algorithm have a greater impact on the results, and the

robustness of the algorithm is poor.

Based on the above considerations, we adopted the K-

means++ algorithm, hoping to obtain a more reasonable

anchor size prior. The K-means++ algorithm process

is as follows:

a). Choose one center uniformly at random among the

data points.

b). For each data point x not chosen yet, computeD (x), the

distance between x and the nearest center that has already

been chosen.

c). Choose one new data point at random as a new center, using

a weighted probability distribution where a point x is chosen

with probability proportional to.

d). Repeat Steps 2 and 3 until k centers have been chosen.

e). Now that the initial centers have been chosen, proceed using

standard k-means clustering.

This method was tested on our own dataset and the results are

shown in Figure 4. The default anchor size (blue) is (10, 16, 33, 30,

62, 59, 116, 156, 373) and the optimized results (red) is (10, 16, 33,
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FIGURE 4

The comparison of anchor size.

30, 62, 59, 116, 156, 373). It can be seen that the optimized anchor is

more consistent with the real data distribution, which can improve

the performance of the model.

3. Experiment and result analysis

To evaluate the performance of the proposed method, we

conducted detection experiments on the computer carried with

the USVs. In particular, all experiments are conducted on a

computer with Intel(R) Core(TM) i5-9600K@3.7GHz CPU and

NVIDIA GeForce RTX2080Ti GPU. The code was written in

Python using the Pytorch software library and executed under

Ubuntu 20.04.

3.1. Dataset description

The deep neural network are trained and verified based

on a dataset, however, there is no relevant public dataset.

In this paper, we propose to establish a vessel plate number

dataset in USVs perspective. All the images are obtained from

the electro-optical sensor carried by USVs. To increase the

diversity of scenes, the number and symbol are displayed on the

LED board (1.5m × 1.5m) carried on the target boat (10m)

and the content in the LED changes periodically as shown

in Figure 5.

The dataset contains 5011 images and covers 16 types of

objects, i.e., ship, buoy, single number, symbols(star, rectangle,

triangle). The dataset are divided into training set and verification

set according to ratio of 8:2. To further improve ship detection

results, we propose to exploit the data augmentation methods,

e.g., horizontal flipping, random translation, and mosaic

augmentation, etc., to enlarge the original training dataset,

shown in Figure 6.

FIGURE 5

The target boat.

3.2. Evaluation criteria

To quantitatively evaluate the detection results, the

P(Precision), R(Recall), mAP are utilized in this paper. In

particular, the P is the ratio of the number of true positives

to the total number of positive predictions. The R is the ratio

of the number of true positives to the total number of actual

(relevant) objects. The mAP computes the average precision

value for recall value which indicates the detection robustness

and accuracy. The method used to calculate the mAP is the

following formula:

mAP=
1

N

N
∑

n=1

APn (8)

Where the average precision score APn is calculated for N

data folds.

In this paper, the mAP@0.5:0.95 is adopted as the mAP criteria

which represent the average mAP on different IOU thresholds

(from 0.5 to 0.95, in steps of 0.05).

3.3. Model training

In the experiments, the input image size is 600×600,

the training epoch is 300, the batch size is 16, the

optimizer is SGD, and the initial learning rate is 0.01.

To ensure the stability of convergence, the cosine

annealing strategy is used to dynamically adjust the

learning rate during training. The results are shown

in Figures 7, 8.

The train loss convergence curves are shown in Figure 7,

containing the bounding box loss, confidence loss and classification

loss. The loss function tends to convergence within the first

100 epochs, which indicates that the proposed method is

stable and fast in convergence. The Figure 8 indicates the

proposed model performance well in vessel plate number

recognition task.
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FIGURE 6

The samples of dataset.

FIGURE 7

The training loss convergence curve. (A) The loss of class. (B) The loss of object. (C) The loss of box.
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FIGURE 8

The metric convergence curve. (A) The curve of metric P. (B) The curve of metric R. (C) The curve of metric mAP.

TABLE 1 The comparisons result of ablation experiments.

Methods RGConv AAS DH EIOU mAP (%)

Original x x x x 64.12

Proposed X x x x 67.51

X X x x 68.03

X X X x 70.38

X X X X 70.35

3.4. Ablation experiments

As discussed in Section 2, the vessel plate number recognition

model is proposed by taking into consideration several modules,

e.g., recursive gated convolutions (RGConv), decoupled

head (DH), EIOU, adaptive anchor size (AAS). Therefore,

ablation experiments will be performed to determine which

one improves detection performance more effectively. The

detailed description of the numerical experiments can be found

in Table 1.

It is shown that the accuracy is lowest for the original YOLOv5.

The introduction of RGConv and DH have the potential to

enhance the accuracy of detection. It seems that the recognition

accuracy, brought by EIOU, is not obvious. However, it is found

in the training phase that the method with EIOU converges

more steadily that the original YOLOv5. When compared to the

original YOLOv5, the proposed method improves the mAP by

6.23%. As a consequence, the introduction of RGConv, AAS, DH,

EIOU can bring positive effects on improved vessel plate number

recognition results.

3.5. The experiment on USV

The method proposed in this paper was tested in the South

China Sea in order to verify its practicability. The “Tian Xing”

USV platform in the experiment can be seen in the Figure 9.

The object boat is equipped with LED board that display the

hull number. The visualization results are shown in Figures 10,

11. The Figure 10 represents the software interface that displays

environment perception information for the USV. It can be

FIGURE 9

“Tian Xing” USV.

found that the hull number of the target boat can be correctly

identified by the proposed method while guaranteeing real-time

detection results.

4. Conclusion

In the practical application tasks of USVs, it is necessary

to identify a vessel through its plate number. In this work,

we proposed a method based on object detection model

for recognizing vessel plate number in complicated sea

environments applied to USVs. The accuracy and stability of

model have been promoted by recursive gated convolution

structure, decoupled head, reconstructing loss function, and
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FIGURE 10

The software interface for perception system in USV.

FIGURE 11

The samples of recognition results.

redesigning the sizes of anchor boxes. To facilitate this research,

a vessel plate number dataset is established in this paper.

Furthermore, we conducted a field experiment with the “Tian

Xing” platform in the South China Sea. Compared with the

original YOLOv5, the proposed method could real-timely

recognize both the ship and its plate number with higher accuracy.

In both the civilian and military sectors, this has a great deal

of significance.

Although the proposed method has achieved good

results in the recognition of vessel plate numbers, it still

has room for improvement. In addition, this paper does

not consider the impact of ocean climate on recognition

accuracy. Changes in climate often result in the degradation

of images which brings additional challenges for recognition.

In the future, combining image enhancement algorithms to

improve recognition accuracy would provide a promising

research direction.
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